
catalysts

Article

2-Aminobenzothiazole-Containing Copper(II)
Complex as Catalyst in Click Chemistry:
An Experimental and Theoretical Study

Lahoucine Bahsis 1,2,* , Meryem Hrimla 2 , Hicham Ben El Ayouchia 2 , Hafid Anane 2 ,
Miguel Julve 3 and Salah-Eddine Stiriba 2,3,*

1 Département de Chimie, Faculté des Sciences d’El Jadida, Université Chouaïb Doukkali, B.P.:20,
El Jadida 24000, Morocco

2 Laboratoire de Chimie Analytique et Moléculaire/LCAM, Faculté Polydisciplinaire de
Safi, Université Cadi Ayyad, Safi 46030, Morocco; meryemhrimla.uca@gmail.com (M.H.);
belayou@gmail.com (H.B.); ananehafid@gmail.com (H.A.)

3 Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, Paterna,
46980 Valencia, Spain; miguel.julve@uv.es

* Correspondence: bahsis.lahoucine@gmail.com (L.B.); stiriba@uv.es (S.-E.S.)

Received: 21 June 2020; Accepted: 7 July 2020; Published: 11 July 2020
����������
�������

Abstract: The reaction of copper(II) acetate with the 2-aminobenzothiazole (abt) heterocycle affords
the new copper(II) complex of formula [Cu(abt)2(OOCCH3)2] (1) in a straightforward manner.
Compound 1 served as a precatalyst for azide/alkyne cycloaddition reactions (CuAAC) in water,
leading to 1,4-disubstituted-1,2,3-triazole derivatives in a regioselective manner and with excellent
yields at room temperature. The main advantages of the coordination of such a heterocyclic ligand in
1 are its strong σ-donating ability (N-Cu), nontoxicity and biological properties. In addition, the click
chemistry reaction conditions using 1 allow the formation of a great variety of 1,2,3-triazole-based
heterocyclic compounds that make this protocol potentially relevant from biological and sustainable
viewpoints. A molecular electron density theory (MEDT) study was performed by using density
functional theory (DFT) calculations at the B3LYP/6-31G(d,p) (LANL2DZ for Cu) level to understand
the observed regioselectivity in the CuAAC reaction. The intramolecular nature of this reaction
accounts for the regioselective formation of the 1,4-regioisomeric triazole derivatives. The ionic
nature of the starting copper-acetylide precludes any type of covalent interaction throughout the
reaction, as supported by the electron localization function (ELF) topological analysis, reaffirming the
zwitterionic-type (zw-type) mechanism of the copper(I)/aminobenzothiazole-catalysed azide-alkyne
cycloaddition reactions.

Keywords: 2-aminobenzothiazole; click chemistry; CuAAC; MEDT; regioselectivity; ELF

1. Introduction

Triazole-containing heterocycles have found many applications in several disciplines, such as
medicine, biology and materials science [1]. In general, these compounds are prepared through
azide-alkyne cycloaddition (AAC) reactions [2,3]. Indeed, the non-catalyzed [3 + 2] cycloaddition
(32CA) reaction, also known as “Huisgen’s 1,3-dipolar cycloaddition”, between azides and alkynes
is characterized by low rates and small yields at room temperature, due to the high kinetic barrier
of the reaction [4,5], as well as the formation of two isomers, that is, 1,4- and 1,5-disubstituted
1,2,3-triazoles. Later, the discovery by the groups of Meldal [6] and Sharpless [7] that copper(I) is
capable of accelerating the 32CA reaction of azides and alkynes with high regioselectivity, to afford
the 1,4-disubstituted 1,2,3-triazole isomer under mild conditions, led to a breakthrough of such
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a cycloaddition process. Since then, the copper-catalyzed azide-alkyne cycloaddition (CuAAC)
reaction has become the most representative click reaction in the panorama of click chemistry
due to its mild conditions and vast applications, in particular in life sciences [8–11]. However,
the thermodynamic instability of copper(I), as well as its easy oxidation to copper(II), have led to
the search for suitable stabilizing ligands for Cu(I) ion. Consequently, the formation of the active
Lewis-acid copper(I) species is becoming crucial in developing CuAAC reactions in terms of stability and
activity [12]. A variety of homogeneous catalytic systems were reported for the click of 1,4-disubstituted
1,2,3-triazoles [13–17]. In this regard, several polydentate ligands containing nitrogen atoms have
been used to thermodynamically stabilize copper ions against destabilizing reactants found in the
reaction medium. Some of these interesting ligands include the tris-(benzyltriazolylmethyl)amine
(TBTA) [18], dipicolinate [19], tris(triazolyl)methanol (TBTM) [20], 2-pyrrolecarbaldiminato [21] and
crowded tetradentate tris(2-dioctadecylaminoethyl)amine [22].

Inspired by Nature’s strategy, the use of ligands with biological activities can broaden the
CuAAC applications. Many heterocyclic nuclei, such as benzothiazole, have been recently reviewed as
antimicrobial agents [23,24] and 2-aminobenzothiazole derivatives were reported with a variety of
biological applications [25,26]. The 2-aminobezothiazole ligand (abt) contains sulfur and nitrogen in a
ring, an exocyclic nitrogen andπ-electrons, giving the ligand a high coordination ability. Its coordination
to the metal center via the nitrogen atom of the ring occurs in most of the reported crystal structures [27,
28]. It is worth noting that the type of complexes have been widely studied as they exhibit interesting
biological and photophysical properties [29–31].

Having in mind the above facts, we present here the synthesis of a Cu(II)-abt complex in
ethanol/water and the study of its catalytic potential for the click of 1,4-disubstituted-1,2,3-triazole
compounds via azide-alkyne cycloaddition reactions in water at room temperature. A theoretical
study by the MEDT method and ELF topological analysis is also carried out to explain the mechanism
and intermediates species that participate in this chemical process. It deserves to be noted that the
regioselective click of 1,2,3-triazoles is performed in absence of any reducing agent or additive bases,
while the catalyst is found to be highly active at lower loadings.

2. Results and Discussion

The copper(II)-abt complex of formula [Cu(abt)2(OOCCH3)2] (1) was simply prepared by the
addition of an aqueous solution of copper(II) acetate to a methanolic solution of abt at room temperature
(Scheme 1). Green crystals of 1 were grown from the resulting solution.
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Scheme 1. Schematic illustration of the synthesis of 1.

The optimized structure of 1 with the atom numbering of the non-carbon atoms is shown in
Figure 1. Bond distances and angles of the complex 1 are summarized in Table 1. The copper(II) ion in
1 is six-coordinate with two trans-positioned nitrogen atoms from to abt molecules and four oxygen
atoms of two chelating acetate ligands building an elongated octahedral CuN2O4 environment. Each
acetate ligand in 1 adopts an asymmetrical didentate coordination, with one short (1.981 and 1.980 Å
for Cu1-O1 and Cu1-O4, respectively) and one long (2.554 Å for Cu1-O2 and Cu1-O3) copper-oxygen
bond lengths. The Cu-Nabt bond distances [2.130 Å for Cu-N5 and Cu-N6, respectively] are somewhat
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shorter than the longest copper to oxygen bonds. The value of the N5-Cu-N6 bond angle (179.9◦) is
very close to linearity. These findings are in agreement with the crystallographic data of this compound,
whose single-crystal X-ray structure was reported by Dojer et al. in 2019 [28].
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Figure 1. Optimized structures of 1 at the B3LYP/6-31G(d,p) (LANL2DZ for Cu) level.

Table 1. Some calculated and experimental structural parameters of 1.

Calculated Experimental a

Bond Lengths (Å)

Cu1—O1 1.981 1.961
Cu1—O2 2.554 2.548
Cu1—O4 1.980 1.961
Cu1—O3 2.554 2.548
Cu1—N5 2.130 2.018
Cu1—N6 2.130 2.018

Bond Angles (◦)

O4—Cu1—N5 89.668 88.715
O3—Cu1—N5 92.640 91.256
O4—Cu1—N6 90.332 91.285
O3—Cu1—N6 87.359 88.743
O1—Cu1—N5 90.332 91.285
O2—Cu1—N5 87.359 88.744
O1—Cu1—N6 89.668 88.714
O2—Cu1—N6 92.640 91.256
N5—Cu1—N6 179.999 180.000

a Values from ref [28].

2.1. Catalytic Studies

The as-prepared copper(II) complex was then tested in 32CA reactions between a variety of azides
and terminal alkyne derivatives. The reaction between benzyl azide (1a) and phenylacetylene (2a) in
the water at room temperature was chosen as the model reaction and it was performed under a variety
of conditions (see Scheme 2 and Table 2). The controlled experiments showed that the 32CA reaction
does not take place in the absence of the catalyst (entry 1). It was observed that the use of copper(II)
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acetate only in water as a reaction medium led to poor yields of the corresponding 1,2,3-triazole ca.
40% after stirring for 24 h at room temperature (entry 2). Interestingly, the corresponding 1,4-triazole
was formed in high yields (98%) within 12 h by using 5 mol% of 1 and water as solvent (entry 5)
compared with copper(II) sulphate in the presence of 2-abt as a ligand (entry 4). The catalyst loading for
1 could be further reduced to 2 mol%, affording an excellent yield of the corresponding 1,4-disubstituted
1,2,3-triazole (92%) in water within 4 h at room temperature (Table 2, entry 7). Further, several solvents
were investigated for the model reaction (Table 2, entries 9–14). Hexane, ethanol, acetonitrile, acetone
and toluene as solvents gave poor to moderate reaction yields (40–67%, respectively). The ethanol/water
solvent mixture also gave a moderate yield ca. 62% with 2 mol% of the catalyst. As can be seen in
Table 2, the maximum yield of the triazole product was obtained with 2 mol% of the catalyst in water
medium at room temperature.
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Table 2. Optimization of reaction conditions for complex 1-mediated benzyl azide-phenylacetylene
cycloaddition a.

Entry Catalyst Catalyst Loading (mol%) Solvent Time (h) Yield (%) b

1 abt - Water 24 Traces
2 Cu(OAc)2 5 Water 24 40
3 CuSO4 5 Water 24 30
4 CuSO4 5 Water 12 85 c

5 1 5 Water 12 98
6 1 3 Water 4 96
7 1 2 Water 4 92
8 1 1 Water 4 74
9 1 2 Hexane 4 40

10 1 2 Toluene 4 51
11 1 2 Ethanol 4 67
12 1 2 Acetonitrile 4 64
13 1 2 Acetone 4 56
14 1 2 Ethanol/water 4 62

a Reaction conditions: benzyl azide (0.6 mmol), phenylacetylene (0.5 mmol), solvent (3 mL) and catalyst. b Isolated
yields. c Using 2-abt as ligand.

Based on the above-optimized reaction conditions, the scope of our method was explored by using
different para-substituted phenyl acetylenes as well as different benzyl and alkyl azides. The 32CA
reactions progressed effectively to afford the corresponding triazole derivatives in a short time for
all cases and the corresponding 1,2,3-triazoles were isolated in good to excellent yields (see Table 3).
Interestingly, the clicking reaction between alkyne-containing polycyclic and benzyl or alkyl azides
was conducted and the corresponding 1,2,3-triazoles were obtained in excellent yields by precipitation
in water and without need for any further purification by conventional methods (see Table 3, entries
11 and 12). The products were fully characterized by 1H and 13C NMR spectroscopy and mass
spectrometry (see Supplementary Materials for details).
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Table 3. Click of 1,2,3-triazoles in the presence of complex 1 a.
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a Reaction conditions: azides (0.6 mmol), alkynes (0.5 mmol), water (3 mL), 2 mol% of catalyst, and room temperature.
b Isolated yields.

2.2. Comparison of Complex 1 with other Catalysts

In order to prove the efficiency of the complex 1-mediated azide-alkyne cycloaddition reaction, a
comparison of this catalyst with other copper(II) complexes for the reaction of phenylacetylene (1a)
and benzyl azide (2a) to afford 1,4-disubstituted 1,2,3-triazoles was done (see Scheme 2 and Table 4).
It was observed that the presence of a reducing agent, high temperatures and inert atmosphere are
requisites to operate some catalytic systems. Importantly, complex 1 occurs in an effective manner for
the synthesis of 1,2,3-triazole, working in air and at room temperature in water, followed by an easy
work-up protocol for the final separation of the product.
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Table 4. Comparison of the catalytic performance of 1 with other literature reports in CuAAC reactions a.

Entry
Cu

Loading
(mol %)

Additives Solvent T (◦C) Time (h) Yield (%) Ref.

Complex 1 2 - H2O r.t. 4 92 This work
Cu(NO3)2·3H2O 20 - H2O r.t. 20 13 [32]

Cu(II)-tren 0.2 - n-Octane r.t. 24 84 [33]
Cu(II)-MBHTM 1 Sodium-ascorbate DMSO/H2O r.t. 4 94 [34]

Cu(II)-BPPA 0.2 Sodium-ascorbate MeOH/N2 r.t. 16 99 [35]
[Cu(II)(Phox)2] 1.4 - H2O 70 12 75 [36]

[(C2H5)4N]4[V8Cu2O24] 0.34 - H2O 70 4 88 [37]
a Tren = Tris(2-dioctadecylaminoethyl)amine; MBHTM = (1-(4-methoxybenzyl)-1-H-1,2,3-triazol-4-yl) methanol;
BPPA = bipyridine pyrazole amine; Phox: 2-(2′-hydroxyphenyl)-2-oxazoline.

2.3. Mechanistic Studies

Based on the reported mechanism [38–44], the reaction mechanism for the synthesis of
1,4-disubstituted 1,2,3-triazoles in the presence of 1 is shown in Scheme 3. Firstly, the catalytic
copper(I) species arises through the reduction of the copper(II) complex by the terminal alkyne via the
oxidative alkyne homocoupling process [45]. Then, the in-situ coordination of the terminal alkyne to the
copper(I) species leads to the dinuclear acetylide-copper intermediate. The reaction of this dinuclear
complex and organic azide conducts to a six-membered ring, forming the triazolide ring intermediate.
Finally, this intermediate easily provides the 1,4-disubstituted 1,2,3-triazole under slightly acidic
conditions and regenerates the catalyst (Scheme 3).Catalysts 2020, 10, x FOR PEER REVIEW  7 of 19 
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2.3.1. MEDT Study

Recently, the molecular electron density theory [46] (MEDT) was proved to be a powerful tool
for the theoretical understanding of 32CA reactions allowing the explanation of the reactivity of
the simplest three-atom-components (TACs) towards ethylene, based on their respective electronic
structure [47]. Accordingly, the CuAAC reaction catalyzed by the Cu(I)-abt complex was investigated
through the MEDT study (Scheme 4). The terminal alkyne is firstly metallated with copper(I) via
an easy deprotonation of the alkyne, yielding a binuclear copper(I)-acetylide species (see Scheme 4).
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After coordination of the azide to the copper(I)-acetylide, the cycloaddition subsequently affords the
corresponding 1,2,3-triazole compounds. Herein, the reaction path associated to the CuAAC reaction
of propyne (4) with methyl azide (5) yielding 1,4-dimethyl-1,2,3-triazole (6) is investigated within
MEDT through DFT methods at level B3LYP/6-31G(d,p) (LANL2DZ for Cu) (see Scheme 4).
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Azide components (TACs) participate in the zw-type 32CA with high activation energies [48],
which can be favored through a more polar process by the increase of the electrophilic and nucleophilic
character of the reagents. Consequently, the 32CA reaction catalyzed by Cu(I)-abt complex was
analyzed using the global reactivity indices defined within Conceptual DFT (CDFT) [49,50] and the
results are shown in Table 5. Compound 4 was found as a marginal electrophile and a marginal
nucleophile within the electrophilicity [51] and nucleophilicity scales [52], a feature that explains the
non-participation of 4 in polar cycloaddition reactions. In contrast, compound 5 is a strong electrophile
(ω = 1.22 eV) and a moderate nucleophile (N = 2.15 eV). However, the coordination of 4 to copper(I)-abt
increases the values of the ω and N indexes to 1.14 and 3.11 eV being thus classified as both strong
electrophile and nucleophile. Therefore, the CuAAC reactions of 5 with Ac are polar reactions due to
the strong nucleophilic (Ac) and the strong electrophilic (5) characters (see Table 5).

Table 5. Global reactivity indices (in eV) of the reagents involved in CuAAC reactions catalyzed by
Cu(I)-abt.

Species µ η ω N

Propyne (4) −2.68 8.71 0.42 2.06
Methyl azide (5) −3.87 6.16 1.22 2.15

Cu(I)-acetylide (Ac) −3.42 5.17 1.14 3.11

Recently, a lot of studies of polar 32CA reactions have shown that the analysis of the electrophilic
and nucleophilic Parr functions allows us to explain the experimentally observed regioselectivity [53].
Thus, the electrophilic Pk

+ and nucleophilic Pk
− Parr functions at 4, 5 and Ac were analyzed (see

Figure 2). The analysis of the nucleophilic Pk
− Parr functions at 4 indicates that the terminal C5

carbon is the most nucleophilic center of this molecule (Pk
− = 0.54), although the C4 carbon is also

nucleophilically activated (Pk
− = 0.36). On the other hand, the analysis of the electrophilic Pk

+

Parr functions at 5 reveals that the terminal N1 nitrogen is the most electrophilic center of this TAC
(Pk

+ = 0.56). These results suggest that along with a polar 32CA reaction, the 1,5-regioisomer will be
the main reaction product. However, the very low polar character of this non-catalyzed AAC reaction
accounts for its low regioselectivity.
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Figure 3 shows electrophilic Pk
+ and nucleophilic Pk

− Parr functions of 4, 5 and Ac. The analysis of
the nucleophilic Pk

− Parr functions at 4 indicates that the terminal carbon (C5) is the most nucleophilic
center of this molecule (Pk

− = 0.57), while the most electrophilic center of 5 is the terminal N1 nitrogen
(Pk

+ = 0.57). Thus, the very low polar character of this non-catalyzed azide-alkyne cycloaddition
reaction accounts for its low regioselectivity. The electrophilic Parr functions at Ac characterize the
copper atom interacting with the abt ligand as the most electrophilic center (Pk

+ = 0.44), while the
nucleophilic Parr functions at 5 points out the substituted N3 nitrogen atom as the most nucleophilic
center (Pk

− = 0.64). These results show that the most favorable interaction is the Cu-N bond, conducting
to the formation of a reactive complex (RC) (vide infra) and the increase in the electrophilicity value of
the alkyne makes the use of the abt ligand in the CuAAC reactions more favorable.
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Ac with 5.

In the first step of the CuAAC mechanism, 4 binds to a copper(I) cation as a π-ligand.
This coordination increases the acidity of the terminal alkyne, favoring the formation of mononuclear
Cu(I)-acetylide upon deprotonation. Then, the coordination of the C5 carbon atom to a second copper(I)
center leads to the dinuclear Ac species. Subsequently, the coordination of 5 to a copper(I) cation in Ac via
its N3 azide nitrogen allows the formation of the reactive complex (RC). This intermediate is the starting
point for the stepwise sequences represented in Figure 3. This step is highly exothermic at 17.31 kcal/mol.
The computed barrier for the formation of the first N1-C4 single bond via TS1 is 2.66 kcal/mol,
a value which is smaller than the barrier for the non-catalyzed reaction (ca. 30.3 kcal/mol) [54].
Subsequently, the formation of the intermediate complex (IC) is exothermic by ca. 13.74 kcal/mol.
From this intermediate, the barrier for the ring contraction leading to the Cu(I)-triazolyl derivative
is 11.17 kcal/mol (TS2). Finally, the formation of the AT derivative is exothermic by 112.14 kcal/mol.
These results allow us to explain the easy formation of the corresponding triazoles in water. Moreover,
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the use of abt as ligand for copper(I) in the CuAAC process shows that this heterocyclic ligand causes a
decrease of the energy barrier of about 3–6 kcal/mol in the aqueous phase, by comparison with our
previously reported catalytic system using the water molecule as the only ligand [55].

2.3.2. ELF Topological Analysis

In order to get more understanding of the CuAAC reactions catalyzed by Cu(I)-abt, all intermediates
in the reaction between Ac and 5 were characterized by a topological analysis of the ELF [56]. The results
are given in Table 6 and the ELF-based Lewis representations are illustrated in Figure 4.

Table 6. ELF valence basin populations in the average number of electrons (e) of the intermediates
involved in the CuAAC reaction of Ac with 5.

Structures 5 Ac RC TS1 Cl TS2 AT

V(N1,N2) 1.74 - 1.80 2.32 2.00 1.89 1.85
V′(N1,N2) 2.22 - 1.83 - - - -

V(N2) - - - 2.60 2.84 2.82 3.34
V(N2,N3) 2.51 - 2.51 1.65 1.78 2.01 1.58
V(C4,C5) - 2.38 2.41 1.96 3.35 2.90 3.09
V′(C4,C5) - 2.39 2.34 1.98 - - -

V(N3) 3.53 - 3.58 1.99 1.85 2.99 0.79
V′(N3) - - - 1.63 1.67 - 0.76
V(C4) - - - 0.39 - - -
V(C5) - 3.37 3.45 2.34 3.00 2.21 3.21

V(N1,C4) - - - - 1.97 2.17 2.11
V(N3,C5) - - - - - - 2.20
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5 (L = abt).

The topological analysis of the ELF of 5 is characterized by the presence of two V(N1,N2) and
V’(N1,N2) disynaptic basins integrating a total population of 4.00 e, two V(N1) and V(N3) monosynaptic
basins integrating 3.94 and 3.53 e and one V(N2,N3) disynaptic basin integrating 2.51 e. Accordingly,
Lewis’ bonding model for 5 is identified by one N1-N2 double bond, a N2-N3 single bond and two lone
pairs at the N1 and N3 azide-nitrogen atoms (see Table 6 and Figure 4), confirming that 5 participates as
zwitterionic TAC in the 32CA reactions [57]. The electronic structure of Ac shows the presence of one
V(C5) monosynaptic basin, with a high electron population of 3.37 e and two V(C4,C5) and V’(C4,C5)
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disynaptic basins, with a total population of 4.75 e. These valence basins can be attributed to the C4–C5
double bond and the C5 carbanionic center, reveals the ionic nature of Ac (see Table 6 and Figure 4).

The ELF analysis for the reactive complex (RC) shows non-appreciable topological changes with
respect to the separated reagents. For example, a similar behavior is located at the azide framework for
the V(N2,N3) disynaptic basin and the total population of the V(N1,N2) and V′(N1,N2) disynaptic
basins increases by an equivalent amount. A similar behavior is found for the two V(N1) and V(N3)
monosynaptic basins. The V(C4,C5) and V’(C4,C5) disynaptic basins in the alkyne framework are
slightly depopulated by 0.03 and 0.05 e, respectively. Several changes occur in the azide framework at
TS1, while a new V(N2) monosynaptic basin, associated with the N2 nitrogen non-bonding electron
density, was created, integrating 2.60 e. The total population of the V(N2,N3) disynaptic basin, as well
as that of the two V(N1,N2) and V′(N1,N2) disynaptic basins, strongly decreased by 0.86 and 1.64 e,
respectively. In addition, the V(N3) monosynaptic basin split into two V(N3) and V′(N3) monosynaptic
basins integrating 1.99 and 1.63 e, although their total population only increased by 0.04 e. Otherwise,
the population of the V(N1) monosynaptic basin more markedly increased to 3.62 e, but the N1
nitrogen non-bonding electron density remained characterized by one single V(N1) monosynaptic
basin. A strong depopulation of the two V(C4,C5) and V′(C4,C5) disynaptic basins was achieved
for the acetylide framework by a total of 0.81 e. The V(C5) monosynaptic basin reached 2.34 e and
a new V(C4) monosynaptic basin was created integrating 0.39 e, which can be attributed to a C4
pseudoradical center. At CI, a new V(N1,C4) disynaptic basin is observed integrating 1.97 e and the
disappearance of the V(C4) monosynaptic basin located at TS1, which is related to the new N1-C4
single bond by sharing part of the electron population of the V(N1) monosynaptic basin and that of the
V(C4) one (Table 6). At TS2, the most relevant topological change is the merging of the two V(N3)
and V′(N3) monosynaptic basins into one single V(N3) monosynaptic basin 3.50 e, with respect to
the ELF topological characterization of CI. In addition, a slight depopulation of 0.13 e towards the
V(N2,N3) disynaptic basin, increasing to 2.01 e also occurred. It was also found that the population of
the V(C5) monosynaptic basin, which was decreased at TS1, has decreased to 3.00 e. Finally, at AT,
a new disynaptic basin V(N3,C5) was observed integrating 2.20 e. The creation of this disynaptic basin,
which is associated to the new N3-C5 single bond, was accompanied by a notable depopulation of
the V(N3) by 2.20 e and the increasing of the total population of V(C5) monosynaptic basins by 1.00 e.
These results suggest that the creation of the V(N3,C5) disynaptic basin took place by displacement
of part of the electron populations of both V(N3) to V(C5) monosynaptic basins. On the other hand,
the two V(N1,N2) and V(N2,N3) disynaptic basins in the azide framework have decreased to less than
2 e and the V(N2) monosynaptic basins integrates 3.34 e. All these results show that the ionic nature
of all chemical intermediates rules out any covalent interaction involving the copper(I)-complexes,
as supported by the ELF topological analysis, reaffirming the zw-type mechanism of the Cu(I)-abt
complex catalyzed AAC reactions.

3. Materials and Methods

3.1. Materials

All chemicals and reagents employed in this work were purchased from Sigma Aldrich and all
organic solvents were used without additional purification. The reactions were monitored by thin-layer
chromatography (TLC) carried out on commercial glass-backed TLC plates (aluminum plates coated
with silica gel 60 F254, 0.25 mm thickness, Merck).

FT-IR spectra were performed on a FTIR spectrophotometer (FT-IR Nicolet 5700, ThermoFischer,
Madrid, Spain). The NMR spectra were recorded on a BRUKER DRX-300 AVANCE spectrometer in
CDCl3 using the tetramethylsilane (TMS) as an internal standard.
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3.2. Synthesis of [Cu(abt)2(OOCCH3)2] (1)

In a typical experiment, 0.10 g of abt was dissolved in 10 mL of methanol then 5 mL of Cu(OAc)2

water solution (2 × 10−2 M) was added slowly under continuous stirring at room temperature.
The solution took a green color during the addition of the copper(II) acetate solution. A precipitate
was formed and the mixture was stirred for 12 h at room temperature. The solid was filtered, washed
with water and dried at 40 ◦C overnight to afford complex 1 as a green solid (Yield: 88%). FT-IR data
(KBr/cm−1): 3396 [ν(NH2)], 1623 [ν(C=N)], 1342 [ν(C-O)], 1592 and 1529 [ν(C=N)ar + ν(C=C)ar],
1467 and 1435 [ν(C-N)}, 508 [ν(Cu-O)] and 689 [ν(Cu-N)].

3.3. General Procedure for the CuAAC Reaction

Azides (0.6 mmol), alkynes (0.5 mmol) and complex 1 (2 mol%) were mixed with water (3 mL)
and stirred at room temperature. After completion of the catalytic cycloaddition reaction, as confirmed
by TLC analysis, the reaction mixture was diluted with diethyl ether and extracted three times.
The combined organic layers were then concentrated under reduced pressure to give the corresponding
triazole derivatives that were purified by simple recrystallization, if needed.

The reaction mixture was stirred at room temperature and the reaction was monitored through
thin layer chromatography. After completion, the reaction mixture was diluted by diethyl ether and
the combined organic layers were then concentrated under vacuum to give the corresponding triazole
derivatives and, if required, the products were purified by recrystallization.

3.3.1. Synthesis of 1-Benzyl-4-phenyl-1H-1,2,3-triazole (3a)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 5.59 (s, 2H, CH2), 7.31–7.44 (m, 8H, CHar),
7.69 (s, 1H, CHtriazole), 7.81–7.83(s, 2H, CHar). 13C NMR (75MHz, CDCl3, δ ppm): 54.6 (CH2),
120.0 (CHar), 126.1 (CHar), 128.5 (2 × CHar), 128.6 (2 × CHar), 129.2 (Car), 129.6 (CHtriazole), 131.0 (Car),
135.1 (Car). HRMS (ESI) [M + H] + found m/z = 236.1183. Calcd value for C15H13N3 = 236.1182.

3.3.2. Synthesis of 1- Benzyl-4-p-Tolyl-1H-1,2,3-Triazole (3b)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 2.38 (s, 3H, CH3), 5.59 (s, 2H, CH2), 7.22–7.42
(m, 7H, CHar), 7.66 (s, 1H, CHtriazole), 7.70–7.73 (d, 2H, CHar). 13C NMR (75MHz, CDCl3, δ ppm):
21.7 (CH3), 54.6 (CH2), 126.0 (CHar), 128.2 (2×CHar), 128.5 (2×CHar), 129.2 (2×CHar), 129.6 (2 × CHar),
129.9 (Car), 131.7 (CHtriazole), 135.2 (2Car), 138.4 (Ctriazole). HRMS (ESI) [M + H]+ found m/z = 250.1339.
Calcd value for C16H15N3 = 250.1339.

3.3.3. Synthesis of 1-(4-Methylbenzyl)-4-Phenyl-1H-1,2,3-Triazole (3c)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 2.28 (s, 3H, CH3); 5.46 (s, 2H, CH2); 7.13–7.35
(m, 7H, CHar); 7.57 (s, 1H, CHtriazole); 7.71–7.73 (d, 2H, CHar). 13C NMR (75 MHz, CDCl3, δ ppm):
21.2 (CH3); 54.1 (CH2); 125.70 (2CHar); 128.2 (3 × CHar); 129.8 (4 × CHar); 129.8 (Car); 130.6 (CHtriazole);
131.6 (Car); 138.8 (Car); 148.7 (Ctriazole). HRMS (ESI) [M + H]+ found m/z = 250.1345. Calcd value for
C16H15N3 = 250.1344.

3.3.4. Synthesis of 1-Benzyl-4-(Phenoxymethyl)-1H-1,2,3-Triazole (3d)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 5.21 (s, 2H, CH2); 5.55 (s, 2H,OCH2); 6.96–7.00
(m, 3H, CHar ); 7.28–7.41 (m, 7H, CHar ); 7.57 (s, 1H, CHtriazole ). 13C NMR (75 MHz, CDCl3, δ ppm):
54.7 (CH2); 62.5 (CH2); 115.2 (2*CHar); 116.2 (CHar); 121.7 (CHtriazole); 128.6 (CHar); 129.22 (2CHar);
129.5 (4CHar); 129.9 (Car); 134.9 (Ctriazole); 158.6 (Car). HRMS (ESI) [M + H]+ found m/z = 266.1289.
Calcd value for C16H15N3O = 266.1288.
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3.3.5. Synthesis of 1-(4-Fluoro-Benzyl)-4-p-Tolyl-1H-[1,2,3]Triazole (3e)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 2.39 (s, 3H, CH3); 5.55 (s, 2H, CH2);
7.06–7.17 (m, 2H, CHar); 7.22–7.29 (m, 2H, CHar); 7.39–7.45 (m, 2H, CHar); 7.64 (s, 1H, CHtriazole);
7.69–7.72 (m, 2H, CHar). 13C NMR (75 MHz, CDCl3, δ ppm): 21.3 (CH3); 53.5 (CH2); 116.0 (CHar);
116.3 (CHar); 119.1 (CHar); 125.62 (CHar); 127.63 (Car); 129.52 (2 × CHar); 129.88 (CHar); 129.99 (CHar);
130.62 (CHtriazole); 130.7 (2CHar); 138.1 (2Car); 148.5 (Ctriazole); 161.2 (Car-F). HRMS (ESI) [M + H]+

found m/z = 268.1249. Calcd value for C16H14FN3 = 268.1245.

3.3.6. Synthesis of 1-(4-Fluorobenzyl)-4-(4-Fluorophenyl)-1H-1,2,3-Triazole (3f)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 5.55 (s, 2H, CH2); 7.08–7.15 (m, 4H, CHar);
7.31–7.36 (m, 2H, CHar); 7.63 (s, 1H, CHtriazole); 7.77–7.82 (m, 2H, CHar). 13C NMR (75 MHz, CDCl3,
δ ppm): 53.6 (CH2); 115.7 (CHar); 116.0 (CHar); 116.1 (CHar); 116.4 (CHar); 119.0 (Ctriazole); 127.4 (Car);
127.5 (2 × CHar); 129.9 (2 × CHar); 130.0 (Car); 137.8 (CHtriazole); 161.5 (Car-F); 163.5 (Car-F). HRMS (ESI)
[M + H]+ found m/z = 272.0996. Calcd value for C15H11F2N3 = 272.0994.

3.3.7. Synthesis of (1-(4-Isopropylphenyl)-1H-1,2,3-Triazol-4-yl)Methyl Benzoate (3g)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 1.29 (s, 3H, CH3); 1.31 (s, 3H, CH3); 2.95–3.04
(m, 1H, CH); 5.58 (s, 2H, CH2); 7.37–7.40 (d, 2H, CHar); 7.43–7.48 (t, 2H, CHar); 7.56–7.60 (d, 1H,
CHar); 7.64–7.67 (d, 2H, CHar); 8.07–8.10 (d, 2H, CHar); 8.12 (s, 1H,CHtriazole). 13C NMR (75 MHz,
CDCl3, δ ppm): 24.3 (2 × CH3); 34.2 (CH); 58.5 (CH2); 121.1 (CHtriazole); 122.7 (Car); 128.1 (2 × CHar);
128.8 (2 × CHar); 130.1 (2 × CHar); 130.2 (2 × CHar); 133.7 (Car); 135.2 (CHar); 143.8 (Ctriazole); 150.4 (Car);
166.9 (Cester). HRMS (ESI) [M + H]+ found m/z = 322.1562. Calcd value for C19H19N3O2 = 322.1550.

3.3.8. Synthesis of Methyl 1-(4-Isopropylphenyl)-1H-1,2,3-Triazole-4-Carboxylate (3h)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 1.30 (s, 3H, CH3); 1.32 (s, 3H, CH3); 2.97–3.06 (m,
1H, CH); 4.01 (s, 3H, OCH3); 7.40–7.43 (d, 2H, CHar); 7.66–7.70 (d, 2H, CHAr); 8.50 (s, 1H, CHtriazole).
13C NMR (75 MHz, CDCl3, δ ppm): 24.2 (2*CH3); 34.3 (CH); 52.7 (OCH3); 121.3 (Car); 126.0 (2 × CHar);
128.3 (CHtriazole); 134.7 (2 × CHar); 141.3 (Ctriazole); 151.2 (Car); 161.6 (Cester). HRMS (ESI) [M + H]+

found m/z = 246.1239. Calcd value for C13H15N3O2 = 246.1237.

3.3.9. Synthesis of 1-(4-Isopropylphenyl)-4-(Phenylthiomethyl)-1H-1,2,3-Triazole (3i)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 1.29 (s, 3H, CH3); 1.31 (s, 3H, CH3); 2.94–3.03 (m,
1H, CH); 4.34 (s, 2H, CH2); 7.19–7.24 (d, 1H, CHar); 7.31–7.41 (m, 6H, CHar); 7.57–7.61 (d, 2H, CHar);
7.78 (s, 1H, CHtriazole). 13C NMR (75 MHz, CDCl3, δ ppm): 24.3 (2 × CH3); 29.3 (CH); 34.2 (CH2);
121.0 (CHtriazole); 126.59 (CHar); 126.98 (2 × CHar); 128.06 (2*CHar); 129.45 (2 × CHar); 130.03 (Ctriazole);
133.76 (Car); 134.6 (2 × CHar); 135.8 (Car); 150.2 (Car). HRMS (ESI) [M + H]+ found m/z = 310.1373.
Calcd value for C18H19N3S = 310.1372.

3.3.10. Synthesis of (1-(4-Methoxyphenyl)-1H-1,2,3-Triazol-4-yl)Methyl Benzoate (3j)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 3.79 (s, 3H, CH3), 5.48 (s, 2H, CH2), 6.94 (d, 1H,
CHar), 6.96 (d, 1H, CHar),7.36 (t, 1H, CHar),7.47 (t, 1H, CHar), 7.49 (s, 1H, CHtriazole),7.52 (t, 1H, CHar),
7.54 (d, 1H, CHar), 7.56 (d, 1H, CHar), 7.58 (d, 1H, CHar),8.0 (d, 1H, CHar). 13C NMR (75 MHz, CDCl3,
δ ppm): 55.7 (CH3), 58.1 (CH2), 114.8 (2 × CHar), 122.3 (2 × CHar), 128.4 (2 × CHar), 129.7 (3 × CHar),
129.8 (Cq), 133.3 (CHtriazole), 136.0 (Cq), 151.3 (Cq), 160.0 (Cq), 166.6 (Ccarbonyl). HRMS (ESI) [M + H]+

found m/z = 310.1198. Calcd value for C17H15N3O3 = 310.1186.

3.3.11. Synthesis of Naphthalen-2-yl 1-Benzyl-1H-1,2,3-Triazole-4-Carboxylate (3k)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 5.57 (s, 2H, CH2); 7.19 (s, 1H, CHar); 7.25–7.29
(m, 3H, CHar); 7.35–7.38 (m, 2H, CHar); 7.40–7.44 (m, 3H, CHar); 7.62 (s, 1H, CHtriazole); 7.83 (d, 2H,



Catalysts 2020, 10, 776 13 of 17

CHar); 8.09 (s, 2H, CHar). 13C NMR (75MHz, CDCl3, δ ppm): 55.0 (CH3); 103.4 (CHar); 118.8 (CHar);
121.0 (CHar); 125.9 (CHar); 126.7 (2CHar); 127.8 (3×CHar); 128.1 (CHtriazole); 128.4 (2×CHar); 129.3 (Car);
129.6 (CHar); 136.5 (2Car); 141.9 (Ctriazole); 147.6 (Car); 159.7 (Ccarbonyl). HRMS (ESI) [M + H]+ found
m/z = 330.1198. Calcd value for C20H15N3O2 = 330.1237.

3.3.12. Synthesis of Naphthalen-2-yl 1-(4-Methoxyphenyl)-1H-1,2,3-Triazole-4-Carboxylate (3l)

White solid. 1H NMR (300 MHz, CDCl3, δ ppm): 3.82 (s, 3H, CH3); 6.98–7.01 (d, 2H, CHar);
7.18 (d, 1H, CHar); 7.41–7.45 (m, 1H, CHar); 7.62–7.67 (m, 4H, CHar); 7.76–7.86 (m, 3H, CHar); 8.54 (s, 1H,
CHtriazole). 13C NMR (75 MHz, CDCl3, δ ppm): 55.7 (CH3); 108.9 (CHar); 115.1 (2*CHar); 118.8 (CHar);
121.0 (CHar); 122.6 (CHar); 126.0 (CHtriazole); 126.6 (2 ×CHar); 126.7 (CHar); 127.9 (CHar); 129.6 (2 × Car);
136.5 (CHar); 142.1 (Car); 147.6 (Ctriazole); 158.6 (Car); 159.7 (Ccarbonyl); 164.1 (Car). HRMS (ESI) [M + H]+

found m/z = 346.1206. Calcd value for C20H15N3O3 = 346.1186.

3.4. Computational Methods

All computational calculations were conducted using the Gaussian 09 program [58]. Optimized
geometries were performed with B3LYP [59,60], while the LANL2DZ basis set was used for the Cu
atom [61] and the 6-31G(d,p) basis set for the other atoms. Frequency calculations were performed to
verify the stationary points to be real minima and each TS had only one single imaginary frequency
at the same level. The solvent effects were performed with water as solvent using the polarizable
continuum model (CPCM). All charge distributions were calculated by natural bond orbital (NBO)
analysis [62]. All distances and energies are given in Å and kcal/mol, respectively.

The global electrophilicity (ω) and nucleophilicity (N) indexes were measured at the same level,
and are given by the following simple expressions: ω = µ2/2η and N = EH − EH (TCE) [63,64].
The electronic chemical potential (µ) and chemical hardness (η) were approached in terms of the
one-electron energies of the frontier molecular orbitals HOMO and LUMO, EH and EL, using the
expressions µ = (EH + EL)/2 and η = (EL − EH ), respectively.

Both the electronic chemical potential (µ) and chemical hardness (η) may be further approached
in terms of the one-electron energies of the frontier molecular orbitals HOMO and LUMO, EH and EL,
using the expressions µ = (EH + EL)/2 and η = (EL − EH ), respectively.

Recently, Domingo et al. introduced a new local reactivity index for the Parr functions, namely,
local electrophilic (Pk

+), and nucleophilic (Pk
−), obtained from the analysis of the Mulliken atomic spin

density (ASD) of the corresponding reagents [65]. The ELF analysis was also carried out by means of
Multiwfn software [66].

4. Conclusions

In summary, a copper(II) complex containing the heterocyclic 2-aminobenzothiazole (abt) as
ligand was prepared and used as a precatalyst for the regioselective synthesis of the corresponding
1,4-disubstituted 1,2,3-triazole under CuAAC strict click chemistry regime. A variety of azides and
alkynes were employed in the CuAAC, affording the desired products, which were easily separated
in excellent yields. In addition, the 32CA reaction between 5 and 4 was chosen as reaction model
and the CuAAC mechanism was studied at the B3LYP/6-31G(d,p) (LANL2DZ for Cu) computational
level, choosing the abt as a ligand. The experimental findings are correctly explained by means of the
local reactivity indexes obtained from the Parr functions, for regioselectivity synthesis of 1,4-triazoles.
The reaction of Ac and 5 follows a two-step mechanism and an easy reaction in terms of energetics,
which is in good agreement with the experimental observations. Importantly, the ionic nature of the
starting Ac excludes any covalent interaction involving the copper(I) species throughout the reaction,
as supported by the ELF topological analysis, indicating the zw-type pathway of the mechanism of
CuAAC reactions, using abt as a ligand.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/7/776/s1.
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