# **Supporting Information**

Preparation of Metal Oxides Containing ppm Levels of Pd as Catalysts for the Reduction of Nitroarene and Evaluation of Their Catalytic Activity by the Fluorescence-Based High-Throughput Screening Method

#### Taeho Lim and Min Su Han \*

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; thlim0323@gist.ac.kr

\* Correspondence: <u>happyhan@gist.ac.kr</u>; Tel: +062-715-2850

Received: 20 April 2020; Accepted: 09 May 2020; Published: date



**Fig. S1.** Plot of fluorescence intensity at 358 nm versus various concentration of **2a** in toluene ( $\lambda_{ex}$  = 294 nm, three replicates) and the standard curve (red line). The equation of the standard curve is in the table (Concentration of **2a**=(*F*<sub>358</sub>–10.54895)/45.22218).



**Fig. S2.** Plot of fluorescence intensity at 358 nm versus various concentration of **2a** in toluene ( $\lambda_{ex}$  = 294 nm, black: only **2a**, red: [**1a**+**2a**] = 10 µM). The fluorescence of **2a** is the same whether or not **1a** is present. Using different fluorescence spectrophotometer, the intensity is different from Fig. S1.

| Metal | Metal oxide (by XRD)           | Reference |
|-------|--------------------------------|-----------|
| Mg    | MgO                            | [1]       |
| Cr    | Cr <sub>2</sub> O <sub>3</sub> | [2]       |
| Mn    | Mn2O3                          | [3]       |
| Fe    | Fe <sub>2</sub> O <sub>3</sub> | [2]       |
| Со    | C03O4                          | [2]       |
| Ni    | NiO                            | [2]       |
| Zn    | ZnO                            | [4]       |

Table S1. Summary of XRD results of metal oxides

| Al | Al <sub>2</sub> O <sub>3</sub> | [5] |
|----|--------------------------------|-----|
| Sr | SrCO <sub>3</sub>              | [6  |
| Ce | CeO <sub>2</sub>               | [2] |
| Zr | ZrO                            | [7] |

Cd CdO [8]

In In<sub>2</sub>O<sub>3</sub> [9]

Sn SnO<sub>2</sub> [10]

Ca CaO + CaCO<sub>3</sub> [11]

Y Y<sub>2</sub>O<sub>3</sub> [12] Cu CuO [13]



**Fig. S3.** XRD pattern of metal oxides. (a) MgO (black line) and Pd/MgO (red line). (b)  $Al_2O_3$  (black line) and Pd/Al\_2O\_3 (red line). (c) CaO + CaCO\_3 (black line) and Pd/CaO + CaCO\_3 (red line). (d) Cr\_2O\_3 (black line) and Pd/Cr\_2O\_3 (red line).



**Fig. S4.** XRD pattern of metal oxides. (a) Mn<sub>2</sub>O<sub>3</sub> (black line) and Pd/Mn<sub>2</sub>O<sub>3</sub> (red line). (b) Fe<sub>2</sub>O<sub>3</sub> (black line) and Pd/Fe<sub>2</sub>O<sub>3</sub> (red line). (c) Co<sub>3</sub>O<sub>4</sub> (black line) and Pd/Co<sub>3</sub>O<sub>4</sub> (red line). (d) NiO (black line) and Pd/NiO (red line).



**Fig. S5.** XRD pattern of metal oxides. (a) ZnO (black line) and Pd/ZnO (red line). (b) SrCO<sub>3</sub> (black line) and Pd/SrCO<sub>3</sub> (red line). (c) Y<sub>2</sub>O<sub>3</sub> (black line) and Pd/Y<sub>2</sub>O<sub>3</sub> (red line). (d) ZrO<sub>2</sub> (black line) and Pd/ZrO<sub>2</sub> (red line).



**Fig. S6.** XRD pattern of metal oxides. (a) CdO (black line) and Pd/CdO (red line). (b) In<sub>2</sub>O<sub>3</sub> (black line) and Pd/In<sub>2</sub>O<sub>3</sub> (red line). (c) SnO<sub>2</sub> (black line) and Pd/SnO<sub>2</sub> (red line).

(d) CeO<sub>2</sub> (black line) and Pd/CeO<sub>2</sub> (red line).



Fig. S7. XRD pattern of (a) CuO and (b) Pd/CuO.



Fig. S8. TEM image of Pd/CuO (a) and (b). TEM image of CuO (c) and (d).



Fig. S9. HAADF-STEM and elemental maping image of Pd/CuO.



Fig. S10. SEM image of Pd/CuO (a) and (b). SEM image of CuO (c) and (d).



**Fig. S11.** XPS spectra of Pd/CuO. (a) survey XPS spectrum. (b) High-resolution XPS spectrum of Cu 2p. (C) High-resolution XPS spectra of O 1s. (d) High-resolution XPS spectra of Pd 3d.

XPS analysis was used to investigate the surface composition and valence states of the Pd/CuO. The XPS spectra of the Pd/CuO are presented in Fig. S10. As shown in Fig. S10 (b), the peaks at 933.5 and 953.5 eV were assigned to Cu 2p<sub>3/2</sub> and Cu 2p1/2 of Cu<sup>2+</sup> in CuO, respectively [14,15]. Also, there were clear satellite peaks located at higher binding energies to Cu 2p. These peaks are typically indicative of the existence of Cu<sup>2+</sup> in CuO [16]. The O 1s region showed three peaks at 529.7, 531.4, and 533.3 eV, which are attributed to the O in CuO, O-H bond of the hydroxyl group, and adsorbed water molecules, respectively [17,18]. These results were same with the XPS analysis of CuO (Fig. S11). Fig. S10 (d) shows high-resolution XPS spectra of Pd 3d. The two peaks

located at 337.4 and 342.5 eV were assigned to Pd 3d<sub>5/2</sub> and Pd 3d<sub>3/2</sub>[19]. These Pd 3d binding energy of Pd/CuO were higher than the Pd 3d binding energy of PdO and metallic Pd [20]. Previously, positive chemical shift of Pd 3d have been observed in Pd<sup>2+</sup> located in solid solution [21,22]. Similar with that, the high Pd 3d binding energy of Pd/CuO can be come from the change of environmental of Pd<sup>2+</sup> in CuO.



**Fig. S12.** XPS spectra of CuO. (a) survey XPS spectrum. (b) High-resolution XPS spectrum of Cu 2p. (C) High-resolution XPS spectra of O 1s.

#### Characterization table

9H-fluoren-2-amine (2a)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3) to give **2a** as a yellowish solid (0.0855 g, 94%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.48 (d, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.21 (td, *J* = 7.4, 1.0 Hz, 1H), 6.88 (s, 1H), 6.72 (dd, *J* = 7.9, 2.1 Hz, 1H), 3.82 (s, 2H), 3.71 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.8, 145.3, 142.4, 142.2, 133.1, 126.7, 125.2, 124.9, 120.8, 118.7, 114.1, 111.9, 36.9. The NMR data were consistent with the reported data.<sup>23</sup>



Naphthalen-1-amine (2b)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:6) to give **2b** as a brownish solid (0.0666 g, 93%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.85 (m, 2H), 7.45–7.49 (m, 2H), 7.28–7.34 (m, 2H), 6.79 (dd, *J* = 6.9, 1.6 Hz, 1H), 4.15 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.1, 134.5, 128.6, 126.4, 125.9, 125.0, 123.8, 120.6, 119.1, 109.8. The NMR data were consistent with the reported data.<sup>24</sup>

[1,1'-biphenyl]-2-amine (2c)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:6) to give **2c** as a brownish solid (0.0616 g, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42–7.47 (m, 4H), 7.32–7.38 (m, 1H), 7.16 (qd, *J* = 7.6, 1.6 Hz, 2H), 6.85 (td, *J* = 7.4, 1.1 Hz, 1H), 6.80 (dd, *J* = 7.9, 1.0 Hz, 1H), 3.87 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.0, 139.5, 130.6, 129.2, 128.9, 128.6, 128.1, 127.3, 119.2, 116.0. The NMR data were consistent with the reported data.<sup>23</sup>



3-ethylaniline hydrochloride (2d·HCl)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3) and HCl bubbling to give **2d·HCl** as a gray solid (0.0491 g, 62%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.41 (s, 3H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.22 (q, *J* = 7.9 Hz, 3H), 2.63 (q, *J* = 7.5 Hz, 2H), 1.17 (t, *J* = 7.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  146.1, 132.6, 130.1, 127.9, 122.8, 121.0, 28.4, 15.9. The NMR data were consistent with the **2d·HCl** portion of the reported data.<sup>25</sup>

(*E*)-4-styrylaniline (2e)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:6) to give **2e** as a yellowish solid (0.0842 g, 86%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.49 (d, *J* = 8.5 Hz, 2H), 7.26–7.34 (m, 4H), 7.15–7.20 (m, 1H), 6.97 (dd, *J* = 68.3, 16.4 Hz, 2H), 6.54–6.57 (m, 2H), 5.30 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  149.3, 138.5, 129.6, 129.1, 128.2, 127.0, 126.3, 125.2, 123.3, 114.4. The NMR data were consistent with reported data.<sup>26</sup>



4-Fluoroaniline hydrochloride (2f·HCl)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3). The column purified product was dissolved in organic solvent and bubbled with HCl (g) to give **2f·HCl** as a white solid (0.0496 g, 68%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.37 (s, 2H), 7.41–7.46 (m, 2H), 7.30–7.36 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  161.5 (d, *J* = 244.4), 129.2 (d, *J* = 2.9 Hz), 125.7 (d, *J* = 8.6 Hz), 117.1 (d, *J* = 23 Hz). The NMR data were consistent with reported data.<sup>27</sup>



4-Chloroaniline (2g)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:5) to give **2g** as a yellow solid (0.0450 g, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.10 (td, *J* = 6.0, 3.5 Hz, 2H), 6.61 (td, *J* = 6.0, 3.5 Hz, 2H), 3.65 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.1, 129.3, 123.3, 116.4. The NMR data were consistent with reported data.<sup>23</sup>

4-Bromoaniline (2h)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:4) to give **2h** as a white solid (0.0525 g, 61%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 (dt, *J* = 9.4, 2.6 Hz, 2H), 6.56 (dt, *J* = 9.4, 2.6 Hz, 2H), 3.66 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.5, 132.1, 116.8, 110.3. The NMR data were consistent with reported data.<sup>28</sup>

2,4-Dichloroaniline (2i)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:4) to give **2i** as a white solid (0.0650 g, 80%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 (d, *J* = 2.3 Hz, 1H), 7.02 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.67 (d, *J* = 8.7 Hz, 1H), 4.02 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.7, 129.0, 127.8, 122.9, 119.7, 116.4. The NMR data were consistent with reported data.<sup>29</sup>

4-Aminobenzonitrile (2j)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3) to give **2j** as a brownish solid (0.0615 g, 53%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.38 (dt, *J* = 9.0, 2.1 Hz, 2H), 6.60 (dt, *J* = 9.0, 2.3 Hz, 2H), 6.13 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  153.0, 133.4, 120.7, 113.4, 95.5. The NMR data were consistent with reported data.<sup>26</sup>



4-(Benzyloxy)aniline (2k)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3) to give **2k** as a brownish solid (0.0315 g, 98%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31–7.45 (m, 5H), 6.84 (td, *J* = 6.2, 3.8 Hz, 2H), 6.65 (td, *J* = 6.2, 3.8 Hz, 2H), 5.01 (s, 2H), 3.23 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 140.3, 137.6, 128.6, 128.0, 127.6, 116.5, 116.2, 70.9. The NMR data were consistent with reported data.<sup>28</sup>

3-Aminobenzamide hydrochloride (21·HCl)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:3). The column purified product was dissolved in organic solvent and bubbled with HCl (g) to give **21**·HCl as a white solid (0.0758 g, 88%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.20 (s, 2H), 8.14 (s, 1H), 7.87 (d, *J* = 7.3 Hz, 1H), 7.82 (s, 1H), 7.50–7.56 (m, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  167.3, 136.3, 133.6, 130.2, 126.5, 126.0, 122.8.

3-Aminobenzamide (21)

After the base work-up of **2l·HCl**, **2l** was obtained as a white solid and analyzed by NMR. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 7.73 (s, 1H), 7.14 (s, 1H), 7.03–7.07 (m, 2H), 6.97 (dt, *J* = 7.5, 1.3 Hz, 1H), 6.67 (dq, *J* = 7.9, 1.1 Hz, 1H), 5.19 (s, 2H). <sup>13</sup>C NMR (100 MHz,

DMSO-d<sub>6</sub>)  $\delta$  169.2, 149.1, 135.7, 129.2, 117.0, 115.2, 113.6. The NMR data were consistent with reported data.<sup>30</sup>

5'-Phenyl-[1,1':3',1''-terphenyl]-2'-amine hydrochloride (**2m·HCl**)

After the general procedures, the crude was purified by column chromatography (eluent: ethyl acetate/Hex = 1:20). The column purified product was dissolved in organic solvent and bubbled with HCl (g) to give **2m·HCl** as a white solid (0.1425 g, 80%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.68 (dd, *J* = 15.7, 7.2 Hz, 6H), 7.53 (t, *J* = 7.5 Hz, 4H), 7.40–7.46 (m, 6H), 7.31 (t, *J* = 7.5 Hz, 1H), 6.61 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  139.3, 137.9, 137.1, 135.1, 130.2, 130.0, 129.3, 129.2, 128.9, 128.4, 127.8, 127.0.



5'-Phenyl-[1,1':3',1"-terphenyl]-2'-amine (2m)

After the base work-up of **2m·HCl**, **2m** was obtained and analyzed by NMR. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.57–7.62 (m, 6H), 7.50 (t, *J* = 7.5 Hz, 4H), 7.38–7.43 (m, 6H), 7.26–7.31 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 140.9, 140.1, 139.7, 131.4, 129.5, 129.1, 128.8, 128.6, 128.5, 127.6, 126.6, 126.5. The NMR data were consistent with reported data.<sup>31</sup>

2'-methyl-[1,1'-biphenyl]-4-amine (2n)

After the one-pot reaction, the crude was purified by column chromatography (eluent: hexane to ethyl acetate/Hex = 1:20) to give **2n** as a yellow oil (0.0750 g, 82%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.22–7.27 (m, 4H), 7.14 (dt, *J* = 8.9, 2.3 Hz, 2H), 6.74 (dt, *J* = 8.8, 2.3 Hz, 2H), 3.70 (s, 2H), 2.30 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 142.0, 135.6, 132.3, 130.4, 130.2, 130.0, 126.8, 125.8, 114.8, 20.7. The NMR data were consistent with reported data.<sup>32</sup>

4'-Methoxy-[1,1'-biphenyl]-4-amine (20)

After the one-pot reaction, the crude was purified by column chromatography (eluent:

ethyl acetate/Hex = 1:3) to give **20** as a yellow solid (0.0689 g, 69%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.75 (d, *J* = 8.7 Hz, 2H), 3.84 (s, 3H), 3.70 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.5, 145.4, 134.0, 131.5, 127.7, 127.5, 115.5, 114.2, 55.4. The NMR data were consistent with reported data.<sup>33</sup>

| Catalyst           | Amount of catalyst                         | Reaction condition                                               | time        | yield (%)                        | Reference |
|--------------------|--------------------------------------------|------------------------------------------------------------------|-------------|----------------------------------|-----------|
| Pd/CuO             | 0.005 mol% Pd<br>5 mol% Cu                 | NaBH4 (3 equiv)<br>EtOH/H2O (1:1), 40 °C                         | 0.5–40 h    | 13 examples<br>(53–98)           | This work |
| Fe/ppm Pd + Ni NPs | 0.008 mol% Pd<br>0.16 mol% Ni<br>2 mol% Fe | NaBH4 (3 equiv)<br>2 wt% TPGS-750-M/H2O,<br>10% THF, rt          | 15 min–16 h | 27 examples<br>(74–99)           | 34        |
| Pd cNPs/C@Fe3O4    | 0.73 mol% Pd                               | Hydrazine hydrate (3 equiv)<br>EtOH, 70 °C                       | 1 h         | 12 examples<br>96–99             | 35        |
| Pd/g-C3N4          | 1 mol% Pd                                  | Formic acid (3 equiv)<br>H2O, 25 °C                              | 5–120 min   | 12 examples<br>92–99             | 19        |
| Fe(OTf)3           | 10 mol% Fe                                 | NaBH₄ (20 equiv)<br>EtOH, rt                                     | 4 h         | 25 examples<br>33–95 (24–<br>80) | 36        |
| MRN-Pd             | 1 mol% Pd                                  | NaBH4 (1.2 equiv)<br>H2O, rt                                     | 45 min      | 11 examples<br>83–99             | 37        |
| AgNCs              | 5 mol% Ag                                  | NaBH₄ (10 equiv)<br>H2O, rt                                      | 0.5–6 h     | 12 examples<br>(71–97)           | 38        |
| Pd@CTF             | 1 mol% Pd                                  | Formic acid (5 equiv)<br>NH3CO2H (5 equiv)<br>EtOH/H2O (4:1), rt | 0.33–2.5 h  | 14 examples<br>91–99             | 39        |
| Cu/SiO2@NiFe2O4    | 2.6 mol% Cu                                | NaBH₄ (10 equiv)<br>MeOH/H₂O (1:1)                               | 12–210 min  | 11 examples<br>59–100            | 40        |

| Table S2. | Comparison | for the red | uction of n | itroarenes.ª |
|-----------|------------|-------------|-------------|--------------|
|           |            |             |             |              |

<sup>a</sup>The yield in parentheses is the isolated yield.

# Calculation of simple E factor (sEF) using Table 2. Entry 1.41,42

Recently, a simpler E factor (sEF) was proposed by Roschangar and co-workers.<sup>41</sup> The sEF consist of raw materials, reagents, and product. The sEF value of table 2. entry 1

was calculated, and calculated sEF was 0.92. This value will help in the process development of this reaction.



sEF = 0.92

#### References

[1] Tai, C. Y.; Tai, C.-T.; Chang, M.-H.; Liu, H.-S. Ind. Eng. Chem. Res. 2007, 46, 5536–5541.

[2] Yue, W.; Zhou, W. J. Mater. Chem. 2007, 17, 4947-4952.

[3] Yang, G.; Yan, W.; Wang, J.; Yang, H. CrystEngComm 2014, 16, 6907-6913.

[4] Fageria, P.; Gangopadhyay, S.; Pande, S. RSC adv. 2014, 4, 24962–24971.

[5] Gangwar, J.; Gupta, B. K.; Tripathi, S. K.; Srivastava, A. K. *Nanoscale* **2015**, *7*, 13313–13344.

[6] Lu, P.; Hu, X.; Li, Y.; Zhang, M.; Liu, X.; He, Y.; Dong, F.; Fu, M.; Zhang, Z. *RSC Adv.* **2018**, *8*, 6315–6325.

[7] Gao, Y.; Chen, K.; Tan, X.; Wang, X.; Alsaedi, A.; Hayay, T.; Chen, C. *ACS Sustainable Chem. Eng.* **2017**, *5*, 2163–2171.

[8] Hossain, S. T.; Mukherjee, S. K. Langmuir 2012, 28, 16614–16622.

[9] Huang, B.; Zhang, Z.; Zhao, C.; Cairang, L.; Bai, J.; Zhang, Y.; Mu, X.; Du, J.; Wang, H.; Pan, X.; Zhou, J.; Xie, E. *Sens. Actuators B* **2018**, *255*, 2248–2257.

[10] Selvan, R. K.; Perelshtein, I.; Perkas, N.; Gedanken, A. J. Phys. Chem. C. **2008**, 112, 1825–1830.

[11] Molinder, R.; Comyn, T. P.; Hondow, N.; Parker, J. E.; Dupont, V. *Energy Environ. Sci.* **2012**, *5*, 8958–8969.

[12] Jadhav, A. P.; Pawar, A. U.; Pal, U.; Kang, Y. S. J. Mater. Chem. C 2014, 2, 496–500.

[13] Xu, L.; Zhang, J.; Li, Z.; Ma, Q.; Wang, Y.; Cui, F.; Gui, T. New J. Chem. **2019**, 43, 520–526.

[14] Dubale, A. A.; Pan, C.-J.; Tamirat, A. G.; Chen, H.-M.; Su, W.-N.; Chen, C.-H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J.-F.; Yang, Y.-W.; Hwang, B.-J. *J. Mater. Chem. A* **2015**, *3*, 12482–12499.

[15] He, D.; Wang, G.; Liu, G.; Suo, H.; Zhao, C. Dalton Trans. 2017, 46, 3318–3324.

[16] Wang, G.; Sui, Y.; Zhang, M.; Xu, M.; Zeng, Q.; Liu, C.; Liu, X.; Du, F.; Zou, B. J. *Mater. Chem. A* **2017**, *5*, 18577–18584.

[17] Xu, X.; Gao, Z.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Yang, X.; Ma, J. ACS Appl. Mater. Interfaces **2016**, 8, 91–101.

[18] Fu, W.; Cao, Y.; Feng, Q.; Smith, W. R.; Dong, P.; Ye, M.; Shen, J. *Nanoscale* **2019**, *11*, 1379–1385.

[19] Xu, X.; Luo, J.; Li, L.; Zhang, D.; Wang, Y.; Li, G. Green Chem. 2018, 20, 2038–2046.

[20] Zhao, M.; Li, X.; Zhang, L.; Zhang, C.; Gong, M.; Chen, Y. Catal. Today **2011**, 175, 430–434.

[21] Gulyaev, R. V.; Stadnichenko, A. I.; Slavinskaya, E. M.; Ivanova, A. S.; Koscheev, S. V.; Boronin, A. I. *Appl. Catal. A* **2012**, *439–440*, 41–50.

[22] Christensen, G. L.; Langell, M. A. J. Phys. Chem. C 2013, 117, 7039-7049.

[23] García, N.; García-García, P.; Fernández-Rodríguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. *Adv. Synth. Catal.* 2012, *354*, 321–327.

[24] Yang, S.-T.; Shen, P.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. *Organometallics* 2017, *36*, 3110–3116.

[25] de Noronha, R. G.; Romão, C. C.; Fernandes, A. C. J. Org. Chem. 2009, 74, 6960–6964.

[26] Gholinejad, M.; Oftadeh, E.; Shojafar, M.; Sansano, J.; Lipshutz, B. H. *ChemSusChem* 2019, *12*, 4240–4248.

[27] Lenstra, D. C.; Wolf, J. J.; Mecinović, J. J. Org. Chem. 2019, 84, 6536–6545.

[28] Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941–3943.

[29] Kale, A.; Medishetti, N.; Kanugala, S.; C, G. K.; Atmakur, K. Org. Biomol. Chem. 2019, *17*, 3186–3194.

[30] Rahaim Jr., R. J.; Maleczka Jr, R. E. Org. Lett. 2005, 7, 5087–5090.

[31] Bolliger, J. L.; Frech, C. M. Adv. Synth. Catal. 2010, 352, 1075–1080.

[32] Chahdoura, F.; Pradel, C.; Gómez, M. Adv. Synth. Catal. 2013, 355, 3648–3660.

[33] Razler, T. M.; Hsiao, Y.; Qian, F.; Fu, R.; Khan, R. K.; Doubleday, W. J. Org. Chem.

2009, 74, 1381–1384.

[34] Pang, H.; Gallou, F.; Sohn, H.; Camacho-Bunquin, J.; Delferro, M.; Lipshutz, B. H. *Green Chem.* **2018**, *20*, 130–135.

[35] Kumar, B. S.; Amali, A. J.; Pitchumani, K. J. Mol. Catal. A: Chem. 2016, 423, 511–519.

[36] MacNair, A. J.; Tran, M.-M.; Nelson, J. E.; Sloan, G. U.; Ironmonger, A.; Thomas, S. P. *Org. Biomol. Chem.* **2014**, *12*, 5082–5088.

[37] Shokouhimehr, M.; Hong, K.; Lee, T. H.; Moon, C. W.; Hong, S. P.; Zhang, K.; Suh, J. M.; Choi, K. S.; Varma, R. S.; Jang, H. W. *Green Chem.* **2018**, *20*, 3809–3817.

[38] Giri, S.; Das, R.; van der Westhuyzen, C.; Maity, A. *Appl. Catal., B.* **2017**, 209, 669–678.

[39] Li, J.; Zhang, L.; Liu, X; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. New J. Chem. **2018**, 42, 9684–9689.

[40] Parmekar, M. V.; Salker, A. V. RSC Adv. 2016, 6, 108458–108467.

[41] Roschangar, R.; Sheldon, R. A.; Senanayake, C. H. Green Chem. 2015, 17, 752–762.

[42] Degtyareva, E. S.; Borkovskaya, E. V.; Ananikov, V. P. *ACS Sustainable Chem. Eng.* **2019**, *7*, 9680–9689.

# Spectral copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR



 $^{1}$ H NMR of **2a** 



# <sup>13</sup>C NMR of **2a**



 $^{1}$ H NMR of **2b** 



### <sup>13</sup>C NMR of **2b**







<sup>13</sup>C NMR of **2c** 







# <sup>13</sup>C NMR of **2d·HCl**



 $^{1}$ H NMR of **2e** 



# <sup>13</sup>C NMR of **2e**



# <sup>1</sup>H NMR of **2f·HCl**



# <sup>13</sup>C NMR of **2f·HCl**



<sup>1</sup>H NMR of 2g



<sup>13</sup>C NMR of **2g** 







<sup>13</sup>C NMR of **2h** 







# <sup>13</sup>C NMR of **2i**



 $^{1}$ H NMR of **2**j



<sup>13</sup>C NMR of **2**j



![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

# $^{13}$ C NMR of **2k**

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

# <sup>13</sup>C NMR of **2l·HCl**

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

# <sup>13</sup>C NMR of **21**

![](_page_44_Figure_0.jpeg)

<sup>1</sup>H NMR of  $2m \cdot HCl$ 

![](_page_45_Figure_0.jpeg)

# <sup>13</sup>C NMR of 2m·HCl

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_0.jpeg)

# <sup>13</sup>C NMR of **2m**

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_0.jpeg)

# <sup>13</sup>C NMR of **2n**

![](_page_50_Figure_0.jpeg)

 $^{1}$ H NMR of **20** 

![](_page_51_Figure_0.jpeg)

<sup>13</sup>C NMR of **20**