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Abstract: The construction of a ZnO/SnO2 heterostructure is considered in the literature as an
efficient strategy to improve photocatalytic properties of ZnO due to an electron/hole delocalisation
process. This study is dedicated to an investigation of the photocatalytic performance of ZnO/SnO2

heterostructures directly synthesized in macroporous glass fibres membranes. Hydrothermal ZnO
nanorods have been functionalized with SnO2 using an atomic layer deposition (ALD) process.
The coverage rate of SnO2 on ZnO nanorods was precisely tailored by controlling the number of
ALD cycles. We highlight here the tight control of the photocatalytic properties of the ZnO/SnO2

structure according to the coverage rate of SnO2 on the ZnO nanorods. We show that the highest
degradation of methylene blue is obtained when a 40% coverage rate of SnO2 is reached. Interestingly,
we also demonstrate that a higher coverage rate leads to a full passivation of the photocatalyst. In
addition, we highlight that 40% coverage rate of SnO2 onto ZnO is sufficient for getting a protective
layer, leading to a more stable photocatalyst in reuse.

Keywords: photocatalysis; ZnO; SnO2; atomic layer deposition

1. Introduction

Photocatalytic water treatment has been intensively described in the last two decades. The amount
of polluted water is constantly increasing, making the maintenance of reserves of clean drinkable
water more and more challenging [1]. Current water depollution technologies (filtration membranes,
reverse osmosis, adsorption, coagulation, deep UV with H2O2, etc.) have high operating costs and
consume a lot of energy [2–5]. Consequently, the development of green and energy-efficient depollution
technologies is attracting much attention. Photoactive materials working under sunlight are part
of them. Among the different photocatalysts studied in the literature, semiconductors like ZnO or
TiO2 appear to be promising candidates as they are abundant, safe, thermally stable and display
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high photocatalytic properties [6–9]. ZnO has a direct band gap of 3.2–3.3 eV at room temperature
(≈380 nm) and an exciton binding energy of 60 meV, making it photoactive in the ultraviolet (UV)
range. Nevertheless, the large-scale use of photocatalysis for water treatment is limited due to the fast
recombination of photogenerated charge carriers in those materials.

In order to improve photocatalytic properties of ZnO, different strategies have been proposed,
for example, by using doping elements to improve the photoresponse range [10,11] or developing
heterostructures (heterojunctions) with other semiconductors [12,13]. Based on their band alignment,
heterostructures can be classified into three types (Figure 1): type I (symmetric), type II (staggered)
and type III (broken). Type I heterostructures are often found in light emitting diode (LED) systems,
as they promote the recombination of photogenerated electrons/holes [14]. Type II heterostructures are
particularly interesting for photocatalytic applications, since they allow the respective delocalisation
of photogenerated charge carriers. Holes are driven in the valence band maximum (VBM) of
one semiconductor and electrons in the conduction band minimum (CBM) of the second one [15].
Consequently, photogenerated electrons/holes’ lifetimes are increased. Type III heterostructures can be
applied in tunnelling field-effect transistors [16].

ZnO-based type II heterostructures can be produced using different metal oxides or metal
sulphides, like TiO2 [17], CdS [18], CdSe [19], or SnO2 [20]. Among those, the ZnO/SnO2 heterojunction
is highly attractive for photocatalytic applications, as SnO2 is a thermally and chemically stable material,
insoluble in water, and has a band gap of 3.6 eV (≈345 nm). This is higher than that of ZnO, and thus,
it is almost transparent in the 3.2–3.6 eV range. In addition, ZnO and SnO2 have different Fermi
energy levels [21] and they both possess valence bands potentials around 3.0 V/ENH and 3.8 V/ENH,
respectively, i.e., higher than the H2O/OH· redox couple (2.8 V/ENH).
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Figure 1. Schematic representation of the three different possible types of heterostructures.

According to the ZnO/SnO2 heterostructure band alignment (Figure 2), photogenerated holes in
the space charge area are delocalised in the valence band of ZnO, and electrons drift in the conduction
band of SnO2.

The synthesis of Janus-like nanoparticles, with both ZnO and SnO2 exposed to the solution to be
cleaned, is one of the most described structures in the literature [22–24]. The main advantage of such
heterostructures is that holes and electrons are available for both the oxidation and the reduction of
water in the form of OH· and O2

.− radicals, respectively. It has already been shown that OH· radicals
are the most efficient ones for water treatment [25], as they are strong oxidisers (2.8 V/ENH) able to
oxidise the C–C bonds of organic molecules [26–28]. O2

.− radicals however, follow an indirect pathway
through H2O2 and then OH·. Therefore, the recombination rate of those radicals is higher than that
of OH· ones, and thus their photocatalytic degradation performance is usually reduced. ZnO/SnO2

heterostructures are mostly found in the literature in the form of nanoparticles [29,30], nanorods [31]
or fibres [13,32]. Various synthesis methods have been reported, such as liquid phase processes (i.e.,
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sol-gel or hydrothermal growth) [33,34], electrospinning [35] or gas phase techniques [36]. However,
one of the main drawbacks of this configuration is that it requires some post-treatment filtering process.
As a matter of fact, a direct contact between (photo)catalytic nanoparticles and fauna and/or flora
can be extremely harmful [37]. To circumvent this problem, some recent developments proposed to
have the photocatalyst directly supported on a substrate [38]. Membranes are already widely used in
the water treatment; coupling their physical separation properties with the photocatalytic activity of
photocatalysts appears to be a promising strategy for the development of safe-by-design supported
photocatalysts. This is such a strategy being pursued in the work reported here.
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On the left, one can see that ZnO is partially covered by SnO2 nanoparticles. In the scheme on the right,
the ZnO is fully covered with a SnO2 thin film.

In this publication, we propose to study the photocatalytic properties of ZnO/SnO2 structures
by adjusting the coverage rate of SnO2 particles grown on ZnO nanowires. Therefore, we investigate
the synthesis and characterisation of a ZnO/SnO2 heterostructure based on ZnO nanorods/SnO2

nanoparticles supported on glass fibres membranes. The functionalisation of glass fibres by ZnO
nanorods has been performed using a liquid phase hydrothermal process and SnO2 nanoparticles have
been deposited using a gas phase Atomic Layer Deposition (ALD) process.

As presented in Figure 2, two different strategies can be foreseen to develop the desired ZnO/SnO2

heterostructure. The first one consists in a core/shell type structure [39] obtained by a full coverage of
ZnO (i.e., ZnO nanorods), with a continuous SnO2 thin film (Figure 2, right). The advantage of this
strategy is that the ZnO will be completely protected by the insoluble and stable SnO2 film. Indeed,
one of the drawbacks of ZnO is its known instability in water when the pH drops below 6 or increases
above 8, unlike SnO2, known to be stable and insoluble over a larger pH range. However, with the
ZnO being completely covered by the SnO2 thin film, photogenerated holes may be trapped inside the
nanowire and not be available anymore on the surface for water oxidation (OH· formation). In this
case, only reducing species will be active for the photocatalytic degradation of contaminants via O2

.−

radical-induced reactions. The second strategy aims at partially covering ZnO nanowires with SnO2
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particles (Figure 2, left). This structure is close to a Janus one. By doing so, we expect to have a part of
the ZnO surface available for photocatalytic reactions. It is yet unclear if the heterostructure formed
between ZnO and SnO2 will be efficient enough to balance the loss of ZnO exposed surface area.

As we showed in a previous work that the stability of ZnO in water could be strongly improved
when protected with SnO2, even at coverage rates below 100% [40]; the stability of the ZnO/SnO2 over
multiple reuse tests will also be studied.

2. Results and Discussion

In order to control the coverage rate of SnO2 nanoparticles on ZnO nanorods, we used an ALD
process in gas phase, with a chlorinated tin precursor. ALD deposition processes are typically used to
grow conformal thin films on complex substrates. However, in some particular cases, they can be used
for the synthesis of particles [41,42]. This is often attributed to the use of halogenated precursors (mainly
chlorinated ones) that attack the film during the growth process, leading to particle structures [40].
This can be observed on Figure 3, where Scanning Electron Microscopy (SEM) images highlight that the
growth of ZnO nanorods on each fibre of the membrane seems to be homogeneous, even on the deepest
fibres. In addition, the SEM pictures point out that at a rather low number of SnO2 ALD cycles (~500),
small particles around 10 nm in size are observed on the ZnO nanorods. At 1000 cycles, the particles
are slightly bigger, around 15 nm, and their density is much higher. After 1500 cycles, this effect is
more pronounced, with particles around 25 nm in diameter. At 2000 cycles, ZnO nanorods seems to be
almost completely covered with aggregated SnO2 particles. Over 2500 ALD cycles, ZnO nanorods are
completely covered with a granular SnO2 film.

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 18 

 

be trapped inside the nanowire and not be available anymore on the surface for water oxidation (OH· 
formation). In this case, only reducing species will be active for the photocatalytic degradation of 
contaminants via O2.− radical-induced reactions. The second strategy aims at partially covering ZnO 
nanowires with SnO2 particles (Figure 2, left). This structure is close to a Janus one. By doing so, we 
expect to have a part of the ZnO surface available for photocatalytic reactions. It is yet unclear if the 
heterostructure formed between ZnO and SnO2 will be efficient enough to balance the loss of ZnO 
exposed surface area. 

As we showed in a previous work that the stability of ZnO in water could be strongly improved 
when protected with SnO2, even at coverage rates below 100% [40]; the stability of the ZnO/SnO2 over 
multiple reuse tests will also be studied. 

2. Results and Discussion 

In order to control the coverage rate of SnO2 nanoparticles on ZnO nanorods, we used an ALD 
process in gas phase, with a chlorinated tin precursor. ALD deposition processes are typically used 
to grow conformal thin films on complex substrates. However, in some particular cases, they can be 
used for the synthesis of particles [41,42]. This is often attributed to the use of halogenated precursors 
(mainly chlorinated ones) that attack the film during the growth process, leading to particle structures 
[40]. This can be observed on Figure 3, where Scanning Electron Microscopy (SEM) images highlight 
that the growth of ZnO nanorods on each fibre of the membrane seems to be homogeneous, even on 
the deepest fibres. In addition, the SEM pictures point out that at a rather low number of SnO2 ALD 
cycles (~500), small particles around 10 nm in size are observed on the ZnO nanorods. At 1000 cycles, 
the particles are slightly bigger, around 15 nm, and their density is much higher. After 1500 cycles, 
this effect is more pronounced, with particles around 25 nm in diameter. At 2000 cycles, ZnO 
nanorods seems to be almost completely covered with aggregated SnO2 particles. Over 2500 ALD 
cycles, ZnO nanorods are completely covered with a granular SnO2 film. 

 
Figure 3. SEM images of a glass fibre membrane, ZnO nanorods grown in the glass fibre membrane, 
ZnO/SnO2 after 500, 1000, 1500, 2000, 2500 and 3500 SnO2 ALD cycles. 
Figure 3. SEM images of a glass fibre membrane, ZnO nanorods grown in the glass fibre membrane,
ZnO/SnO2 after 500, 1000, 1500, 2000, 2500 and 3500 SnO2 ALD cycles.

SnO2 coverage rates have been estimated from the obtained SEM pictures using an image
processing software (ImageJ software, thresholding process). A contrast is observed between SnO2

particles and the ZnO underneath. Therefore, the image analysis is based on the roundness particles
edge detection (SnO2 particles) versus the background correction (here ZnO). Results are presented in
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Figure 4. It highlights that about 8% SnO2 coverage is achieved for 500 ALD cycles. After 1000 cycles,
around 40% of the surface of nanorods is covered. A slower deposition rate is observed after 1500 cycles,
with around 70% coverage. Above 2000 ALD cycles, the coverage rate is close to 100%, with some
porosity due to the structure of the SnO2 film.
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Figure 4. SnO2 coverage rate as a function of the number of ALD cycles used (estimated from
SEM pictures).

An Energy Dispersive X-ray (EDX) analysis (Figure 5a) of the synthesized ZnO/SnO2 structure
covered at 70% with SnO2 nanoparticles reveals the presence of oxygen (Kα = 0.52 keV), Zinc
(Lα = 1.01 keV, Kα1 = 8.63 keV and Kα2 = 9.53 keV), silicon (Kα = 1.74 keV) and tin (Lα = 3.44 keV and
Lβ = 3.46 keV). The EDX spectrum is in accordance with the corresponding SEM picture, as we observe
an intense peak of Zn related to the ZnO being the major component of the ZnO/SnO2 structure. Peaks
related to Tin are weak compared to the Zn one. This is related to the relatively small overall quantity
of SnO2 deposited on the ZnO nanowires. Indeed, the inherent volume of interaction of EDX probing
down to few micrometres leads to a higher contribution of ZnO as well as the detection of silicon due
to the glass fibre membrane used as support.
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Figure 5. (a) EDX analysis of ZnO/SnO2 (70% SnO2 surface coverage). (b) High resolution XPS
spectrum of the Sn3d peak.

Besides the first chemical screening performed by EDX analysis, an elemental composition of the
developed membrane has been determined by X-ray Photoelectron Spectroscopy (XPS) analysis, with
a specific focus on the oxidation state of Sn. Figure 5b corresponds to a high-resolution analysis of
the Sn3d peak. In this figure, one can see the position of the Sn3d3/2 peak at 495.4 eV and the Sn3d5/2

peak at 486.7 eV, distinctive of a Sn4+ oxidised state of Sn in SnO2 [13,43]. In addition, the coupled
spin orbit splitting between the Sn3d3/2 peak and the Sn3d5/2 peak is exactly 8.5 eV, featuring the
Sn–O bonding. The sharp shape of both peaks confirms one chemical bonding contribution: Sn–O.
This further confirms that particles are composed of SnO2.

Crystalline structures of functionalized photocatalytic membranes have been investigated by
X-Ray Diffraction (XRD). Resulting diffractograms are presented in Figure 6 With a 70% SnO2 surface
coverage rate, the hexagonal wurtzite structure of ZnO is detected. The three main diffraction planes
of the ZnO wurtzite structure, at 31.75◦, 34.45◦ and 36.25◦, corresponding to the (100), (002) and (101)
diffraction planes, respectively, are intense and sharp. ZnO is well crystallised, which is a critical
feature for efficient water treatment by photocatalysis [44]. In this sample, no SnO2 crystalline structure
can be identified. This may be due to the excessively small amount of material deposited, to the fact
that the SnO2 could have grown in an amorphous state or to very small crystallite sizes. The XRD
diffractogram recorded for the sample completely covered with a SnO2 film exhibits the same ZnO
hexagonal wurtzite structure, but weak diffraction peaks characteristic of the tetragonal cassiterite
structure of SnO2 are also visible. They correspond to the (100), (101) and (211) diffraction planes at
26.54◦, 33.89◦ and 51.78◦ respectively. The presence of those peaks confirms that the SnO2 is crystalline.
Nevertheless, the relative amount deposited compared to ZnO is too low to see some intense and
well-defined peaks. Considering the configuration of the ZnO/SnO2 heterostructure grown in a glass
fibre membrane (with circular fibres), the probing of the surface with a grazing angle XRD analysis in
very challenging to set up and not fully representative of the global structure.

Crystalline ZnO has a direct optical and electronic band gap of approximately 3.2 eV. It absorbs
UV light and show photoluminescent properties with a near band edge (NBE) emission around 380 nm
(3.2 eV), corresponding to the excitonic radiative recombination. This emission band is usually sharp
and intense for highly crystalline ZnO materials. A second band is often observed in the visible region,
centred in the green zone around 530 nm (2.33 eV), corresponding to deep level emission (DLE), due to
defects in the ZnO matrix [45,46].
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Figure 6. XRD diffractograms of the ZnO/SnO2 heterostructure synthesized in glass fibre membranes
after different SnO2 coverage rate.

The optical properties of the synthesized ZnO nanorods and ZnO/SnO2 structures after 70% and
100% coverage rate are presented in Figure 7. An intense and sharp peak is observed at 384 nm for
ZnO nanorods. The emission peak related to defects in this case is relatively weak. This suggests that
ZnO nanorods are highly crystalline with low defects, further reinforcing the conclusion drawn from
the XRD analysis.
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Figure 7. Photoluminescence spectra of ZnO nanorods, ZnO/SnO2 with 70% coverage rate and
ZnO/SnO2 with 100% coverage rate.
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When ZnO nanorods are covered by SnO2, partially or totally (70% or 100%), the NBE emission is
lowered in intensity, but still present. This lowering of intensity can be assigned to the presence of the
heterostructure between ZnO and SnO2, which stabilises photogenerated carriers, and thus, limits the
radiative recombination and consequently the NBE emission intensity. Interestingly, the NBE emission
intensity is in the same order of magnitude for the ZnO covered at 70% by SnO2 and for the ZnO fully
covered by SnO2.

This reveals two important features when considering photocatalytic applications. Firstly, SnO2

remains transparent to UV light, so that the ZnO underneath can still be excited, generating electron/hole
carriers, even when fully covered. Secondly, a 70% coverage rate of SnO2 is enough to prevent charge
carriers recombination. The presence of the broad peak in the visible range can be attributed to
remaining defects in the ZnO or SnO2, particularly oxygen vacancies. The annealing treatment of
ZnO, as well as the growth temperature of SnO2, were limited to 300 ◦C because of the substrate
instability above this temperature. Thus, it is likely that all oxygen vacancies were not completely
eliminated [47,48].

The photocatalytic degradation properties of ZnO/SnO2 structures have been investigated with
standard methylene blue (MB). MB is a well-known and widely used chemical probe for the simple
investigation of photocatalytic efficiencies of metal oxide photocatalysts. Five samples have been
tested: ZnO nanorods without SnO2, ZnO/SnO2 with 8% coverage rate, ZnO/SnO2 with 40% coverage
rate, ZnO/SnO2 with 70% coverage rate and ZnO/SnO2 with 100% coverage rate. Results are presented
in Figure 8.
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Figure 8. Photocatalytic degradation of Methylene blue under UV light (365 nm, 8 W) over ZnO or
ZnO/SnO2 photocatalysts. Percentages in bracket indicate the coverage rate of SnO2 nanoparticles
around ZnO.

In a first step, membranes were exposed to the solution in the dark for 90 min in order to stabilise
the adsorption/desorption of MB on membranes. This process is crucial for a reliable determination
of the photocatalytic degradation kinetics. If not taken into account, this may induce errors due
to the uncertainty of distinguishing between adsorption and degradation phenomena. The control
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membrane (glass fibre only without any photocatalyst) showed high adsorption properties of the
organic methylene Blue in the dark, as the measured concentration in solution decreased drastically
from 5 mg·L−1 down to 1 mg·L−1. The membrane functionalized with ZnO nanorods also showed
good adsorption properties toward MB, but less than glass fibres, as the concentration dropped from
5 mg·L−1 down to 2.7 mg·L−1. ZnO/SnO2 heterostructure-based membranes exhibited lower affinity
for MB, as less than 1 mg·L−1 was adsorbed (5 mg·L−1 down to more than 4 mg·L−1), independently of
the coverage rate. UV light irradiation on the control membrane (which corresponds to t = 0) had no
visible effect on its behaviour toward MB. The picture in Figure 9 confirms that the MB is just adsorbed
on the glass fibres, and not degraded. Indeed, the control membrane on the left-hand side of Figure 9
is completely blue after the photocatalytic test, which is not the case of the ZnO/SnO2 photocatalytic
membrane on the right-hand side of the picture. The ZnO functionalised membrane showed a peculiar
behaviour compared to the control after exposure to UV light. A decrease in the MB concentration
following pseudo first order kinetics can be observed. In less than 200 min, the solution has been
completely decoloured. Surprisingly, all ZnO/SnO2 membranes revealed very low photocatalytic
properties, independently from the SnO2 coverage rate. The adsorption process in the dark revealed a
poor affinity with all surfaces, which could explain the slow degradation of MB. Another hypothesis
could be that impurities trapped in the film or at the surface may act as scavengers for photogenerated
carriers (e−/h+) or photogenerated OH· radicals. Considering the growth process of SnO2 with the
chlorinated precursor SnCl4, chlorine could be present in/on the ZnO/SnO2 structure and strongly
affect the resulting photocatalytic properties [49]. In order to investigate the role of surface defects or
residual chlorine, a model structure has been prepared by growing a ZnO/SnO2 thin film on a silicon
wafer, covered with 2–3 nm native oxide. Depth profiling of the sample was performed by Secondary
Ions Mass Spectrometry (SIMS) analysis.
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Figure 9. Picture of a glass fibre membrane after exposure to methylene blue (left) and glass fibre
membrane functionalised with ZnO nanorods/SnO2 (70% coverage rate) (right).

Figure 10 presents the uncalibrated concentration vs. depth of five elements tracked during the
SIMS analysis: silicon, tin, zinc, chlorine and oxygen. The stack SnO2/ZnO is featured by a high
contribution of tin in the first 400 s of pulverisation followed by the zinc contribution from 500 to
1200 s. The oxygen contribution remains stable along the depth profile (pulverisation time from 0 s
to 1200 s). After 1200 s of pulverisation, the zinc and oxygen contributions disappear in favour of
silicon corresponding to the substrate contribution. Interestingly, a high contribution of chlorine is
detected in the SnO2 film. When the ZnO film is formed, the contribution of chlorine is lowered
drastically. However, some chlorine is still visible in the ZnO film. This clearly evidences the fact
that Cl is trapped within the SnO2 films during its growth and that it slightly diffuses into the ZnO
underneath. No chlorine is detected in the substrate level.
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Figure 10. Depth profile SIMS analysis of SnO2 grown by ALD on ZnO (a mirror-polished silicon wafer
was used as substrate).

In order to remove defects like oxygen vacancies or chlorine, as-prepared ZnO/SnO2 membranes
have been cleaned under a UV/ozone atmosphere (254 nm, 20 W) for 30 min. Compared to plasma or
thermal post-treatments, the dry UV/ozone (also called UVO, for ultra-violet ozone) post-treatment
has been favoured for its ability to generate, at room temperature, clean and well-oxidised metal oxide
structures with very low impact on their morphologies [50]. Also, this technique is known for being
able to effectively remove chlorine defects from SnO2 structures [51]. Photocatalytic degradation tests
of MB have been performed again. They are presented on Figure 11.
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Figure 11. Photocatalytic degradation of methylene blue under UV light (365 nm, 8 W) over ZnO or
ZnO/SnO2 photocatalysts after UV/ozone treatment. Percentages in brackets indicate the coverage rate
of SnO2 nanoparticles around ZnO.
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After cleaning, the affinity with the surface in the dark is not enhanced, but the photocatalytic
degradation properties under UV light have been greatly improved for ZnO/SnO2 heterostructures
with 8%, 40% and 70% coverage rates. Among them, the heterostructure with 40% coverage rate is the
quickest at cleaning the solution of MB according to the steep slope (starting from t = 0). Concerning
the ZnO/SnO2 heterostructure with 100% coverage rate, the cleaning had absolutely no impact on its
poor photocatalytic degradation properties. The disappearance of MB remains slow compared to other
synthesized heterostructures.

The photocatalytic degradation of MB over ZnO and ZnO/SnO2 photocatalysts seems to follow
pseudo-first order degradation kinetics, as usually observed when considering the photocatalytic
degradation of pollutants in water [52,53]. Consequently, from the results obtained on Figure 8
(before cleaning) and Figure 11 (after cleaning), we determined the first order degradation rate constant
k (in min−1) of the photocatalysts by using the following equation:

C0

C
= ekt (1)

where C0 is the initial concentration after 90 min in dark (mg·L−1), C the concentration (mg·L−1) at the
time t (min). Calculated k, extracted from a plot of ln(C0/C) versus t, are reported on Figure 12.
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Figure 12. First order degradation rate constant k (min−1) of ZnO and ZnO/SnO2 photocatalysts before
and after UV/Ozone cleaning.

The first order degradation rate constant of ZnO nanorods is found to be 7 × 10−3 min−1. When
covered by SnO2 (even partially) without any cleaning, the rate drops to 1 × 10−3 – 2 × 10−3 min−1 for
all samples. Chlorine defects seems to inhibit completely the photocatalytic activity of the material.
However, after cleaning, degradation rates increased from 1 × 10−3 min−1 up to 4 × 10−3 min−1 for
the ZnO/SnO2 heterostructure with 8% SnO2 coverage rate, 2 × 10−3 min−1 up to 6 × 10−3 min−1

for 40% SnO2 coverage rate, 1 × 10−3 min−1 up to 3 × 10−3 min−1 for 70% SnO2 coverage rate.
With 100% SnO2 coverage rate, however, no significant improvement is observed. Those results
highlight an optimum coverage rate of ZnO by SnO2 of around 40%, with a maximum rate value
obtained of 6 × 10−3 min−1. As discussed above in Figure 2, a trade-off exists between the ZnO surface
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availability for the photocatalytic degradation and the number of SnO2 nanoparticles available at the
surface for the heterostructure-based stabilisation of charge carriers. In the case of a very low SnO2

nanoparticle coverage (8%), the loss of specific surface area of ZnO free for the photodegradation
is more impactful than the presence of the heterostructure. For a coverage of 70% and beyond,
the heterostructure delocalises the photogenerated holes in the core of the nanorod and inhibits the
photocatalytic performance of the material. Around 40% coverage, the loss of specific surface area
is compensated by the effect of the heterostructure on the surface. The ZnO/SnO2 heterostructure
developed at 40% coverage rate shows a photocatalytic efficiency close that of ZnO alone. Although
this is not a strong improvement, it is still interesting as the SnO2 acts as a protective coating, preventing
the dissolution of ZnO in water, even when not completely covering the surface. We demonstrated this
tendency in a previous work [40], where SnO2 protected ZnO inside mesoporous anodic aluminium
oxide membranes.

In the present case, we highlight the same protective behaviour of the ZnO/SnO2 heterostructure
through reusability photocatalytic tests and SEM pictures. In Figure 13, the reusability of both ZnO (a)
and ZnO/SnO2 (40%) (b) membranes after five photocatalytic degradation tests is presented. For both
systems, the photocatalytic performance is slightly improved after several reuse tests. The reason
for this improvement is not yet known, but it is likely that after exposure to UV for several hours,
membranes surfaces get cleaner (degradation/removal of adsorbed surface carbon) and thus more
reactive toward MB. Those reusability tests demonstrate the excellent performance of ZnO and
ZnO/SnO2 membranes for water depollution over time.
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If the excellent stability of the two membranes has been determined over five successive tests,
the surface state of ZnO and ZnO/SnO2 after those reusability tests is really different. Figure 14 presents
SEM images for both ZnO and ZnO/SnO2 functionalized membranes after the five photocatalytic
degradation tests. On Figure 14a, we can clearly see that the ZnO nanorod structure has been damaged.
On some glass fibres, the ZnO nanorods have completely disappeared. The remaining ZnO nanorods
are shorter in length and diameter than before photocatalysis. In addition, an organic matrix, most
likely some remaining traces of methylene blue, is present on their surface. This indicates an incomplete
degradation of the pollutant. This hypothesis is confirmed by the presence of an intense carbon peak
on the EDX spectrum (no carbon was detected before the photocatalytic degradation tests). In the
case of the ZnO/SnO2 heterostructure with 40% SnO2 coverage rate (Figure 14b), the morphology
of the photocatalyst is the same after five runs as before. The ZnO nanorods are undamaged and
SnO2 nanoparticles at the surface are still visible. Moreover, the surface seems to be clean, without
any organic traces. The EDX analysis of the photocatalyst confirms that no carbon is detected on the
surface. In addition, the peak related to the tin element attests to the presence of SnO2 nanoparticles
on the surface of the photocatalyst. Those results clearly highlight that over several degradation cycles,
the ZnO photocatalytic properties will inexorably be lowered. Conversely, the ZnO/SnO2 membrane
appears to be more stable as a function of the degradation time. We demonstrate here the huge potential
of the heterostructure, both as an efficient photoactive material and a stable heterojunction, due to the
protective role of the SnO2 around the ZnO.
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3. Experimental Section

3.1. Materials and Experimental Processes

All chemicals were purchased from Sigma Aldrich (St. Louis, Missouri, United States), and used
as received. Glass fibres membranes (APFB, 1 µm pore, 25 mm diameter without binder) were provided
by Merck Millipore (Darmstadt, Germany). ZnO nanorods were synthesized in liquid phase by using
zinc acetate (99.999%) and 98% anhydrous hydrazine in ultrapure water. Typically, a 25 mM zinc acetate
solution was prepared with ultra-pure water in a flask equipped with a reflux system. Then, 25 mM of
anhydrous hydrazine was added under vigorous steering (400 rpm). After homogenisation, the glass
fibre membrane was dipped in the solution using a home-made holder. The reaction temperature
was set to 80 ◦C for 2 h, under stirring and reflux. At the end of the reaction, the membrane was
cleaned in ultra-pure water, dried, and annealed at 300 ◦C under an air atmosphere. The annealing
process allows for the elimination of defects in the ZnO and enhances the crystallinity of ZnO rods,
leading to a photocatalytic performant material. The SnO2 growth on ZnO nanorods has been achieved
by a gas phase ALD process, in a TFS200 instrument (BENEQ®, Espoo, Finland). Tin (IV) chloride
(SnCl4) precursor was used as the tin source and water as the oxidant. Precursors were stored at room
temperature and low pressure in canisters. All precursors were introduced into the reaction chamber
without any carrier gas. The reaction was performed between 1 to 5 mbar with nitrogen as carrier and
purging gas. The chamber temperature was set at 300 ◦C during the reaction. A repeated number of
SnCl4/purge/H2O/purge cycles allowed the control of the coverage rate of SnO2 around ZnO nanorods.
A typical ALD cycle can be described as follows (based on preliminary studies not shown here): 300 ms
pulse of SnCl4/2 s purge with nitrogen/300 ms pulse of H2O/2 s purge with nitrogen. The number
of cycles has been fixed between 500 and 3500 in order to investigate different SnO2 particle densities,
defined as coverage rate.

3.2. Characterisation Techniques

High-resolution Scanning Electron Microscopy (SEM) images were obtained on a Helios Nanolab
650 microscope (FEI, Eindhoven, The Netherlands), at an acceleration voltage of 2 kV and a current of
25 mA. Energy Dispersive X-ray (EDX) analyses were performed with a 50 mm2 Xmax spectrometer
(Oxford Instruments, Abington, UK), connected to a Helios Nanolab SEM. The working acceleration
voltage was set to 10 kV for a current of 50 mA. XPS analyses were fulfilled with an Axis Ultra DLD
X-ray spectrometer from Kratos Analytical (Manchester, UK), working with an Al Kα X-ray source
(λ = 0.8343 nm, hυ = 1486,6 eV) at 150 W. The crystallographic structures of ZnO/SnO2 photocatalysts
were studied by X-ray diffraction (XRD) in a Brüker D8 (Billerica, MA, USA) Discover diffractometer,
with a Cu KαX-ray source (λ= 0.1542 nm) in θ-2θmode. The photoluminescent properties of ZnO/SnO2

were determined with an Infinite M1000 pro spectrometer (TECAN, Männedorf, Switzerland), at an
excitation wavelength of 280 nm and a detection range from 300 nm to 700 nm. The secondary ion
mass spectrometry (SIMS) technique has been used to determine the different elements present in the
photocatalysts. Experiments were performed in a SC Ultra system (CAMECA, Gennevilliers, France),
with Cs ions accelerated at an energy of 1 keV. To perform this analysis, the ZnO/SnO2 structure (20 nm
thick SnO2 film on 50 nm thick ZnO) has been grown on (100) one side polished silicon wafers covered
with a 2–3 nm native oxide layer.

3.3. Photocatalytic Degradation of Methylene Blue

The photocatalytic characterisation of ZnO/SnO2 heterostructures on methylene blue (MB) was
carried out in 6-well plates (from Greiner, Kremsmünster, Austria, 35 mm well diameter, 2 mm height,
15 mL maximum volume), with 5 mL of a solution of MB at 5 mg·L−1, under homogeneous stirring.
The samples to be analysed were placed in separated wells. Like in many publications dealing with
photocatalytic materials’ performances, methylene blue has been used as a chemical probe to determine
the degradation kinetic induced by different ZnO/SnO2 photocatalysts [54–56]. MB concentration
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during the photocatalytic degradation process was determined from optical absorption measurements
at 666 nm using the TECAN Infinite M1000UV-visible spectrometer. Photocatalysts were irradiated
with a tubular UV lamp (from Hitachi, Chiyoda City, Tokyo, Japan, F8T5, 8 W) working at 365 nm,
with a measured power density of 2.28 mW·cm−2.

4. Conclusions

ZnO/SnO2 heterostructures have been synthesised in macroporous glass fibres membranes using
a hydrothermal process to grow ZnO nanorods along with a gas phase ALD process for the SnO2

growth. We show that by adjusting the number of ALD cycles, it is possible to synthesize SnO2 particles
with a fine control of the coverage rate. Those functionalised membranes have been tested for the
photocatalytic degradation of methylene blue under UV light. It has been shown that an optimum
coverage rate of approximately 40% led to the most efficient photocatalytic activity against MB. Indeed,
it appeared that the exposure of the ZnO surface to the solution to be cleaned is an important parameter
for efficient photocatalysts, and that higher coverage rates inhibit the ZnO/SnO2 structures’ activity.
We also point out that the ZnO/SnO2 heterostructure with 40% coverage rate was highly stable in water
after many reuse tests, whereas ZnO nanorods alone were damaged.
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