

Supplementary Materials

Enhanced Hydrogen Production from Ethanol Photoreforming by Site-Specific Deposition of Au on Cu₂O/TiO₂ p-n Junction

Lan Luo ^{1,+}, Tingting Zhang ^{1,+}, Xin Zhang ¹, Rongping Yun ¹, Yanjun Lin ¹, Bing Zhang ² and Xu Xiang ^{1,*}

- ¹ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Donglu, Beijing 100029, China
- ² School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
- ⁺ These authors contribute equally.
- * Correspondence: xiangxu@mail.buct.edu.cn

Figure S1. XRD patterns of (A) TiO₂, (B) Cu₂O/TiO₂, (C) Au@TiO₂, (D) Au@Cu₂O/TiO₂, (E) Au@TiO₂/Cu₂O@Au, (F) Au@TiO₂/Cu₂O.

Figure S2. GC-MS spectra of the products formed on Au@TiO₂/Cu₂O.

Figure S3. HRTEM photographs and Au particle size distribution of Au@TiO₂/Cu₂O after ethanol photoreforming.

Figure S4. Ti 2p, O 1s and Au 4f XPS spectra of Au@TiO2/Cu2O after ethanol photoreforming.

Figure S5. Cu 2p XPS and Cu LMM Auger spectra of Au@TiO2/Cu2O after ethanol photoreforming.

Figure S6. Bandgap estimation of TiO₂ nanorods.

Table S1. Ti 2p XPS analyses of Au@TiO2/Cu2O before and after ethanol photoreforming.

	B.E. in 2p _{3/2} (eV)		B.E. in 2p _{1/2} (eV)		Ti ³⁺ /Ti ⁴⁺	
	Ti ³⁺	Ti ⁴⁺	Ti ³⁺	Ti ⁴⁺	ratio ^a	
Before	457.9	458.3	463.3	464.2	0.96/1	
After	457.9	458.3	463.3	464.2	0.97/1	

^a The value refers to the ratio of the respective integral peak area. B.E. refers to binding energy.

	B.E. (eV)			Ov/OL
	OL	Ov	Oc	ratio ^a
Before	530.0	532.0	533.5	0.71
After	530.0	532.0	533.5	0.70

Table S2. O 1s XPS analyses of Au@TiO2/Cu2O before and after ethanol photoreforming.

^a The value refers to the ratio of the respective integral peak area. B.E. refers to binding energy.

Table S3. Au 4f XPS analyses of Au@TiO2/Cu2C	before and after ethanol photoreforming.
--	--

	B.E. (eV)	\triangle B.E. (eV) ^a
Before	83.4	-
After	83.5	+0.1

^a The value refers to the shift compared to that of Au@TiO₂/Cu₂O before the reaction. B.E. refers to binding energy.

photocatalysts	light source	$\begin{array}{c} H_2 \ (\mu mol \\ g_{cat}^{-1} \ h^{-1}) \end{array}$	$\begin{array}{c} CH_{3}CHO \ (\mu mol \\ g_{cat}^{-1} \ h^{-1}) \end{array}$	ref.
1.0% Au/TiO ₂	simulated solar light (100 mW cm^{-2})	6151	6522	1
MWCNT/Pd@TiO2	Xe lamp (150 W)	1500		2
dye/Pt/TiO ₂	visible light ($\lambda > 420$ nm)	4359		3
Si/Au/TiO ₂	Xe lamp (300 W)	5143		4
Pt _{0.5} -Au _{0.5} /TiO ₂	Xe lamp (150 W)	1800		5
Au@TiO ₂ /Cu ₂ O	simulated solar light (100 mW cm^{-2})	8548	8806	this work

Table S4. Comparisons of Photocatalysts for Ethanol Photoreforming.

References

- A. V. Puga, A. Forneli, H. García, A. Corma, Production of H₂ by Ethanol photoreforming on Au/TiO₂. Adv. Funct. Mater. 24 (2014) 241–248.
- A. Beltram, M. Melchionna, T. Montini, L. Nasi, P. Fornasiero, M. Prato, Making H₂ from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNT/Pd@TiO₂ hybrid catalysts. Green Chem. 19 (2017) 2379–2389.
- A. Dess
 M. Monai, M. Bessi, T. Montini, M. Calamante, A. Mordini, G. Reginato, C. Trono, P. Fornasiero, L. Zani, Towards sustainable H₂ production: rational design of hydrophobic triphenylamine-based dyes for sensitized ethanol photoreforming. 11 (2018) 793–805.
- D. Agarwal, C. O. Aspetti, M. Cargnello, M. L. Ren, J. K. Yoo, C. B. Murray, R. Agarwal, Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett. 17 (2017) 1839–1845.
- 5. A. Gallo, T. Montini, M. Marelli, A. Minguzzi, V. Gombac, R. Psaro, P. Fornasiero, V. Dal Santo, H₂ production by renewables photoreforming on pt-au/tio2 catalysts activated by reduction. ChemSusChem. 5 (2012) 1800–1811.