Supporting Information

Bimetallic Pt-Co catalysts for the liquid-phase WGS

Alberto José Reynoso¹, Jose Luis Ayastuy^{1,*}, Unai Iriarte-Velasco² and Miguel Ángel Gutiérrez-Ortiz¹

- ¹ Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena S/N, 48940 Leioa, Spain; <u>albertojose.reynoso@ehu.eus</u> (A.J.R.), <u>Miguelangel.gutierrez@ehu.eus</u> (M.A.G.O.)
- ² Department of Chemical Engineering, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria, Spain; <u>unai.iriarte@ehu.eus</u> (U.I.V.)
- * Correspondence: joseluis.ayastuy@ehu.eus; Tel.: +34-94-601-2619 (J.L.A.)

Received: date; Accepted: date; Published: date

Figure S1. Nitrogen isotherms (A) and pore size distribution (B) of the calcined (solid lines) and reduced (dashed lines) samples.

Figure S2. EDX spectrum of reduced samples (A) CoAl (B) 0.3Pt/CoAl (C) 1PtCoAl and (D) 0.3Pt/Al.

Figure S3. XPS spectra corresponding to Pt 4d_{5/2}.

Figure S4. Outlet molar concentration of products during WGS reaction in the absence of hydrogen (H₂/CO = 0). Reaction conditions: 260 °C/50 bar; W_{cat} (0.2 g), water flow (0.04mL/min), CO flow (3.5 mL/min, STP).

Figure S5. Outlet molar concentration of products during WGS experiments at different H₂/CO ratio. Reaction conditions: 260 °C/50 bar; W_{cat} (0.2 g), water flow (0.04mL/min), CO flow (3.5 mL/min, STP); H₂/CO=4/3 (0-10 h), H₂/CO =7/3 (11-20 h) and H₂/CO=4 (21-30 h).

Figure S6. Outlet molar concentration of products during WGS experiments at different temperature and pressure over Pt/CoAl. Reaction conditions: W_{cat} (0.2 g), water flow (0.04mL/min), CO flow (3.5 mL/min, STP), H₂ flow (14 mL/min, STP). Upper part: temperature variation (220, 235, 245, 260 °C) and 50 bar. Lower part: pressure variation (25, 35, 40, 50 bar) and 220 °C.

Table 1S. List of apparent activation energies reported in this work and in the literature for Pt catalysts.

Catalysts	Ea (kJ/mol)	Operating conditions	Reference	
0.3%Pt/CoAl	51.5	220-260 °C, liquid-phase	This work	
C03O4	91.0	180-280 °C, gas-phase		
0.2%Pt/Co ₃ O ₄	50.1	50.1 150-200 °C, gas-phase		
0.2%Pt/Co ₃ O ₄	24.8	300-350 °C, gas-phase		
1%Pt/Al ₂ O ₃	68	285 °C, gas-phase	[2]	
0.9% Pt/CeO ₂ /Al ₂ O ₃	70			
1.5% Pt/ZrO ₂	58			
2% Pt/CeO ₂	65	250-350 °C, gas-phase	[3]	
1.9% Pt/TiO ₂	23			
1.5% Pt/Fe ₂ O ₃	44			

Table 2S. Liquid holdup (EL), vapor composition and liquid/vapor distribution of CO and H2.

exp #	H2/CO	T (°C)	P (bar)	£L (%)	Р _{н20} (bar)	Pco (bar)	Р _{н2} (bar) -	Liquid/vapor	
								distribution (mol/mol)	
								СО	H_2
1	0	260	50	16.4	47.36	2.64	0	$1.05 \cdot 10^{-04}$	0
2	4/3	260	50	16.2	47.36	1.13	1.51	$4.49 \cdot 10^{-05}$	$1.13 \cdot 10^{-04}$
3	7/3	260	50	16.1	47.36	0.79	1.85	$3.14 \cdot 10^{-05}$	$7.88 \cdot 10^{-05}$
4	12/3	260	50	15.8	47.36	0.53	2.11	2.11.10-05	5.29.10-05
5	12/3	245	50	18.8	36.78	2.64	10.58	$1.13 \cdot 10^{-04}$	$2.71 \cdot 10^{-04}$
6	12/3	235	50	15.8	30.78	3.84	15.38	$1.72 \cdot 10^{-04}$	$4.03 \cdot 10^{-04}$
7	12/3	220	50	15.8	23.2	5.36	21.44	2.60.10-04	$5.80 \cdot 10^{-04}$
8	12/3	220	40	15.3	23.2	3.36	13.44	$1.63 \cdot 10^{-04}$	$3.64 \cdot 10^{-04}$
9	12/3	220	35	15.1	23.2	2.36	9.44	$1.14 \cdot 10^{-04}$	$2.55 \cdot 10^{-04}$
10	12/3	220	25	14.4	23.2	0.36	1.44	$1.74 \cdot 10^{-05}$	3.89.10-05

Liquid holdup (EL) was estimated according to reference [4].

References

- Zhang, S.; Shan, J.; Zhu, Y.; Frenkel, A.I.; Patlolla, A.; Huang, W.; Yoon, S.J.; Wang, L.; Yoshida, H.; Takeda, S.; Tao, F. WGS Catalysis and In Situ Studies of CoO_{1-x}, PtCon/Co₃O₄, and PtmCom/CoO_{1-x} Nanorod Catalysts. *J. Am. Chem. Soc.* 2013, 135, 8283-8293, DOI 10.1021/ja401967y. Available online: https://doi.org/10.1021/ja401967y.
- Mendes, D.; Mendes, A.; Madeira, L.M.; Iulianelli, A.; Sousa, J.M.; Basile, A. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors—a review. *Asia-Pac. J. Chem. Eng.* 2010, 5, 111-137, DOI 10.1002/apj.364. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.364.
- 3. Thinon, O.; Diehl, F.; Avenier, P.; Schuurman, Y. Screening of bifunctional water-gas shift catalysts. *Catal. Today* **2008**, 137, 29-35, DOI <u>https://doi.org/10.1016/j.cattod.2008.01.001</u>.
- García-Serna, J.; Gallina,G.; Biasi,P.; Salmi, T. Liquid Holdup by Gravimetric Recirculation Continuous easurement Method. Application to Trickle Bed Reactors under Pressure at Laboratory Scale. *Ind. Eng. Chem. Res.* 2017, 56, 13294-13300, DOI 10.1021/acs.iecr.7b01810. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.iecr.7b01810.