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Abstract: SBA-15 materials as-synthesized and impregnated with Ag nanoparticles were applied
to perform adsorptive desulfurization of real diesel fuel. High-angle annular dark-field scanning
transmission electron microscopy and field-emission scanning electron microscopy coupled with
energy-dispersive X-ray spectroscopy (HAADF-STEM-EDX and FESEM-EDX) and X-ray photoelectron
spectroscopy (XPS) results confirmed that there is uniform distribution of Ag nanodomains on the
surface and in the channels of a 2AgSBA-15 (2% Ag) sample. The interaction between sulfur
compounds and adsorbent mainly occurred via π-complexation mechanisms, as observed via XPS and
equilibrium data. The kinetic results for 2AgSBA-15 were better fitted to the pseudo-second-order
model (R2 > 0.9999), indicating that the determining step of the adsorptive process is chemisorption,
whereas the equilibrium results were better fitted to the Langmuir model (R2 > 0.9994), thus indicating
that the adsorption occurs on the adsorbent surface monolayer with significant adsorption capacity
(qm = 20.30 mgS/g), approximately two times greater than that observed for pure SBA-15. The mean
desulfurization reached by the adsorbents was up to 86.8% for six recycling steps.

Keywords: SBA-15; Ag nanoparticles; chemisorptive desulfurization; π-complexation; XPS assessment

1. Introduction

In recent years, research on the development of ordered mesoporous materials has been increasingly
focused on their application in catalysis and mitigation of environmental pollutants, mainly by
adsorption [1,2]. Some remarkable features such as highly ordered and uniform porous structure,
large pore volume, high thermal stability, and the easy obtainment and modification have attracted the
interest of many researchers to microporous and mesoporous silica-based materials, such as zeolites [3],
SBA-15 [4], KIT-6 [5], MSU-S [6], and MCM-41 [7].
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Mesoporous silica SBA-15 has attracted a lot of attention in many areas such as catalysis,
nanomedicine, and adsorption due to its large surface area, high thermal and water stabilities,
interconnected pore systems, and thick walls [8]. This material presents peculiar characteristics that
are interesting for adsorption and catalysis processes, such as some micropores present next to the
hexagonally ordered mesoporosity, high surface area, and uniform pore size. However, its structure is
neutral in charge and does not significantly interact with organic pollutants. Thus, incorporating metal
nanoparticles is the key to enhancing the adsorption of several contaminants [9].

Catalysts based in d-block metals on mesoporous silica have proven to be very effective at removing
organic sulfur from diesel oil due to their unique physicochemical properties [10,11], constituting a
technological issue in the petroleum industry. These metals are capable of enhancing the adsorption of
S-compounds through π-complexation or other metal/sulfur interactions, being significantly stronger
than van der Waals interactions, and thus leading to a higher adsorption selectivity [12,13]. Modifying
supports with silver nanosites is able to improve the catalytic and adsorptive performance of the
supports due to the higher desulfurization capacity in environmental conditions and the good
regenerability of the materials [14].

The hydrodesulfurization (HDS) process is the conventional method [15] used in refineries for
desulfurization, despite the elevated temperature (350–400 ◦C) and pressure (3–10 MPa) required,
in addition to the low efficiency to remove thiophenes and its derivatives [16,17]. Thus, the adsorptive
method becomes an alternative due to its simplicity, low cost, efficiency, and possibility of working in
multiple adsorption–desorption cycles [7,18]. Furthermore, such a process does not cause alterations
in the physical properties of the fuel [19]. The demand for low-cost and high-performance materials
has drawn the attention to alternative sources.

The present study contributes by applying SBA-15 mesoporous material as-synthesized and
modified with Ag and Ni in a cleaner alternative methodology for producing low-sulfur content diesel
fuel by adsorptive desulfurization. X-ray photoelectron spectroscopy (XPS) as well as high-angle
annular dark-field scanning transmission electron microscopy and field-emission scanning electron
microscopy coupled with energy-dispersive X-ray spectroscopy (HAADF-STEM-EDX and FESEM-EDX)
techniques were used to assess the efficiency of the synthesis and impregnation steps. Diverse kinetic
and equilibrium models were applied in order to evaluate the adsorption process, thus providing
information and enabling employment of a lower cost method in comparison to the currently used
process in petroleum refineries.

2. Results and Discussion

2.1. Preliminary Adsorption Data

The results indicate that the functionalized adsorbents present higher desulfurization capacity
due to the stronger interaction of the transition metals with the organosulfur compounds. Higher
adsorption was obtained for 8AgSBA-15 (8% Ag); however, it was not significant in comparison
to the adsorbent impregnated with 2% Ag. Hence, the concentration of 2% Ag was applied for
further adsorptive studies and main characterization analysis due to its satisfactory performance and
cost–benefit ratio. Figures S1 and S2 (Supplementary Materials) present the results of sulfur adsorption
performance for the materials studied and the X-ray diffraction (XRD) patterns for the adsorbents with
8% Ag, 2% Ni, and 8% Ni over SBA-15, respectively.

2.2. Characterization of the Materials

The XRD patterns of SBA-15 and 2AgSBA-15 are depicted in Figure 1. As observed in Figure 1a,
three well-defined peaks at 2θ = 0.77◦, 1.39◦ and 1.62◦ are ascribed to the diffraction planes (100), (110),
and (200), respectively, which are typical of the highly ordered two-dimensional hexagonal structure of
SBA-15 [20–22]. This well-ordered 2D pore structure of SBA-15 mesoporous silica was preserved after
impregnation with Ag(I) (Figure 1a).
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Figure 2. N2 adsorption–desorption isotherms at 77 K and the corresponding Barrett–Joyner–Halenda 
(BJH) adsorption pore size distributions for the adsorbents. 

Figure 1. (a) Low-angle and (b) wide-angle X-ray diffractograms for SBA-15 and 2AgSBA-15 adsorbents.

Wide-angle XRD patterns (Figure 1b) only exhibit a wide peak centered at 2θ 22.5◦, which is
attributed to the amorphous silica wall. The absence of peaks relative to the sample impregnated with
silver (2AgSBA-15) may indicate that Ag species are highly dispersed and present high interaction with
the mesoporous support. In addition, the size of these species may be below the equipment detection
limit in the form of nanoparticles (<3 nm) [23–25].

The N2 adsorption–desorption isotherms performed before and after Ag modification are shown
in Figure 2, as well as the pore size distribution plot. The isotherms for both samples are classified
as Type IV, characteristic of mesoporous materials according to the International Union of Pure and
Applied Chemistry (IUPAC) classification, with an H1 hysteresis cycle, which indicates narrow and
uniform pore size distribution [26–28]. The pore size distribution plot indicates that the adsorbents
have uniform mesopore sizes with maximum distribution in the range of 87–95 Å. The incorporation
of Ag species to the mesoporous support did not cause significant changes in the isotherm profile.
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The textural parameters of SBA-15 and 2AgSBA-15 adsorbents are summarized in Table 1.
The reduction in specific surface area and total pore volume in relation to the original material suggests
that there was pore occlusion by the deposited Ag species [26,27,29].

Table 1. Textural properties of the adsorbents.

Adsorbent SBET
1 (m2/g) VP

2 (cm3/g) Maximum Pore Diameter (Å)

SBA-15 757 1.32 95
2AgSBA-15 576 1.10 87

1 Specific surface area calculated using the Brunauer–Emmett–Teller (BET) equation. 2 Total pore volume at
P/P0 = 0.996.

HAADF-STEM images for pure SBA-15 (Figure 3a,b) confirm the well-ordered mesoporous
hexagonal structure of the SBA-15 matrix [30–32]. As shown in Figure 3c, the structure of the original
material was preserved after modification with Ag(I), which is in line with the previous characterization
results. Some silver nanoparticle clusters can be observed (Figure 3c); however, HAADF-STEM-EDX
mapping images (Figure 3d) revealed uniform distribution of silver nanoparticles over the sustainable
SBA-15 material.
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Figure 3. (a,b) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
micrograph for pure SBA-15; (c) HAADF-STEM and (d) HAADF-STEM coupled with energy-dispersive
X-ray spectroscopy (HAADF-STEM-EDX) mapping images for 2AgSBA-15.



Catalysts 2020, 10, 593 5 of 19

The FESEM micrograph for the 2AgSBA-15 sample, illustrated in Figure 4a, revealed a uniform
long-fiber shape morphology [33]. The mapping images (Figure 4b–d) show a homogeneous dispersion
of Ag particles over the silica surface (O-Si-O), which is consistent with the HAADF-STEM-EDX results.
The elemental composition of the 2AgSBA-15 sample obtained by EDX is depicted in Figure 4e.
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Figure 4. (a) Field-emission scanning electron microscopy (FESEM); (b–d) elemental mapping and
(e) EDX spectrum obtained for 2AgSBA-15.

X-ray photoelectron spectroscopy (XPS) was used to evaluate the electronic properties of the
surface species, including their oxidation states, binding energies, and the electronic atmosphere [34].
The XPS survey spectra of 2AgSBA-15 and 2AgSBA-15 S samples are depicted in Figure 5, which
shows the sample before and after desulfurization, respectively. It is possible to observe the presence
of Ag, O, Si, and C elements in both adsorbents. The presence of C is associated with the adventitious
contamination. The photoemission peaks at 103.3 and 532.6 eV are assigned at Si 2p and O 1s of
the silica in 2AgSBA-15 [24,35,36]. The presence of sulfur was not detected, probably due to its low
surface concentration.

The deconvoluted Ag 3d core level spectra for the 2AgSBA-15 sample before and after
desulfurization are depicted in Figure 6. The deconvolutions reached significant correlation coefficient
(R2 > 0.998) and F values (>4308.8) with a low standard error (<13.78). The lower F value for the
deconvolution of 2AgSBA-15 S is related to the higher noise presented in the spectra of the adsorbent
after desulfurization, since a severe Savitzky–Golay smoothing was not used in order to maintain
the real features of the data without overfitting. The Ag 3d5/2–Ag 3d3/2 doublet at 367.8 and 373.8 eV,
respectively (Figure 6a), is assigned to Ag(I) species chemically bonded to oxygen atoms, which may
mainly occur by interactions with the silanol groups of SBA-15 (Ag-O-Si) [37], while the peaks at
369.2 eV and 374.9 eV are ascribed to metallic Ag sub-nanoparticles (<4 nm) widely dispersed over the
support [38,39].
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It can be seen that the binding energies increased after the desulfurization tests (Figure 6b), thus
indicating a less negative charge of Ag species due to the electron transfer caused by π-backbonding
complexation between these silver nanosites and the sulfur molecules (Ag-S-R, S-R = DBT) [40,41],
which controls the chemisorption process. Furthermore, a small doublet related to a new Ag species
emerged at 371.4 eV and 377.1 eV, which were previously ascribed in the literature as “anomalous
chemical shifts” present in XPS spectra of sulfur containing Ag molecules [42]. Thus, the recorded XPS
data proved that the Ag species on the SBA-15 surface are able to drive the organosulfur adsorption by
chemisorption processes, thus enhancing the desulfurization performance.

The Ag MNN Auger lines were also recorded; however, these signals are very noisy and presented
low intensity due to the low silver content, and therefore are not helpful for studying the chemical
states of silver.

2.3. Adsorption Kinetics

Pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and Boyd’s film-diffusion
kinetic models were used to test the experimental data and evaluate the controlling mechanism of the
sulfur adsorption process. The fitting for the kinetic data of the studied adsorbents depicted in Table 2
and Figures 7 and 8 summarize the estimated parameters and the determination coefficients (R2) of the
models. The plot of the amount of sulfur adsorbed per time for 2AgSBA-15 and AgSBA-15 is depicted
in Figure S3 of the Supplementary Materials.

Table 2. Kinetic test results for the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and
Elovich equations.

Model or Parameter
Adsorbent

SBA-15 2AgSBA-15

qexp 3.085 5.221

Pseudo-first-order model
qe (mg/g) 0.253 0.273
k1 (min−1) 0.029 0.005

R2 0.8810 0.8904

Pseudo-second-order model
qe (mg/g) 3.115 5.219

k2 (g/(mg min)) 0.365 0.107
R2 0.9999 0.9999

Intraparticle diffusion
kid (mg/(g min)) 0.037 0.008

C (mg/g) 2.7438 4.973
R2 0.5532 0.606

Elovich
α (mg/(g min)) 2.37 × 1010 57.33
β (g/mg) 0.118 20.47

R2 0.7601 0.8402

Boyd
B 1 0.002 0.005
R2 0.7857 0.9034

1 B is Boyd’s constant, angular coefficient of Boyd’s graph (t × Bt).

The pseudo-first-order model did not present satisfactory fitting to the studied data, with a low
R2 value (R2 < 0.8904) and a large discrepancy between the calculated and experimental maximum
adsorption capacities (qe), thus limiting its applicability. The experimental results of the studied
adsorbents were better adjusted to the pseudo-second-order model, as can be seen in Figures 7 and 8 and
Table 2, since the determination coefficient was near 1 (R2 > 0.9999). Moreover, the differences between
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the experimental and calculated qe values were lower than those obtained by the pseudo-first-order
model. This kinetic model indicated that the rate-determining step is chemisorption, which involves
valence forces through sharing or exchanging electrons between adsorbent/adsorbate [43]. It is notable
that the 2AgSBA-15 data presented a higher fit to this model than the pure material, since the interactions
between the transition metal active sites and the adsorbate, such as π-complexation, are considerably
stronger than the predominant van der Waals forces present in the SBA-15 support [44]. The Elovich
equations were also evaluated, but they were not able to fit the experimental data (R2 > 0.7601).Catalysts 2020, 10, x FOR PEER REVIEW 9 of 20 
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(d) intraparticle diffusion, and (e) Boyd models.

Finally, the influence of diffusion and the mechanism which controls mass-transfer resistance
on the adsorption rate were assessed by the intraparticle diffusion and Boyd’s film-diffusion models.
The SBA-15 and 2AgSBA-15 adsorbents did not present a good fit to the intraparticle diffusion model
(R2 > 0.606). The fact that none of the regression lines passed through the origin (Figures 7 and 8) imply
that the intraparticle diffusion may not be the only rate-determining step, and suggest the occurrence
of additional processes involved in the adsorption mechanism [45]. The positive C constant value
suggests fast adsorption of sulfur compounds [46]. However, the 2AgSBA-15 data could be fitted to
the Boyd’s film diffusion (R2 > 0.9034), and the plot not being linear (Figure 8) suggests that the pore
diffusion is not the rate-controlling step mechanism [47], further indicating that significantly strong
chemical interactions are the main forces which govern the adsorptive desulfurization over 2AgSBA-15.

2.4. Adsorption Equilibrium Isotherms

Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherms were applied to
evaluate the relation between adsorbate/adsorbent when the adsorption process reaches equilibrium at
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different initial concentrations, as depicted in Figure 9. The parameters and R2 of the isotherm models
(Table 3) for the studied adsorbents reveal that the Ag sites on SBA-15 provided high adsorptive
capacity to the material, as seen in the qm values.
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Table 3. Fitting parameters for sulfur adsorption equilibrium data of SBA-15 and 2AgSBA-15 to
Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) equations.

Isotherm Parameter
Adsorbent

SBA-15 2AgSBA-15

Langmuir KL (L/mg) 0.0024 0.0023
qm (mg/g) 10.62 20.30

R2 0.9909 0.9994

Freundlich KF 0.0696 0.079
n 1.39 1.22

R2 0.9412 0.9909

Temkin α 0.0900 0.069
β 0.96 2.406
R2 0.9787 0.9169

D-R qs 10.29 4.087
β 5 × 10−7 5.318 × 10−5

E 1000 96.964
R2 0.5066 0.6242

The Langmuir, Freundlich, and Temkin models showed a good fit to the adsorption equilibrium data
of all the studied adsorbents. However, the equilibrium results did not fit the D-R model (R2 < 0.5066).
Moreover, the good fit of the Langmuir model (R2 > 0.9909) to the equilibrium data of all the adsorbents
suggests monolayer adsorption on the adsorbent surface with a finite number of sites [48]. The 0 < RL < 1
obtained for these materials indicates favorable adsorption of S-compounds [45]. It was possible to observe
an increment in the maximum adsorption capacity of S-compounds (from 10.62 mg/g to 20.30 mg/g)
of 2AgSBA-15, indicating the occurrence of chemisorption mechanisms such as π-complexation in the
process [41].

The Freundlich isotherm model presented the second-best fit to the experimental data for SBA-15
(Figure 9a) and 2AgSBA-15 (Figure 9b) (R2 > 0.9412), and indicates a favorable adsorption process in
heterogeneous systems or multilayer adsorption (Freundlich, 1906). For instance, the n values higher
than 1 obtained for 2AgSBA-15 suggest that the adsorptive desulfurization was a favorable process [49].
Regarding the Temkin model, there is a linear decrease of the adsorption heat in the adsorbate molecules
when the adsorbent layer is covered, thus suggesting maximum uniform energy distribution over the
adsorbents’ surface [45], which can be considered for both adsorbents (R2 > 0.9169). The adsorptive
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capacity of the 2AgSBA-15 sample is superior or similar when compared to other materials applied in
fuel desulfurization, as shown in Table 4.

Table 4. Comparison of sulfur adsorption performance data for some materials studied in literature.

Adsorbent Feedstock Conditions qm
a (mg/ g) Reference

Alumina DBT 25 ◦C 21.02 [50]
NaY Zeolite DBT; 4,6-DMDBT room temperature 6.7; 1.7 [51]

Activated carbons DBT room temperature, Cu+ 19.0 [52]
TiO2/SBA-15 DBT 35 ◦C 19.3; 12.7; 7.2 [53]

Cu(I)/SBA-15(30) Tiophene 30 ◦C, 6.27% de Cu (wt%) 21.85 [54]
10Cu/SBA-15 Tiophene room temperature 14.33 [4]

AC/Ce/Fe Tiophene, BT, DBT 0.33; 2.48; 3.70 [55]
MMZ; 5Ni/MMZ; 10Ni/MMZ;
UR.10Ni/MMZ; 15Ni/MMZ Tiophene room temperature 16.96; 21.37; 23.98;

9.095; 10.87 [56]

MCM-41 Diesel fuel 25 ◦C 3.06 [9]
AgNO3 or Ag2O/MCM-41 Diesel fuel 25 ◦C, 2% Ag 31.25; 13.95
Ni(NO3)2 or NiO/MCM-41 Diesel fuel 25 ◦C, 2% Ni 8.97; 5.38 [9]

MCM-41 or AgMCM-41 Diesel fuel 25 ◦C, 2% Ag 7.25; 15.41 [23]
Palygorskite Diesel fuel 45 ◦C 6.25 [57]

SBA-15 Diesel fuel 25 ◦C 10.62 This study
2AgSBA-15 Diesel fuel 25 ◦C, 2% Ag 20.30 This study

a Maximum adsorption capacity obtained by the Langmuir model (Equation (5)).

The molecular components of model diesel are smaller when compared to those in real diesel,
as well as their respective critical diameters [58]. Thus, the best way to evaluate the adsorption capacity
of an adsorbent is by performing desulfurization tests with real diesel. For effective adsorption of large
molecules, the pore size of the adsorbent should not only be, at a minimum, larger than the critical
diameter of the adsorbate, but should also be sufficiently large to reduce diffusional resistance during
adsorption [59]. Both the SBA-15 and 2AgSBA-15 materials presented satisfactory reuse rates with a
low decrease in sulfur adsorption after six regeneration cycles with the solvent mixture, thus indicating
significant organosulfur removal by the adsorbents for many recycling steps, as shown in Figure 10.
The main organosulfur components of real diesel and their critical diameters are depicted in Tables S1
and S2 of the Supplementary Material, respectively.
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3. Materials and Methods

3.1. Reagents

The following reagents were used: hydrochloric acid (HCl, 37%, PA, Vetec|Sigma-Aldrich, Duque de
Caxias, RJ, Brazil); ethanol (C2H6O, 99.5%, NEON, São Paulo, SP, Brazil); tetraethyl orthosilicate (TEOS,
99.999%, Sigma-Aldrich, St. Louis, MO, USA); poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene
oxide) triblock copolymer (Pluronic P123, 98%, Sigma-Aldrich, St. Louis, MO, USA); silver nitrate
(AgNO3, 99.8%, Vetec|Sigma-Aldrich, Duque de Caxias, RJ, Brazil); and hexa-hydrated nickel nitrate
(Ni(NO3)2.6H2O, 99.999%, Sigma-Aldrich, St. Louis, MO, USA). Every reagent was used without any
further purification. All the experiments were performed with distilled water.

3.2. Synthesis of SBA-15 Material

The SBA-15 mesoporous material used in this study was obtained according to the methodology
described in the literature [60], with modifications consisting of functionalizing the adsorbents with
Ag(I) and Ni(II) salts. The adapted method for SBA-15 hydrothermal synthesis starts with the addition
of TEOS and the triblock copolymer to 2 mol L−1 HCl aqueous solution, followed by stirring the
emerged mixture for 3 h at 40 ◦C. Next, TEOS was added dropwise (TEOS/P123 = 2.0 w/w) and the
obtained polymer–TEOS mixture was stirred for 24 h under the same conditions. The gel (molar
composition of 0.00034 P123: 0.021 TEOS: 1.974 HCl: 0.834 H2O) was transferred to a sealed Teflon
autoclave container (Metaquímica, Jaraguá do Sul, SC, Brazil) and kept at 110 ◦C for a period of 48 h.
The final product was filtered, washed with 50 mL of ethanol/water (1:1) solution, and dried for 12 h at
100 ◦C. SBA-15 was calcined at 600 ◦C for 285 min at a rate of 2 ◦C min−1.

The supports were doped via wet impregnation with Ag(I) and Ni(II) ions from AgNO3 and
Ni(NO3)2.6H2O salts, respectively. Ethanol solutions of Ag(I) (0.03 molL−1 and 0.12 molL−1 for 2% (w/w)
and 8% (w/w), respectively) and Ni(II) (0.05 mol L−1 and 0.22 for 2% (w/w) and 8% (w/w), respectively)
were prepared and added to 3.0 g of the calcinated material. The impregnation was performed in
rotary evaporators (Fisatom, São Paulo, SP, Brazil) at 120 rpm for 1 h at room temperature, and for
3.5 h more under progressive heating (10 ◦C/30 min). The modified adsorbents were dried in a stove
model Q 314B242 (Quimis, Diadema, SP, Brazil) at 120 ◦C for 2 h.

3.3. Adsorbents’ Characterization

X-ray diffraction (XRD) patterns of the adsorbents were collected on a Bruker D2 Phaser equipment
(Bruker AXS, Madison, WI, USA) using CuKα radiation (λ= 1.5406 Å) at the 2θ ranges of 0–5◦ and 5–90◦,
with 30 kV filament, 10 mA current, Ni filter, and a LYNXEYE detector. Nitrogen adsorption/desorption
isotherms at 77 K were used to determine the textural parameters of the adsorbents in a Quantachrome
Nova apparatus (Boynton Beach, FL, USA). The specific surface area (SBET) was calculated using the
Brunauer–Emmett–Teller (BET) equation and the pore size and volume were determined, respectively,
by applying the Barrett–Joyner–Halenda (BJH) method to the desorption branch of the N2 isotherm at
P/P0 = 0.996.

Scanning transmission electron microscopy (STEM) analysis and mapping data were recorded in
a Helios Nanolab 650 instrument (FEI, Brno, Czech Republic) with a high-angle annular dark-field
(HAADF) detector, at 200 kV and 200 nA. The microanalysis was carried out with an energy-dispersive
X-ray (EDX) spectroscopy Super-X system (FEI, Brno, Czech Republic) provided with four X-ray
detectors and an extreme field emission gun (X-FEG) beam. The morphology of the catalysts was
evaluated by scanning electron microscopy (SEM) with field emission gun (FEG) images obtained
by a SEM-FEG AURIGA microscope from ZEISS (Carl Zeiss, Oberkochen, BW, Germany) coupled to
a Bruker Xflash Detector 410-M energy-dispersive X-ray (EDX) apparatus (Bruker AXS+, Madison,
WI, USA). X-ray photoelectron spectroscopy (XPS) was performed by a Physical Electronics PHI
5700 spectrometer (Physical Electronics, Inc., Chanhassen, MN, USA) with non-monochromatic Al
Kα radiation (95.2 W, 15 kV, and 1486.6 eV) and a multi-channel detector. High-resolution spectra
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were recorded at a take-off angle of 45◦ using a concentric hemispherical analyzer operating in
constant-pass-energy mode at 29.35 eV, using a 720 µm diameter analysis area. C1s peaks were used as
an internal standard calibration peak at 284.8 eV using the Multipak (version 9.6.0.15) software program
(Physical Electronics, Inc., Chanhassen, MN, USA). Ag3d spectra were subsequently deconvoluted
using PeakFit 4.12 software (Systat Software, Inc., Berkshire, UK) by applying Savitzky–Golay filter
smoothing (<20%), linear baseline, and Gaussian curves for iterative peak fitting in order to more
accurately determine the binding energies of different element core levels.

3.4. Preliminary Adsorption Tests

High-sulfur content diesel fuel S1800 (real diesel with 1800 mg kg−1 sulfur) from Clara Camarão
Potiguar Refinery (Guamaré/RN, Brazil) was used to evaluate the adsorption processes. The sulfur
removal capacity of the adsorbents was analyzed by a preliminary test performed in glass columns
(0.61 cm × 30.0 cm) with downward flow. Each adsorbent was placed in the column up to 9.0 cm in
height (approximately 0.5 g of material), and 5.0 mL of diesel (constant volume) was subsequently
added. Aliquots of 0.3 mL were collected from the bottom of the columns, and the sulfur content was
measured in a total sulfur analyzer ultraviolet fluorescence (UVF) Antek Multitek spectrometer (PAC,
L.P, Houston, TX, USA) according to ASTM D5453 methodology.

3.5. Adsorption Study

The S-compounds’ removal from diesel was performed using the finite bath method, in which
0.3 g of the adsorbent and 8.0 mL of diesel fuel were mixed and stirred at 100 rpm in a shaker apparatus
(Solab, SL 180/DT, Piracicaba, SP, Brazil). Solutions containing different sulfur concentrations were
applied in each test. The adsorbents were separated by centrifugation (15 min, 150 rpm) and the
residual sulfur content in the supernatant was quantified by UVF spectroscopy. The sulfur adsorption
capacity at equilibrium (qe) of each adsorbent was calculated using Equation (1) (Table 5).

The S-compound adsorption rate for the kinetic assessment was investigated at diverse time
intervals (5–1600 min) and using a real diesel solution containing 500 ppm sulfur. Pseudo-first-order
(Equation (2)), pseudo-second-order (Equation (3)), intraparticle diffusion (Equation (4)), Elovich
(Equation (5)), and Boyd (Equation (6)) kinetic models were used to explain the adsorption
mechanism [47,61] (Table 5).

The adsorption equilibrium was evaluated by fitting the experimental adsorption data to Langmuir,
Freundlich, Temkin, and D-R mathematical models in order to predict the equilibrium parameters
and explain the adsorbent/adsorbate system. The Langmuir model (Equation (7)) describes specific
homogenous sites and is applied in a monolayer adsorption process. The dimensionless constant,
commonly known as a separation factor (RL) and proposed by Weber and Chakravorti, is presented in
Equation (8). The Freundlich isotherm describes a heterogeneous system and can be applied to an
adsorption of multiple layers with non-uniform distribution of the adsorption heat by the linear equation
(Equation (9)) [21,61–63]. The Temkin isotherm suggests that the adsorption heat of the adsorbed
molecules decreases linearly with the layer coverage due to the effects of indirect adsorbent/adsorbate
interaction. The model can be expressed according to Equation (10). The Dubinin–Radushkevich (D-R)
isotherm does not assume a homogeneous surface or constant adsorption potential. The linear form of
the D-R isotherm model can be represented by the following (Equation (11)) [46,64]. The equations
used in this work are described in Table 5. Origin 2019b software (OriginLab, Northampton, MA, USA)
was used to adjust the linearized equations of the models for calculating the equilibrium parameters.
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Table 5. Mathematical equations and parameters.

Adsorption Capacity Equation

Equation Parameter Unity

Adsorption capacity qe =
V(Ci−Ce)

MAD

1qe, 2V, 3Ci, 4Ce and 5MAD mg/g, L, mg/L, mg/L and g (1)

Equations and parameters of the kinetic models

Equation Parameter Unity

Pseudo-first-order log(qe − qt) = logqe −
k1t

2.303
1qe, 6qt, 7t and 8k1 mg/g, mg/g, min and min−1 (2)

Pseudo-second-order t
qt

= 1
k2q2

e
+ t

qe
7t, 6qt, 9k2 and 1qe min, mg/g, mg/g min and mg/g (3)

Intraparticle diffusion qt = kidt1/2 + C 6qt, 10kid and 7t mg/g, mg/g min1/2 and min (4)
Elovich qt = 1

β lnαβ+ 1
β lnt 6qt, 11α, 12β and 7t mg/g, mg/g min, g/mg, and min (5)

Boyd

F = 1− 6
π2

∞∑
n = 1

1
n2 exp

(
−n2Bt

)
For F > 0.85, Bt = f (F) = −0.4977− ln(1− F)

For F < 0.85, Bt = f (F) =

√π−
√
π−

√
π2F

3

2
13Bt and 14F - (6)

Equations and parameters of the equilibrium models

Equation Parameter Unity

Langmuir model Ce
qe

= 1
qmaxKL

+ Ce
qmax

4Ce, 1qe, 15qmax and 16KL g/L, mg/g, mg/g and L/g (7)
RL = 1/(1 + KLC0) 16KL and 17C0 L/g and mg/L (8)

Freundlich model log qe = logk f +
1
n logCe

1qe,
4Ce, 18KF and 19n mg/g, g/L, L/g and Const. (9)

Temkin model qe = βlnKt + βlnCe 1qe, 20β, 21Kt and 4Ce mg/g, J/mol, L/g and g/L (10)

D-R
ε = RTln

(
1 + 1

Ce

)
lnqe = lnqs − βε2

E = l/
√

2β

24ε, 22R, 23T, 4Ce, 1qe, 25qs, 26β and 27E
J/mol, J/mol K, K, g/L, mg/g,
mg/g, mol2/kJ2 and kJ/mol (11)

.

1 Amount of sulfur adsorbed at the equilibrium. 2 Diesel solution volume. 3 Initial sulfur content in the fuel. 4 Sulfur content in the fuel at equilibrium. 5 Adsorbent mass. 6 Amount of
sulfur adsorbed at a time t. 7 Time. 8 Constant of the pseudo-first-order model. 9 Constant of the pseudo-second-order model. 10 Constant of the intraparticle diffusion model. 11 Constant
of the Elovich equation. 12 Desorption constant. 13 Boyd’s constant. 14 Fractional attainment of equilibrium at a time t. 15 Constant expressing the maximum absorption of the adsorbate.
16 Langmuir constant. 17 Initial concentration of the analytes. 18 Adsorption capacity. 19 Constants of Freundlich. 20 Adsorption heat. 21 Equilibrium binding constant. 22 Universal gas
constant. 23 Temperature. 24 Polanyi potential. 25 Adsorption capacity. 26 Constant for the mean free energy. 27 Mean adsorption energy.
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3.6. Recycling Tests

The regeneration methodology was adapted from Sales et al. (2019) [9]. One gram (1 g) of SBA-15
and 2AgSBA-15 residual adsorbents collected from the desulfurization tests was packed in apparatuses
formed by a 10 mm × 50 cm (diameter and height, respectively) glass column. The adsorbents
were individually added up to 8 cm of fixed bed height. Then, 30 mL of the mixture containing
acetone/chloroform/hexane were added in a 3:4:3 ratio, being defined after preliminary tests for the
desorption of organic sulfur compounds. After eluting the solution, the adsorbents were washed
and heated to about 343 K for 1 h. The regeneration efficiency was determined for 6 cycles by a ratio
between the percentage of sulfur removal reached in the first adsorption test and the percentage of
sulfur removal reached by the regenerated adsorbent.

4. Conclusions

Characterization results were elucidated for the SBA-15 material, confirming the synthesis success.
Modification with Ag(I) did not alter the morphology of the support. Preliminary desulfurization tests
using the SBA-15 indicated better adsorption performance of the 2AgSBA-15 sample in comparison to
the Ni-impregnated materials. HAADF-STEM-EDX and FESEM-EDX showed that there was uniform
distribution of silver nanoparticles on the 2AgSBA-15 surface. The deconvoluted XPS spectra of
2AgSBA-15 before and after desulfurization revealed an interaction between the Ag(I) and metallic
Ag sites and the sulfur molecules via π-complexation, thus controlling the chemisorption process
suggested by the kinetic and equilibrium results, which were better fitted to the pseudo-second-order
and Langmuir models, respectively.

The RL separation factor (0 < RL < 1) indicated that the adsorption of S-compounds on the
surface of 2AgSBA-15 was favorable. In addition, the incorporation of Ag nanosites onto the SBA-15
support increased the adsorption capacity by approximately two times. Thus, the 2AgSBA-15 material
presented high efficiency for the adsorptive desulfurization of real diesel samples and is able to be
employed as a complementary method to the HDS method. The 2AgSBA-15 adsorbent presented a
satisfactory regeneration after a total of six sulfur adsorption cycles enabled the reuse of this material
for many times.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/593/s1,
Figure S1: Preliminary results for S-compound adsorption, Figure S2: Low-angle and wide-angle XRD patterns
for the adsorbents with 8% Ag, 2% Ni, and 8% Ni, Figure S3: Amount of sulfur adsorbed per time for 2AgSBA-15
and AgSBA-15, Table S1: Major sulfur compounds in a straight run diesel oil (Hua et al. 2003), Table S2: Critical
diameters for the major S-aromatic molecules in real diesel.
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