

Supplementary Materials

Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents

Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents

Daniel Eggerichs¹, Carolin Mügge¹, Julia Mayweg¹, Ulf-Peter Apfel^{2,3} and Dirk Tischler^{1,*}

- ¹ Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany; daniel.eggerichs@rub.de (D.E.); carolin.muegge@rub.de (C.M.); julia.mayweg@gmail.com (J.M.)
- ² Activation of Small Molecules, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr 150, 44780 Bochum, Germany; ulf.apfel@rub.de
- ³ Fraunhofer UMSICHT, Division of Energy, Osterfelder Strasse 3, 46047 Oberhausen, Germany
- * Correspondence: dirk.tischler@rub.de; Tel.: +49-234-32-22656

Figure S1. SDS gel of the protein production. Abbreviations: P: pellet, SU: supernatant, FT: flow through, W: wash, E: elution. Marker: Thermo Scientific unstained PageRuler (Lot #26614).

Table S1. Organic solvents used to optimize the enzymatic epoxidation of styrene. The solvents are ordered by their hydrophilicity in terms of their logPo/w value.

Solvent (abbreviation)	logPo/w ^a
Dimethyl sulfoxide (DMSO)	-1.35
Dimethyl formamide (DMF)	-1.01
Methanol (MeOH)	-0.77
Acetonitrile (AcN)	-0.34
Ethanol (EtOH)	-0.31
Acetone (-)	-0.24
2-Propanol (-)	+0.05
1-Propanol (-)	+0.25

Figure S2. Concentration of 1-phenyl-1-cyclohexane in aqueous solution in presence of different organic cosolvents normalized to the value for 5 vol% MeOH. Sigmoidal extrapolation of the data was performed using the following Boltzmann model: y = A2 + (A1-A2)/(1 + exp((x-x0)/dx)). Variables: x: solvent concentration [vol%], y: relative amount of 1-phenyl-1-cyclohexane, A1, A2, x0, dx: constants.

Table	S2.	Enantiomeric	excess	of	(S)-styrene	oxide	produced	by	<i>Gn</i> IndA	in	presence	of	selected
organi	c sol	lvents.											

		(S)-styrene oxide excess in presence of X vol% solvent					
Solvent	logPo/w[28]	5	10	15			
DMSO	-1.35	80.0 ± 2.1 %	-	81.1 ± 0.8 %			
MeOH	-0.77	80.8 ± 1.5 %	-	80.1 ± 4.6 %			
AcN	-0.34	-	80.3 ± 0.5 %	79.3 ± 1.4 %			
EtOH	-0.31	$82.8\pm1.0~\%$	-	80.0 ± 2.1 %			
Acetone	-0.24	-	80.4 ± 0.5 %	-			

"-" = not measured.

Figure S3. Continuously fed biotransformation of styrene to styrene oxide by *Gr*StyA. The enzyme was supplied with 10 mM BNAH in solid form and 2 mM styrene every twenty minutes until minute 140. There is an increase in styrene oxide concentration until the BNAH supply was stopped indicating that the cosubstrate is limiting in the process. A maximal amount of 2.72 mM styrene oxide in solution (19.4% conversion) was reached. Sigmoidal extrapolation of the styrene oxide concentration was performed using the following Boltzmann model: y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))). Variables: x: solvent concentration [vol%], y: relative amount of 1-phenyl-1-cyclohexane, A1, A2, x0, dx: constants.

Figure S4. Results of the quality check of the structural *Gn*IndA model by Verify 3D [36] The structural model contains no amino acid clashes and sterical incorrect model secondary structure elements.

Catalysts 2020, 10, x FOR PEER REVIEW

G. nectariphilus IndA	MRKFTIVGGGQSGLMV <mark>A</mark> IGLLKA <mark>G</mark> HQVRVVQNR <mark>T</mark> GAEITA <mark>G</mark> KVLSSQCM <mark>E</mark> SNSVQNE <mark>R</mark>	58
G. rubripertincta StyA	-MSKSIAIVGAGTAGLHLGLYLQQH <mark>G</mark> VESTIFSDKRPEEYRDVRLLNTVAHHAVTVEREN	59
P. putida S12 StyA	-MKKRIGIVGAGTAGLHLGLFLRQHDVDVTVYTDRKPDEYSGLRLLNTVAHNAVTVQREV	59
FireProt PpStyA HotSpot Wizard PpStyA	::*.* :* :: :: :: :: :: :: :: :: :: :: :: ::	59 59
G. nectariphilus IndA	DL <mark>G</mark> IDFWSDSCPPVEGINFMVPNPEKPGEKLIDWTGKLD-HKAYAVDQRVKMPRWL	113
G. rubripertincta StyA	ALGVNHWQDAGYFGHYYYIGVPGMPIEFYGDLASGPSRAVDYRIYLPTLM	109
P. putida S12 StyA	ALDVNEWPSEEFGYFGHYYYV-GGPQPMRFYGDLK-APSRAVDYRLYQPMLM	109
FireProt PpStyA	AL <mark>GVF</mark> EWPSEEFGYFGHYYYV-GGPQPMRFYGDLK-APSRAVDYRLY P PMLM	109
HotSpot Wizard PpStyA	AL <mark>D</mark> VNEWPSEEFGYFGHYYYV-GGPQPMRFYGDLK-APSRAVDYRLYQPMLM	109
G. nectariphilus IndA G. rubripertincta StyA P. putida S12 StyA	EEFQKLGGQ-LVIKDAGIAELETYAREDDLVIV ASGKGEIGQLFTRDATRSPYDKPQRAL ND <mark>Y</mark> IDRGGK-IEYRNIGLEDLDELSAAYDLVVIGTGK <mark>G</mark> GLGT <mark>L</mark> FARDEDSSPYSEPQRHL RALEARGGK-FCYDAVSAEDLEGLSEQYDLLVVCTGKYALGKVFEKQSENSPFEKPQRAL * :: : ** : ** : :* * *	172 168 168
FireProt PpStyA	<mark>E</mark> ALEARGGK-FCYDAVS <mark>E</mark> EDLEGLSEQYDLLVV <mark>A</mark> TGKYAL <mark>MKL</mark> FE <mark>RD</mark> SENSPFEKPQRAL	168
HotSpot Wizard PpStyA	RA <mark>L</mark> EARGGK-FCYDAVSAEDLEGLSEQYDL <mark>L</mark> VVCTGK <mark>Y</mark> ALGK <mark>V</mark> FE <mark>KQ</mark> SE <mark>N</mark> SPFEKPQRAL	168
G. nectariphilus IndA G. rubripertincta StyA P. putida S12 StyA FireProt PoStua	ALTYVKGMTPREPHSAVEFNLIPGVGEYFVFPSLTTGPCEIMVLEGIEGGPMDCWADVK CVGLFKGIAPQE-TRAVTFCIAPGNGEMIEIPTVSFNGDATALVLENHFGGDLEVLAKTR CVGLFKGIKEAP-IRAVTMSFSPGHGELIEIPTLSFNGMSTALVLENHIGSDLEVLAHTK .: . * : : * **::: * :*::::: CVCLFKGIKEAP-IPAVMGESSCHCEIIEIPTLEFNCMSALVLENHGSDLEVLAHTK	232 227 227
HotSpot Wizard PpStyA	CVGLFKGIKEAP - <mark>I</mark> RAVIMSFSPGHGEL <mark>I</mark> EIPTL <mark>S</mark> FNGMSTALVLENH <mark>IGS</mark> DLEVLAHTK	227
G. nectariphilus IndA G. rubripertincta StyA P. putida S12 StyA FireProt PpStyA HotSpot Wizard PpStyA	TPEQHLEKSLGILKTFLPWE YERSKNVELTDPNGILAGRFPP VRHPVATLSG YDDDPRAFLDLLDKLRTYYPITADRINEDEFDLANSSLDLLQGAVTPG VRHGHVKLDNG YDDDPRAFLDLMLEKLGKHHPSVAERIDPAEFDLANSSLDILQGGVVPAFRDGHATLNNG *.::::::::::::::::::::::::::::::::::::	286 287 287 287 287
<i>G. nectariphilus</i> IndA	RK <mark>VL</mark> GLGD <mark>AW</mark> CL <mark>N</mark> DPI <mark>T</mark> GQGSNNASKAAAVYLKSILDHGDRAYDEAFMRATF	338
<i>G. rubripertincta</i> StyA	KI <mark>AA</mark> LLGD <mark>A</mark> HATVDPVVGQGGNMASYAAHVLGEEIVGNNVEDEHFFEVVN	337
<i>P. putida</i> S12 StyA	KTIIGLGDIQATVDPVLGQGANMASYAAWILGEEILAHSVYDLRFSEHLE	337
FireProt PpStyA	K <mark>V</mark> IIGLGDIVATVDPVLGQGANMASYAAWILGEEILAHSVEDERFSEHLE	337
HotSpot Wizard PpStyA	KT <mark>II</mark> GLGD <mark>IQ</mark> AT <mark>V</mark> DPV <mark>L</mark> GQGANMASYAAWILGEEILAHSVYDLRFSEHLE	337
G. nectariphilus IndA	ERFW <mark>-</mark> DYAQWVVRWTNM <mark>MLQPP</mark> PPFILE <mark>IMGT</mark> ACAVPELAHRMANAFDDPRDFFPWF	394
G. rubripertincta StyA	AR-R <mark>A</mark> VRVLGATRWTNY <mark>M</mark> LKNLR <mark>E</mark> LPN <mark>S</mark> LVEFL <mark>GA</mark> VSLDRGLADKFTTNFNYPETQWDIF	396
P. putida S12 StyA	RR-RQDRVLCATRWTNFTLSALSALPPEFLAFLQILSQSREMADEFTDNFNYPERQWDRF	396
FireProt PpStyA	RR-RQDRVLCATRWTNF <mark>M</mark> LSALSALPPEFL <mark>F</mark> FLQILSQSREMADEFT <mark>FY</mark> FNYPERQWDRF	396
HotSpot Wizard PpStyA	RR-R <mark>Q</mark> DRVLCATRWTNF <mark>T</mark> LSALS <mark>AL</mark> PP <mark>E</mark> FLA <mark>FLQI</mark> LSQSREMADEFTDNFNYPERQWDRF	396
G. nectariphilus IndA G. rubripertincta StyA P. putida S12 StyA	ADPDAAASYLADLRKAA	
FireProt PpStyA HotSpot Wizard PpStyA	SSPERF <mark>W</mark> QWCNQYAPTIAA 415 SSPERFGQWCNQYAPTIAA 415	

Figure S5. Multiple sequence alignment of *Gn*IndA, *Gr*StyA and *Pp*StyA with 22 related SMOs and IMOs (see also [11], data not shown here) in comparison with the results from the FireProt and HotSpot Wizard webserver. The conservation of amino acids among those 25 enzymes is indicated in the fourth row. For the FireProt results the sequence of *Pp*StyA is displayed including the suggested mutations highlighted in green. If present in one of the sequences above, the respective amino acid is also highlighted in green there. The crucial amino acids assigned by the HotSpot Wizard are highlighted in yellow in the sequence of *Pp*StyA. Amino acids exchanges which were classified as "neutral or beneficial" are highlighted in yellow in the respective sequences except the amino acid matches a suggested mutation by the FireProt server. Amino acids conserved in the IMO sequences are underlined. Enzyme sequences used for alignment: SMOs: *R. opacus* 1CP (ANS32444), *Rhodococcus sp.* ST-5 (BAL04132), *Rhodococcus sp.* ST-10 (BAL04129), *N. ramosa* DSM11499 (WP_022977994), *S.*

fribergensis Kp5.2 (WP_039579272), P. agarilytica NO2 (GAC06215), M. litorale DSM 23545 (WP_027855270), Pseudomonas sp. LQ26 (ADE62390), Pseudomonas sp. Y2 (CAA04000), P. fluorescens ST (CAB06823), P. taiwanensis VLB120 (AAC23718), P. putida SN1 (ABB03727), P. putida CA-3 (ABX24519); IMOs: Burkholderia sp. IDO3 (APT36898), R. opacus 1CP (ACR43974), N. farcinica IFM 10152 (BAD56093), P. aurescens TC1 (ABM07034), S. auratus AGR0001 (EJJ03821), V. paradoxus EPS (ADU39062), V. paradoxus EPS (ADU39063), D. acidovorans SPH-1 (ABX34433).

Table S3. FireProt mutations in comparison with their abundance among IMOs and SMOs and corresponding amino acids in the sequence of *Gr*StyA and *Gn*IndA.

FireProt mutation	$\Delta\Delta G$			Abundance of residue in			
in P. pudida S12	[kJ mol ⁻¹]	Corresponding residue in		related er	nzymes		
		G. rubripertincta G. nectarphiliu		SMOs	IMOs		
Evolutionary mutations		CWB2 DSM15620		(15 enzymes.)	(9 enzymes)		
G18A	-3.20	A18	G17	1	5		
D25G	D25G 1.93		G24	6	8		
S40R	-4.66	R40	S39	2	3		
N51F	-12.88	H51	F50	0	9		
V59R	-0.91	N59	R58	0	9		
D62G	-6.29	G62	G62 G61		9		
R110E	1.87	N110	E114	1	3		
C142A	1.09	G142	A146	0	7		
V151L	-2.12	L151	L155	5	9		
K154R	-1.21	R154	R158	4	8		
Q155D	0.42	D155	D159	4	8		
S202T	0.30	S202	T208	3	8		
I216P	-5.14	F216	P221	2	9		
A276T	-3.33	G276	T275	4	9		
N285P	-4.66	D285	P284	1	6		
Q297V	2.90	H297	V296	0	9		
Y328F	2.12	F328	Y329	5	6		
L330E	0.06	E330	E331	6	1		
T354M	-19.35	M354	M355	7	2		
Energy mutations							
S40P	-7.07	R40	T39	0	0		
A49F	-14.27	A49	C48	0	1		
N64F	-12.76	N64	D63	0	0		
Q105F	-9.79	L105	M109	0	2		
A126P	-11.85	L126	I130	0	1		
G149M	-8.59	G149	G153	0	0		
T208F	-24.67	T208	E213	0	0		
T226F	-6.11	T226	V231	0	0		
G244W	-8.10	R244	K246	0	0		
S249F	-9.49	I249	W251	0	0		
A251Y	-6.65	A251	Y253	2	2		
T289V	-10.52	I289	K288	0	1		
T354W	-17.05	M354	M355	0	0		
A367F	-7.62	E367	E365	0	0		
D384E	-9.61	T384	N382	1	0		
N385W	-11.73	N385	A383	0	0		
C403W	-9 79	S403	A401	0	0		