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Abstract: One of the recent trends in textile wastewater treatment has become catalytic ozonation.
The necessity of effective color removal in a short treatment time is a standard during industrial
implementation. At the same time, efficient chemical oxygen demand (COD), total organic carbon
(TOC), and toxic by-product removal are highly expected. This study presents the results of a catalytic
ozonation treatment. Three types of catalysts: a metal oxide (TiO2 as P25 by Degussa), activated
carbon (nano-powder by Sigma, AC), and metal particles (platinum, 1% wt. supported on AC
matrix by Sigma, Pt–AC) have been applied. The investigations were conducted for real industrial
wastewater originated in textile dyeing with Reactive Black 5 dye (RB5). The experiments ran for the
raw wastewater (without pretreatment), exposed blocking of the catalytic action by all used catalysts.
The catalytic effect could be observed when catalytic ozonation was used as a polishing step after
electrocoagulation (EC). Although the catalytic effect could be observe for all catalysts then, especially
in the removal of colorless by-products, the AC was exposed as the most effective. This contributed to
35% and 40% of TOC and COD removal. While only 18% and 23% of TOC and COD were removed in
the same process without AC. The decrease in toxicity was 30%. The results of the study revealed the
complexity of the issue and resulted in an extensive discussion devoted to the basis of the catalytic
activity of each catalyst.
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1. Introduction

The use of catalysts to enhance the efficiency of ozonation can be observed as a recent trend.
Catalytic advanced oxidation processes (AOPs) have become willingly explored methods for pollutant
removal from aquatic environments. The urgent issue of micropollutants attracts scientific activity
with the utmost attention. As far as pharmaceuticals, preservatives, and personal care products are
commonly considered as the main sources of micropollutants in the environment [1–6], and new
groups of micropollutants can be suspected to appear. One of the potential sources of micropollutants,
which has not been sighted, can be the textile industry because of the use of an enormous number
of chemicals. Among them, dyes appear as the most burdensome pollutants within the textile
industry. Because of high light absorption even at low concentration, they can disturb the aquatic
life in the biosphere [7]. Dyes, as a numerous and varied group of complex, high-molecular-weight
(mostly nitrogen-based compounds), cannot be assigned as micropollutants themselves. However,
the by-products of their decomposition, aniline derivatives, and naphthalic acids [8], with high
probability can accumulate in the environment which makes them possible micropollutants. Therefore,
the monitoring of the dye by-products presence should be cultivated. Unfortunately, the knowledge

Catalysts 2020, 10, 611; doi:10.3390/catal10060611 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-2076-1937
https://orcid.org/0000-0002-8017-2317
http://dx.doi.org/10.3390/catal10060611
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/6/611?type=check_update&version=2


Catalysts 2020, 10, 611 2 of 16

about dye by-products is rather poor. Even though there is a large spectrum of literature reports
devoted to textile wastewater treatment, most of them are focused on color removal [9]. Only a few
papers on dye by-products have appeared during recent years [10–12]. While, our previous paper
on ozone-based AOPs showed that the chromophore disintegration, which results in color removal,
is only the first stage of dye molecule decomposition [13]. Consequently, the colorless by-products stay
and accumulate in wastewater [14]. Thus, the wastewater treatment can remove color and at the same
time contribute the micropollutants production. Catalytic ozonation can be an alternative to a need for
more efficient removal of colorless dye by-products.

Catalytic ozonation is widely concerned as an advanced oxidation process, which suggests the
production of hydroxyl radicals in the process. As far as this statement cannot be denied, the hydroxyl
radical’s production in catalytic ozonation is not a sufficient explanation of the crux of this process.
Consequently, to motivate the selection of the catalyst a dipper discussion on the mechanisms of
catalytic ozonation should be raised.

Generally, a substance, which enhances the overall reaction rate can be considered as a catalyst.
However, the activity of catalysts is selective which means that only a specific stage of the reaction
can be enhanced in a complex chemical system. For catalytic ozonation, the ozone self-decomposition
resulting in hydroxyl radicals (HO) production was referred to a region of the catalytic action of
catalysts most often [15]. However, the basis of this action should be referred to the type of catalyst.

Two systems of catalysis, homogenic and heterogenic, are possible for catalytic ozonation. In the
homogeneous systems, the transition metals cations such as Cr3+, Mn2+, Fe2+, Ni2+, and Zn2+ are
the catalysts and they are responsible for HO• generation from ozone decomposition. Both metal
cation and ozone are in the liquid phase. The most possible catalytic activity of metal cations was
referred as indirect ozone decomposition on the complex of metal–pollutant [15]. This means that the
metal cations (dissolved in the bulk) attract the organics through electro-potential, which results in
building of a temporary complex. Consequently, the ozone self-decomposition improves through its
adsorption on this temporary complex. On the other hand, the direct activity of the metal cation on the
ozone molecule was reported as a driving force of chain reactions leading to ozone self-decomposition,
as well [15].

In the heterogenic system of catalytic ozonation, the catalyst is a solid body. In this system,
the adsorption ability of the catalyst has a key because at least one of the reagents must be adsorbed on
the catalyst surface. Correspondingly, the catalytic action within the process is possible when one of
the presented actions takes place: ozone is adsorbed on the catalyst surface, a molecule of a pollutant
is adsorbed on the catalyst surface or both ozone and pollutant are adsorbed on the surface. The main
groups of substances used as heterogenic catalysts are metal oxides, minerals, varieties of carbon and
metals on the support [16]. The most often supports are oxides [17] or activated carbon [18], but some
novel structural materials can act as carriers, as well [19,20].

The most common representatives of metal oxide catalysts are TiO2, MnO2, and Fe2O3

(the transition metal oxides). The use of Al2O3 is also popular in catalytic ozonation [19]. The catalytic
action of metal oxides is based on the adsorptive properties related to active centers on oxides surface
of Lewis acid character. At the same time, the hydroxyls, which cover the metal oxides surface, are
also considered as adsorption centers because of their ion-exchange properties [15].

Two routs of catalytic activity have been proposed for metals on the support. One is pollutant
(organic molecule) adsorption on the catalyst active center and then its oxidation by ozone or HO•.
The second is ozone decomposition by electron transfer through reduced or oxidized metal site
deposited on the surface of supporting material [16].

As far as carbon materials are concerned the specific intermolecular effects can be shown as a
driving force of reagent-catalyst interaction. The organic adsorption and ozone decomposition on
activated carbon take place through the basic centers [21]. In the case of graphene, the electrostatic
attraction and π–π interaction contribute to the adsorption process [22].
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Since Arslan-Alaton and her co-workers have examined one of the first applications of catalytic
ozonation for real industrial textile wastewater [23,24], only a few groups had investigated the
issue [25–31]. Whereas, only Malik [25] and Wu [28] and their co-workers investigated the possible
by-products in wastewater. Followed the recent review on catalytic ozonation of textile wastewater
more attention should be given to mineralization and detoxification, not only to color removal [32].
Although a large number of studies can be found in the literature most of them are limited only
to laboratory experiments on synthetic wastewater (single dye solution in water) [32]. Only a few
studies dealt with a process scale-up [27,31]. Moreover the contribution of wastewater constitution,
beside Na2CO3 influence [29], has never been checked. This short literature overview help to form
the novelty of the presented study. It was clearly shown that despite a large number of literature
reports there still is a visible gap in the knowledge about real industrial wastewater treatment and the
constituents which build the wastewater matrix.

The mentioned above aniline derivatives, and naphthalic acid-based compounds, which are the
most expected by-products of dyes decomposition are reported to be hardly oxidized by molecular
ozone [16]. Likewise, the aldehydes and carboxylic acids, which are secondary dyes decomposition
by-products are poorly oxidized by ozone [16]. Therefore, the catalytic ozonation was employed
in this study to enhance ozonation effectiveness in color and refractory compounds removal by the
catalytic activity of three types of heterogenic catalysts. A metal oxide, TiO2 (P25, rutile–anatase
mixture), a metal on the support, platinum on activated carbon, and activated carbon were used in the
experiment. The objective of the study was to investigate the activity of the catalysts for industrial
textile ozone treatment. The catalyst type, pH effect, and wastewater composition were studied to
explain the probable mechanisms of the process. The changes of UV–VIS spectra, total organic carbon
(TOC), and chemical oxygen demand (COD) were investigated to evaluate the dye and by-products
removal. The toxicity assay was conducted to conclude if the use of the catalysts improves this factor.

2. Results and Discussion

The catalytic abilities of three types of heterogeneous catalysts were checked for real industrial
textile wastewater. The catalysts tested for ozonation were titanium oxide (TiO2), activated carbon
(AC), platinum supported on activated carbon (Pt–AC). The color removal and colorless refractory
by-products removal were investigated for catalysts’ effectiveness. Two types of the wastewater
originated in industrial dyeing were examined, the raw one and the wastewater after electrocoagulation
(EC) pretreatment. The probable mechanism of the catalytic action of each catalyst in specific conditions
of the textile wastewater matrix was studied and discussed.

2.1. Catalytic Action for Color Removal

2.1.1. Color Removal Directly from Raw Industrial Wastewater

Figure 1 presents the results of ozonation and catalytic ozonation of the raw textile wastewater.
As can be seen, none of the catalysts, TiO2, AC, or Pt–AC resulted in any visible catalytic activity.
The experimental data were collected for all catalysts as absorbance values at 596 nm, which
corresponded to the color of the Reactive Black 5 dye (RB5), could be roughly approximated by
the same trendline (Figure 1a). Correspondingly, the values of the pseudo-first-order rate calculated
for color removal were almost equal for all the catalysts and not higher than for single ozonation
(Figure 1b). For the lack of catalytic action of any catalyst, can be explained by the textile wastewater
matrix. The common denominator of the issue is the adsorptive abilities of the catalysts. Even though
each of the tested catalysts was characterized by different types of active centers of adsorption all of
them could be deactivated by residuals of the surfactant which is commonly used in the operations of
industrial dyeing of textiles as an assistant agent and builds the matrix of this wastewater.
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Figure 1. The raw (unpretreated) industrial wastewater during ozonation and catalytic ozonation using
three types of catalysts (a) and pseudo-first-order rate of color removal (b).

2.1.2. Residual Color Removal after EC

In contrary to raw wastewater catalytic ozonation, this process was efficient for the wastewater
pretreated by electrocoagulation (EC). Data presented in Figure 2 revealed additive effectiveness when
catalysts were used for color removal, but not for all catalysts. Consequently, two issues come to mind.
Firstly, what was the reason for unblocking of catalytic activity of some catalysts when the pretreated
wastewater was investigated? Secondly, why were some catalysts were more active than others?
To answer these two questions the interactions between the wastewater matrix and the catalysts on the
molecular level must be taken under consideration.

Figure 2. The electrocoagulation (EC) pretreated industrial wastewater during ozonation and catalytic
ozonation using three types of catalysts (a) and pseudo-first-order rate of color removal (b).

It has to be burned in mind that the textile wastewater, the dyeing effluent, is one of the most
polluted wastewater stream appearing in textile processing [33]. In this study, the wastewater from
the reactive dyeing of cotton was examined. It means that extremely high salinity and alkalinity
can be expected in this wastewater. Moreover, the use of the surfactant (dispersant, anti-stain agent)
is necessary during the exhaustion-fixation dyeing method which is widespread in the industrial
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processing of cellulosic textiles. The constitution of the wastewater matrix (characterized in Section 2.1),
which has little in common to laboratory dye solution, seems to be crucial for the crux of the catalytic
action within catalytic ozonation. The lack of catalytic activity could be observed in the previous
section which described the raw wastewater. The EC pretreatment did not result in visible alkalinity
decrease and NaCl content was not significantly changed. However, the EC contributed to the efficient
coagulation of the surfactant. The Fe2+ ions electrochemically eluted from steel anode material
could have taken over the surfactant molecules and effectively removed them by flock formation and
precipitation. Consequently, after decreasing the surfactant concentration below the critical micelle
concentration (CMC) value it lost the micelle formation abilities and could not cover the surface of
the catalyst.

As can be observed in Figure 2a,b, not all the catalysts were active in the process. Even though
the surfactant effect was minimized by EC pretreatment there was no visible activity of TiO2 in
catalytic ozonation of pretreated wastewater. TiO2 is a semiconducting material, known mostly as a
UVA-activated electron transferring body which can generate reactive oxygen species (ROS) through
irradiation [17]. However, the use of TiO2 without light irradiation is also noticeable, then the active
centers of adsorption settled in the crystallography structure are used during catalytic ozonation [34].
In the case of this experiment, the active centers must have been inaccessible for effective ozone
or dye adsorption. Therefore, the conditions for the catalytic action of TiO2 was not accomplished,
and consequently, the additive effect in color removal was not observed. Likewise, the catalytic activity
of the platinum supported on AC and Pt–AC, while more explicit than TiO2, but still not too significant
in this experiment for color removal. Platinum is a highly reactive transition metal that was probably
blocked and lost the activity. The most promising results were observed for the use of AC catalyst.
The color removal was more significant than for single ozonation (Figure 2a) and the color removal
rate was higher (Figure 2b). It can be a premise to expect AC did not lose adsorption abilities during
an experiment. The presented results can be correlated with similar work of Faria and co-workers [29],
who used cerium oxide, AC and cerium oxide supported on AC.

Because the catalytic activity of the catalysts could be observed only for EC pretreated wastewater
the further part of the investigation was focused on this kind of wastewater.

2.2. Catalytic Action for Colorless By-Product Removal

Our previous study on RB5 ozonation kinetics gave us information on the integral role of the
by-products occurrence during the oxidation process [35]. It was found that decolorization was the
first step of dye decomposition and it was caused by azo chromophore oxidation. The secondary
dye decomposition occurred immediately and resulted in colorless by-products appearance which
influenced the kinetics of oxidation. Consequently, the conclusion was that the role of the secondary
colorless by-products cannot be neglected. Moreover, in our next study [36] we found that colorless
by-products are not removed but they accumulated in the wastewater while multi-recycling loop.
When the possible RB5 degradation pathway was considered by us the naphthol and phenol derivatives
were taken under consideration as the most probable by-products resistive to ozone oxidation [37].
Therefore, one of the objectives of the study was to investigate the possible catalytic activity for enhanced
colorless by-product removal. The analysis of UV–VIS spectra proceeded for indirect evaluation of
some possible colorless by-products and constituents of the wastewater matrix. The possible catalytic,
non-catalytic and adsorptive actions for the removal of the colorless by-products were considered.
The analysis was conducted by comparison between the spectra of the wastewater (Figure 3a) and the
spectra of the purified model substances: the possible by-products, namely H-acid and p-ester and the
surfactant, Perigen LDR (Figure 3b). For all treatments the same catalyst dose, 0.5 g/L, and the same
ozone dose (in the case of ozone application)—0.9 g O3/L was used.

When compares the spectra presented in Figure 3a,b some characteristic peaks could be observed.
Even though the analysis of the complex matrix such as the wastewater cannot be clear, some indirect
information was concluded. Firstly, the characteristic peak in the visible region of the wastewater
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spectrum, between 596 and 610 nm, was found to be responsible for the dye chromophore and
correlated to color. It could be observed that both EC and O3 resulted in a significant decrease in
this peak which means color removal. In the case of catalytic ozonation, the catalytic effect could be
observed at most for AC which was in agreement with data presented in Section 2.1.2. The adsorptive
abilities were found to be poor for color removal, likewise in the abovementioned Faria and co-workers
study [29].

Figure 3. The UV–VIS spectra of the wastewater before and after treatment (a) and the control,
model compounds (b).

In contrast to the peak correlated with the color of the dye, peaks of the UV spectral region were
much more resistant to the EC and O3 treatments. The UV spectral region is related to the strong
absorption of UV light caused mostly by aromatic organics which are colorless for a human eye [38].
This can be a suggestion that colorless aromatic and non-aromatic compounds are partially resistant
to basic treatments such as ozonation or EC. Nevertheless, some characteristic phenomena could be
observed for the UV spectral region for single treatments O3 and EC as well as for catalytic ozonation.
Moreover, the adsorptive action of catalysts was also visible in the UV region.

The reduction in absorbance at 310 nm occurred after EC, but not after single ozonation. It can be
explained by the above mentioned effective coagulation of surfactant by Fe2+. Consequently, the UV
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peaks at 210 and 250 nm were decreased after the EC, as well, which must have been related to partial
coagulation of colorless compounds from the wastewater.

At the same time, rather poor adsorptive action could be observed. The adsorption was the step
after EC and was compared to this data (not to the spectrum of the raw wastewater). The decrease of
UV peak at 260 nm was the most significant, probably related to aniline derivatives adsorption on AC.

The last significant observation was that the use of catalysts gave effect not only in RB5 removal
(which was responsible for color) but in the removal of colorless compounds as well. Probably,
the colorless substances detected in the UV spectral region could more effective oxidized during
catalytic oxidation, especially in the case of AC use. These results are in agreement with previous works
of Malik [25], Wu [28], Faria [29], and their co-workers, who showed that colorless refractory compounds
can be much more effectively removed by catalytic process than non-catalytic (single ozonation).

Unfortunately, the UV spectra of single compounds overlap when complex mixture such as
wastewater is investigated which can be observed in Figure 3a. However, some characteristic peaks
could be observed in the UV region the deeper analysis was not possible (especially the quantitative).
Therefore, the more accurate chromatographic analysis is planned in the future to identify the
specific by-products.

2.3. Mineralization in Catalytic and Non-Catalytic Processes

As can be observed in Section 2.2 the analysis of the specific constituents of the wastewater can
be considered as a demanding task. As far as the complex matrix of the wastewater was concerned
the global indicators such as total organic carbon (TOC), chemical oxygen demand (COD), and 5-day
biochemical oxygen demand (BOD) were helpful. The treatments were analyzed in three groups:
non-catalytic processes (O3, EC, and EC + O3), adsorptive processes (EC + AC, EC + AC-Pt, and EC +

TiO2) and catalytic processes (EC+ O3AC, EC+ O3AC-Pt, and EC+ O3TiO2).
In Figure 4a, the data of non-catalytic processes (O3, EC, and EC + O3) were presented. In contrast

to the satisfying results of decolorization achieved after O3 and EC (when proceeded as a single
treatment), rather poor TOC and COD removal could be observed. The phenomenon can be correlated
to the abovementioned poor removal of colorless compounds. This result is in agreement with previous
works in the field [9]. Much more satisfying result could be observed when EC and O3 were used
jointly. Then the colorless constituents of the wastewater matrix were removed more effectively and
resulted in lower TOC/TOC0 and COD/COD0 values. The BOD/BOD0 ratio raised only when oxidative
ozone treatment was used, but the BOD after EC remained almost unchanged (Figure 4a). The reason
could be an occurrence of more biodegradable by-products of lower molecular weight during O3,
while they could be coagulated during EC.

While adsorptive abilities of the catalysts observed (Figure 4b) it can be considered that they cannot
be neglected. All catalysts revealed adsorptive abilities mostly to colorless compounds (mentioned in
Section 2.2) which resulted in a decrease in TOC/TOC0 and COD/COD0 values. The high adsorptive
ability of carbon material has been reported before [39]. However, it is hard to compare the results of
simulated and real textile wastewater. The BOD/BOD0 values noted for adsorptive processes were
about 1.0 so the change BOD was rather insignificant and hard to discuss.

In Figure 4c, the results of catalytic ozonation were presented. The catalytic action of all catalysts
was proved by a significant decrease in TOC/TOC0 and COD/COD0. Even though the additional color
removal was not visible for catalytic ozonation with the use of AC–Pt and TiO2, but only for AC, taking
into account the global parameters (TOC and COD) the enhancement in colorless compounds removal
could be assumed. The BOD/BOD0 ratio increased for all catalysts as well. Therefore, more efficient
oxidation resulting in the production of more biodegradable compounds can be expected. The AC
was found as the most efficient catalyst for mineralization and biodegradability enhancement during
catalytic ozonation.
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Figure 4. The values of TOC/TOC0, COD/COD0, and BOD/BOD0 after the treatments (a) non-catalytic
(b) adsorptive, and (c) catalytic.

2.4. Toxicity in Catalytic and Non-Catalytic Processes

The toxicity assessment was evaluated as a screening test resulting in the effective coefficient (EC50)
values. The EC50 is an indicator, which gives information on what concentration of the sample will
cause the death of half of the population (indicator organisms) after the specified exposure time. In this
study, the marine bacteria, Vibrio fischeri, was used because of their physiological living conditions in a
salty environment, which was in some correlation to the wastewater. The EC50 values were collected
after 15 min of exposure. As can be observed in Figure 5, the EC treatment had a negligible effect on the
toxicity of the wastewater, the EC50 was the same as for the raw wastewater. An oxidative treatment
by O3 increased EC50 probably due to the decomposition of some toxic compounds (mentioned
in Section 2.2, naphthol and aniline derivatives). However, using O3 as a polishing step after EC
treatment gave adverse effects. Even though the decrease in BOD has not been disclosed (Figure 4a)
it must be concluded that toxic by-products appeared. The adsorption on the carbonic materials
(AC and AC–Pt) gave positive results in toxicity removal which must have been caused by catching
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by-products. This effect was not observed for TiO2, which may suggest lower adsorption compering
to carbon-based materials. In the case of catalytic ozonation respectively lower EC50 values were
detected. Firstly, because of partial desorption of low-molecular-weight by-products. Secondly,
catalytic ozonation resulted in more efficient by-products occurrence. These by-products should be
detected and investigated separately for their toxicity. Therefore, more scientific attention should be
directed to by-products testing, to avoid increasing the toxicity of the wastewater after the treatment.
Globally, the toxicity after catalytic ozonation using carbon-based catalysts resulted in lower toxicity
than this disclosed for the raw wastewater. Unfortunately, for the use of TiO2 as a catalyst, the final
toxicity was higher than before treatment. Even though these results are partially in agreement with
some previous works, e.g., initial EC50 value [40] and decrease in toxicity after combined use of AC and
ozone [41], not all have a reflection in the literature. The investigation of TiO2 needs more attention to
find a deeper explanation and it should be kept in mind how few studies were carried out for real
industrial wastewater.

Figure 5. Toxicity assessment. The values of EC50 after the treatments: non-catalytic, adsorptive,
and catalytic.

2.5. Basis of Catalytic Action

Three types of catalysts (metal oxide, metal on the support and activated carbon) and two types
of wastewater (raw and pre-treated) were investigated for catalytic ozonation. Generally, two main
issues should be taken into consideration when the catalytic action is disused:

(1) The wastewater matrix which determines process conditions,
(2) The catalyst type, namely the type of interaction between pollutants (organics) or ozone and

the catalyst.

Nawrocki, in his work [15], points out the outstanding role of the experimental conditions,
especially: the pH value, adsorption of the substrate (pollutant) on the catalyst surface, adsorption
of the ozonation by-products on the catalyst surface, ions occurring in the experimental solution.
Undoubtedly, these conditions are directly or indirectly determined by the wastewater matrix. In this
study, the wastewater after textile dyeing was the object. Therefore, the extremely high alkalinity
(pH 11.29) and salinity (NaCl conc. 59.9 g/L) occurred. Moreover, the high surfactant content can be
expected in this wastewater, because it was used as a leavening agent (0.5 g/L) in dyeing. Consequently,
high concentration of Na+ and Cl− ions from dissociated salt, the OH− ion from water and alkalis,
as well as, the high content of polar-non-polar surfactant molecules build the wastewater matrix beside
the dye.
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As mentioned in Section 2.1, a surfactant disturbed color removal during catalytic ozonation.
However, when the surfactant was partially removed by EC, the catalytic action in color removal
could be observed (Figure 2). The explanation is the critical micelle concentration, CMC, which is
the concentration of surfactant causing the spontaneous building of the mono-molecular adsorptive
layer on any interphase surface. Probably this adsorptive layer of the surfactant blocked the catalyst
independently from its type. Consequently, the additive action of catalysts could not have been
observed for color removal from raw wastewater.

When the type of catalyst is considered the active centers on the surface must be discussed
because at least one of above-mentioned action must occur for catalytic ozonation: ozone is adsorbed
on the catalyst surface, a molecule of a pollutant is adsorbed on the catalyst surface or both ozone
and pollutant are adsorbed on the surface. The high pH value and the ion content of the wastewater
influenced on the catalysts surface and the activity of centers.

In this study, the lowest activity was observed for TiO2. Due to high alkalinity all catalysts,
including TiO2, worked above the pHPZC (the P25 pHPZC is 6.26 by producer, measured by the salt
method according to [42] was 4.5). Moreover, TiO2 was used without UV light. Therefore, it could act
only as an adsorbent and electron excited centers could not occur on the catalyst surface in this case.
Correspondingly, TiO2 could act only as transition metal oxide which was characterized by Lewis acid
active centers. This type of active center builds electron donor–acceptor complex by electron acceptance
from Lewis bases. However, the center localized on single atom (Ti4+) might have been blocked by
chlorides which could disturb adsorption in this experiment and resulted in the low catalytic activity
of this catalyst type [43,44]. Moreover, the surface of TiO2 must have been covered by adsorbed
water, more precisely by HO− ions, which generates proton Bronsted centers [44]. Consequently,
the TiO2 surface expectedly covered by TiOH (possibly TiO− in a more dissociated form) which might
be considered as centers for ozone decomposition initiators. However, the adsorption of our main
pollutant, RB5, could be difficult, because it is negatively charged. It is more likely that the catalytic
activity occurred through the initiation of the ozone decomposition and, consequently, oxidation of
organics by ROS in the bulk rather than on the catalyst surface.

The catalytic activity of Pt–AC catalyst is determined mostly by highly reactive platinum molecules.
The catalytic action of metal on the support was referred to as a hydroxyl radical generation form
ozone through the electron transfer from reduced form of the metal. Subsequently, the oxidized metal
could temporarily adsorb the organics. The organics could be next oxidized by ozone or hydroxyl
radical and then the by-product was desorbed living the metal in the reduced form, waiting for the
next cycle [16]. In our experimental conditions, the highly reactive platinum particles were probably
immediately blocked by Cl− ions and their activity were dramatically decreased. The catalytic activity
which could be observed in Sections 2.1 and 2.2 was probably the result of the AC carrier adsorption.

The highest efficiency was noted for the AC. Such high AC effectivity could be observed for color
removal and colorless compounds (by-products), as well. It can be noted that AC support during
ozonation was referred as giving additive results. However, in most cases, these results were referred
to non-complex objects such as phenol or organic acids [21].

Dual AC action, involving surface and bulk reaction, is the most probable in the case of our study
when the complex wastewater matrix was investigated. The surface action can be promoted due to AC
active center, which is of Lewis basis character, and is not blocked in the presence of HO− and Cl− ions.
These centers are referred to as e.g., pyrones or chromone which are reach in delocalized π-electron
systems [34]. Therefore, the ozone can be held by these active centers and react with organics. As it
was previously showed by Wawrzkiewicz and coworkers [45], the electrostatic π–π interaction could
also be significant for the adsorption process of dye molecules. Therefore, the electrostatic action can
be significant for the AC catalytic activity by keeping organics near the active surface.

The hypothesis of an important role of π–π interaction of AC can be as far significant as it can be
assumed that they are likely renewable. The same AC could be used during four sequential cycles
without a significant loss in activity (Figure S1, Supplementary Materials).
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Moreover, the active centers on AC surface through the donor-acceptor complexes with H2O
molecules can act as ozone decomposition initiators, especially in the alkaline environment [46].
Afterward, the initiation step on AC, and then homogeneous propagation steps take place in the bulk
leading to ROS formation (in the bulk). The following reactions of ROS with organics takes place in the
bulk. Nevertheless, Biernacki and coworkers, in their recent study [47], proposed the mechanism of
catalytic ozone decomposition resulting in hydroxyl radical adsorbed on the AC surface. Furthermore,
they suggested radical reactions occurrence on the AC surface claiming that the rate of those reactions is
higher than the rate of radical desorption. Taking into consideration how complex is the experimental
solution (the wastewater) none of abovementioned hypothesis cannot be excluded and it can be
expected that they all participate in the overall catalytic effect. In the case of our study, the suggestion
for more active ROS generation by AC was the visible enhancement in colorless refractory by-products
removal (discussed in Section 2.2) which are unlikely decomposed by molecular ozone.

Figure 6 presents the catalytic activity of AC exanimated for a model solution of RB5 at various
pH: 2, 10.5, and 11.26. Our further study showed that during RB5 ozonation the oxidation through
radical action could be observed at relatively low pH equal 4 and contribution of radical oxidation
raised with increasing pH [35]. Therefore, the additional catalytic AC action at high alkalinity could be
questionable. However, it could be observed that independently from pH value decolorization rate
was always higher for AC catalyzed ozonation than for single ozonation. It was even higher in the
alkaline medium which is in agreement with results presented by Beltran and coworkers [46].

Figure 6. Decolorization rate of Reactive Black 5 dye (RB5 model solution in various pH: 2, 10.5,
and 1.26 for stable ozone dose (CO3 20 mg/L, Q 20 L/h, CRB5 0.5 g/L, and CAC 0.5 g/L): color removal vs
time (a), pseudo-first order decolorization rate (b).

3. Materials and Methods

3.1. Materials

In the study two types of real industrial textile wastewater (emanate from the dyeing of cotton
fabric) were used. The base industrial textile wastewater was untreated-raw (the first) or pretreated by
electrocoagulation (EC) (second). In wastewater the dye and the auxiliaries were used (all in technical
grade). As a dye the industrial product named Remazol Ultraschwarz NN (DyStar (worldwide Co.),
(product based on Reactive Black 5 (RB5), Singapore). Perigen LDR was applied as an industrial
dyeing assistant—(SAA–naphthalenesulfonic acid and carboxylates mixture (Textilchemie Dr. Petry
Co. Reutlingen, Germany)). Moreover, NaCl, NaOH, and Na2CO3 were used (provided by Solino,
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Warsaw, Poland and Jarbur, Szydłowiec, Poland, respectively). To obtain the wastewater homogeneity
the average wastewater from several dyeing operations was stored in the equalization reservoir.
The wastewater after EC was taken from collection tank on EC installation. The characteristic of both,
the raw wastewater and EC-pretreated wastewater were presented in Table 1.

As a catalyst: activated carbon (AC), platinum supported on activated carbon, 1% w/w of Pt
(Pt–AC) and titanium dioxide (TiO2) were applied. The catalysts based on activated carbon were
provided by Sigma-Aldrich®. AC from charcoal in a micro-powder form of 149 µm grain size (100 US
Mesh) was used. TiO2, a commercial product P25 from Degussa (rutile: anatase/85:15, 99.9% purity,
20 nm grains) was used.

P-Ester (sodium salt of 4-((2-sulfatoethyl) sulfonyl) aniline) and sodium 5-amino-4-hydroxy-7-
sulfonaphthalene-2-sulfonate, which is H-acid was used as the possible generated by-products during
the treatment (both of the analytical grade, (Boruta, Poland)).

Table 1. Parameters of raw and pretreated wastewater.

Parameter
Value, mg/L

Raw After EC

Dye *(RB5) 759 300 ± 5
NaCl * - 59.9

pH 11.29 10.67
COD 3030 ± 10 2570 ± 10
TOC 935 ± 7 866 ± 17

* concentration detected in wastewater.

3.2. Methods

The textile wastewater originated from the textile plant was stored in the equalization tank and
transferred to an industrial-scale EC treatment plant. Afterward the catalytic ozonation, preceded by
the adsorption phase, was carried out in the laboratory as it is presented in Figure 7.

Figure 7. The production–treatment cycle–wastewater flux.

Electrocoagulation Treatment: The EC plant was purchased from PFTechnology Co. (Poland).
The industrial EC plant was equipped in 300 L electrochemical reactor (the input volumetric flow was
equal to 2200 L/h) was used. The iron electrodes (steel) were used. In the process the 50 electrodes
with the overall area of 17.5 m2 (5 parallel sections of 10 electrodes in each package) were applied.
The current was set on 87.5 A (current density equal to 5 A/m2). After EC reactor the mixing tank
(for residual hydrogen removal) and a horizontal-flow settler and a filter (1 µm) were used in the
system for sludge removal. The pretreated wastewater was collected without changing the pH value.

Ozonation Treatment: The experiments were performed in the lab-scale (heterogeneous gas–liquid
system). A semi-batch glass reactor (1 L) with the cooling jacket was used. Ozone was pumped into
the reaction solution via the porous plate located at the bottom of the reactor. Additional mixing was
performed by magnetic stirrer (set at 200 rpm, Wigo ES 21(Poland)). Ozonek Ozone Generator (Poland)
was used for ozone production. The O3 was generated from the oxygen supplied from a compressed
gas cylinder (O2 purity 99.5%). The inlet and outlet O3 concentration was measured by BMT 963 Vent
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ozone analyzer. During the experiments the temperature and pH were monitored by Elmetron C411
device (Poland).

Single Adsorption: Before catalytic ozonation, for all catalysts the adsorption experiments were
carried out for 30 min. The catalyst was added directly into wastewater. The adsorption was carried
out in the same reactor as ozonation treatment but without ozone inlet to maintain the uniform
experimental conditions. All experimental condition was the same as during ozonation treatment.
The temperature was kept stable and was equal to 23 ± 1 ◦C.

Catalytic Ozonation: The same reactor as for adsorption and ozonation was used for catalytic
ozonation. All experimental condition was the same as during ozonation treatment. For all catalysts
the catalyst concentration was 0.5 g/L for each time. After reaction the filtration (0.45 µm filter) of the
catalysts was made.

3.3. Analytical Methods

Absorbance: The spectrophotometer (Helios Thermo) was used for measurement of the spectra of
the samples collected at time intervals). To determine the color removal the absorbance in the visible
absorption region (λmax 596 nm) was investigated.

Chemical Oxygen Demand (COD) was obtained by the dichromate (VI)–LCK 514 and 314 tests
using the standard method with a HACH-LANGE apparatus (DR 3800). Total Organic Carbon (TOC)
was measured a HACH IL 550TOC-TN apparatus

Before COD and TOC tests the samples were diluted to avoid the influence of the salts.
5-day Biochemical Oxygen Demand (BOD) determined using low-volume LCK 555 tests measured

with a HACH-LANGE apparatus (DR 3800).
Toxicity assessment was performed using the marine luminescent bacteria Vibrio fischeri according

to ISO 11348–3 [48]. The procedure was followed by the methodology 81.9% basic test protocol
(MicrotoxOmni 4.2, Modern Water Inc.) provided by Microtox Model 500 Analyzer (Modern Water
Inc., Newark, Delaware, USA). As very high toxicity was expected, the effluents were diluted 1:10 with
MQ water. Toxicity after 15 min. of exposure was expressed as EC50.

4. Conclusions

A wide study on the catalytic activity of three types of catalysts (metal oxide, metal on the support,
and activated carbon) for the ozone treatment of two types of wastewater (raw and pre-treated) was
conducted. The experiment led us to the main conclusion that the catalytic action can be seriously
limited by the unfavorable conditions of the wastewater matrix. When the raw wastewater was
considered the blocking of the surface of the catalyst could be observed. Consequently, the color
removal was not higher than this observed for single ozone treatment. The main cause of the
phenomenon was found in the mono-molecular layer formation form the surfactant which was used as
a leveling agent in dyeing operation. As far as the surfactant that was present in the wastewater was in
a concentration above the CMC value the ability to spontaneous micelle formation was unavoidable.
When the surfactant content was reduced by EC pretreatment the catalytic activity of the catalysts could
be observed in color removal, colorless organics removal, higher mineralization, and lower toxicity.
However, depending on the catalyst type, the various catalytic effect could be observed. The lowest
catalytic activity was observed for TiO2. The activity of the adsorption centers of Lewis acid origins
was probably highly limited by high alkalinity and ion content of the wastewater. In case of the Pt–AC
catalyst, it was highly probable that the metal (Pt) related active centers were blocked by Cl-ions (from
dissociated NaCl) and the observed catalytic effect was caused by AC carrier. The most significant
catalytic activity was shown for AC. This activity was relevant in color removal which means that
high-molecular weight RB5 dye molecules could be more effectively decomposed comparing to single
ozonation. But the low-molecular-weight colorless by-products could be removed more efficiently,
as well. The catalytic activity of AC was assigned as a basic center activity. The double role of these
basic centers can be assumed, the can contribute to organics adsorption and ozone decomposition
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initiators. The electrostatic π–π interaction could also be significant for AC catalytic activity. Based on
the presented results the AC catalytic action should be concerned as a complex mechanism where the
additional ROS generation was possible, but, the adsorptive AC abilities were significant, as well. Nor
the surface oxidation or bulk oxidation cannot have been excluded, and it was highly possible that
both occurred and were significant.

This preliminary study on the catalytic action of various types of catalysts gave a piece of
information on how complex issues the industrial wastewater treatment of dyeing effluents can be.
Further study is encouraged to be continued to learn more about the basis of catalytic action and
oxidation of specific by-products.

Summarizing the discussion on probable mechanisms of catalytic activity of various types of
catalyst, the inhibition of the catalytic abilities was the main problem. Two main levels of blocking
might be considered:

Morphological: the interface surface catalyst-bulk covered by surfactant layer (of the character of
Langmuir–Blodgett film).

Deactivation (Pt–AC) or limitation of activity (TiO2) of the adsorption centers of the catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/6/611/s1,
Figure S1: Color removal during subsequent catalytic ozonation cycles using the same AC (0.5 g/L); RB5 model
solution (0.5 g/L); reaction time 30 min.
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36. Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Brine Recycling from Industrial Textile Wastewater. Water
2019, 11, 1–12.

37. Bilińska, L.; Blus, K.; Foszpańczyk, M.; Gmurek, M.; Ledakowicz, S. Catalytic ozonation of textile wastewater
as a polishing step after industrial scale electrocoagulation. J. Environ. Manag. 2020, 265, 110502. [CrossRef]

38. Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. Leon
1989, 22, 456. [CrossRef]

39. Moldovan, A.; Neag, E.; Băbălău-Fuss, V.; Cadar, O.; Micle, V.; Roman, C. Optimized Removal of Methylene
Blue from Aqueous Solution using a Commercial Natural Activated Plant-Based Carbon and Taguchi
Experimental Design. Anal. Lett. 2018, 52, 150–162. [CrossRef]

40. Liang, J.; Ning, X.-A.; Sun, J.; Song, J.; Hong, Y.; Cai, H. An integrated permanganate and ozone process
for the treatment of textile dyeing wastewater: Efficiency and mechanism. J. Clean. Prod. 2018, 204, 12–19.
[CrossRef]

41. Gholami-Borujeni, F.; Naddafi, K.; Nejatzade-Barandozi, F. Application of catalytic ozonation in treatment of
dye from aquatic solutions. Desalin. Water Treat. 2013, 51, 6545–6551. [CrossRef]

42. Dos Santos, A.J.; Batista, L.; Martínez-Huitle, C.A.; Alves, A.; Garcia-Segura, S. Niobium Oxide Catalysts as
Emerging Material for Textile Wastewater Reuse: Photocatalytic Decolorization of Azo Dyes. Catalysts 2019,
9, 1070. [CrossRef]

43. Henry, R.; Walker, B.; Stair, P. Adsorption selectivity of Lewis acids and bases on an oxidized Mo(100) surface
studied by LEED, Auger, and XPS. Surf. Sci. Lett. 1985, 155, A278. [CrossRef]

44. Bezrodna, T.; Puchkovska, G.; Shimanovska, V.; Chashechnikova, I.; Khalyavka, T.; Baran, J. Pyridine-TiO2

surface interaction as a probe for surface active centers analysis. Appl. Surf. Sci. 2003, 214, 222–231.
[CrossRef]

45. Wawrzkiewicz, M. Anion-Exchange Resins for C.I. Direct Blue 71 Removal from Aqueous Solutions and
Wastewaters: Effects of Basicity and Matrix Composition and Structure. Ind. Eng. Chem. Res. 2014, 53,
11838–11849. [CrossRef]

46. Beltrán, F.J.; Rivas, J.; Alvarez, P.; Montero-De-Espinosa, R. Kinetics of Heterogeneous Catalytic Ozone
Decomposition in Water on an Activated Carbon. Ozone Sci. Eng. 2002, 24, 227–237. [CrossRef]

47. Biernacki, W.; Fijołek, L.; Nawrocki, J.; Biernacki, W.; Lilla, F.; Jacek, N. Dissolved Ozone Decomposition in
Presence of Activated Carbon at Low pH: How Experimental Parameters Affect Observed Kinetics of the
Process. Ozone Sci. Eng. 2018, 41, 296–311. [CrossRef]

48. International Organization for Standardization (ISO). ISO 11348-3:2007-Water Quality—Determination of the
Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 3: Method
Using Freeze-Dried Bacteria; International Organization for Standardization (ISO): Geneva, Switzerland, 2007.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-018-25761-6
http://www.ncbi.nlm.nih.gov/pubmed/29765092
http://dx.doi.org/10.1007/s11783-017-0899-5
http://dx.doi.org/10.1080/01919512.2017.1321980
http://dx.doi.org/10.1016/S0926-3373(03)00326-6
http://dx.doi.org/10.5604/01.3001.0010.4628
http://dx.doi.org/10.1016/j.jenvman.2020.110502
http://dx.doi.org/10.2307/1575449
http://dx.doi.org/10.1080/00032719.2017.1418879
http://dx.doi.org/10.1016/j.jclepro.2018.08.112
http://dx.doi.org/10.1080/19443994.2013.769491
http://dx.doi.org/10.3390/catal9121070
http://dx.doi.org/10.1016/0167-2584(85)91058-8
http://dx.doi.org/10.1016/S0169-4332(03)00346-5
http://dx.doi.org/10.1021/ie501992n
http://dx.doi.org/10.1080/01919510208901614
http://dx.doi.org/10.1080/01919512.2018.1535889
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Catalytic Action for Color Removal 
	Color Removal Directly from Raw Industrial Wastewater 
	Residual Color Removal after EC 

	Catalytic Action for Colorless By-Product Removal 
	Mineralization in Catalytic and Non-Catalytic Processes 
	Toxicity in Catalytic and Non-Catalytic Processes 
	Basis of Catalytic Action 

	Materials and Methods 
	Materials 
	Methods 
	Analytical Methods 

	Conclusions 
	References

