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Abstract: Mesoporous ruthenium catalysts (0.74–3.06 wt%) based on ordered Mobil Composition of
Matter No. 41 (MCM-41) silica arrays on aluminosilicate halloysite nanotubes (HNTs), as well as
HNT-based counterparts, were synthesized and tested in benzene hydrogenation. The structure of
HNT core-shell silica composite-supported Ru catalysts were investigated by transmission electron
microscopy (TEM), X-ray fluorescence (XRF) and temperature-programmed reduction (TPR-H2).
The textural characteristics were specified by low-temperature nitrogen adsorption/desorption.
The catalytic evaluation of Ru nanoparticles supported on both the pristine HNTs and MCM-41/HNT
composite in benzene hydrogenation was carried out in a Parr multiple reactor system with batch
stirred reactors (autoclaves) at 80 ◦C, a hydrogen pressure of 3.0 MPa and a hydrogen/benzene
molar ratio of 3.3. Due to its hierarchical structure and high specific surface area, the MCM-41/HNT
composite provided the uniform distribution and stabilization of Ru nanoparticles (NPs) resulted in
the higher specific activity and stability as compared with the HNT-based counterpart. The highest
specific activity (5594 h−1) along with deep benzene hydrogenation to cyclohexane was achieved for
the Ru/MCM-41/HNT catalyst with a low metal content.

Keywords: ruthenium catalysts; benzene hydrogenation; MCM-41; halloysite nanotubes; mesoporous
aluminosilicates; MCM-41/HNT composite

1. Introduction

In the modern global quest for cleaner fuel production, benzene has been identified as a gasoline
component that should be reduced. According to the modern clean fuel standard regulations in the US,
specifically Mobil Source Air Toxics II (MSAT II), refiners are required to reduce benzene in gasoline to
0.62 vol% on an average annual basis. In Europe and in many other regions, a regulation of 1.0 vol%
maximum of benzene in gasoline has also been adopted to limit benzene [1–3]. The selective removal
of benzene and other aromatics from motor fuels by hydrogenation ensures a control of the particulate
emissions and cetane number boost of diesel [2].

There are two main strategies for benzene hydrogenation: partial hydrogenation aimed to
cyclohexene production and deep hydrogenation to cyclohexane [4–7]. The former often requires
bimetallic systems as catalysts, such as Ru–Zn, Ru–Co, Ru–Cu and Ru–lanthanides, promoted by
various additives or non-promoted [4,7–9]. Another approach is to design hydrophobic/hydrophilic
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supports and use water as a solvent to prevent cyclohexene excess by hydrogenation (water solubility
of cyclohexene and benzene is higher than that of cyclohexane alone) [4,10].

In refineries, benzene hydrogenation to cyclohexane performs in the presence of Group VIII metal
catalysts such as Ni, Pt, Pd and Ru at temperatures in the range 150 ◦C–220 ◦C under H2 pressure up to
10 MPa [11–16]. For deep benzene hydrogenation at lower temperatures, Ni- or Pt-containing catalysts
are usually employed as they are the most active [11,17–19]. These catalysts, however, have a low
tolerance to various poisons in the feed that should be preliminary refined [18–20]. The conventional
sulfide NiMoSx and NiWSx catalysts have a good activity only at severe conditions (T > 300 ◦C and
pressures 5 MPa and higher), therefore, sophisticated equipment is needed, causing higher investment
and process costs [19,21,22].

The needs for effective catalysts ensuring benzene removal under mild conditions have initiated
a number of studies aimed at designing new catalytic systems comprising noble metals on supports
such as alumina, zeolites and ordered mesoporous silica, e.g., SBA-15, Mobil Composition of Matter
No. 41 (MCM-41) [11,17–19,23–25]. There are reports on the application of Ru/C, Ru/graphene and
Ru/carbon nanotubes in deep benzene hydrogenation [9,26]. Some research used bimetallic systems
with noble metals [23,27,28].

The most promising catalytic systems for benzene hydrogenation to cyclohexane are those
comprising ruthenium, thanks to its high activity and low cost compared to other noble metals [25,29–31].
The prospects stated have been confirmed by the application of Ru/zeolite catalysts for benzene
hydrogenation [25,32]. In the operation of zeolite-based catalysts, however, diffusion limitations arise
due to very narrow channels inside this support. Thanks to the intrinsic well ordered structure, a high
specific surface area (about 1000 m2.g−1) and adjusting pore sizes (2–4 nm), mesoporous silicates are
considered as the promising supports for highly dispersed catalysts [33–36]. Among them, MCM-41
(Mobil Composition of Matter No. 41) is an advanced mesoporous material, with a hierarchical
hexagonal 2D structure belonging to the silicate family, and is the most attractive [37–39]. The mean
size of MCM-41-supported Ru particles is about 1.8 nm with a metal dispersion of 62% [40]. However,
MCM-41 silica possesses a low thermal stability (700◦C) and mechanical strength (about 220 MPa) that
restricts its industrial application [34,41].

As the carriers for hydrogenation catalysts, natural clay nanotubes such as halloysite are of
particular interest [16,42–45]. Halloysite is a natural clay aluminosilicate nanotube from the kaolinite
group named after the Belgian geologist Omalius d’Halloy who was the first to describe the mineral.
Halloysite nanotubes (HNTs) form by the rolling of the kaolin sheets into tubes (length of 0.5–2 µm,
inner diameter 10–30 nm, depending on deposit) with negative an outer surface (tetrahedral silanol
groups) and an octahedral alumina-composed positive charged inner surface [42,46]. Halloysite has
the appropriate specific surface area (50–100 m2.g−1), high ion-exchange capacity and mesoporous
structure that enables the synthesis of highly active ruthenium catalysts and new materials applied for
heterogeneous catalytic systems [15,47,48]. Thus, a new approach was developed, where HNTs act as
a template for the self assembling of the mesoporous silica MCM-41 type on the outer surface of HNTs.
As a result, high-porous meso silica arrays on HNTs with enhanced thermal and mechanical stabilities
were formed [49].

The present work was devoted to the catalytic evaluation of ruthenium catalysts based on
ordered MCM-41 type silica arrays on aluminosilicate HNTs in comparison with a HNT-based
counterpart, depending on the Ru content as well as the localization of active metal particles in
benzene hydrogenation.

2. Results and Discussion

The structure of the well ordered mesoporous MCM-41 type silica assembled on the outer
surface of HNTs, retained after Ru loading, was clearly indicated by transmission electron microscopy
(TEM) (Figure 1). The core-shell hexagonal 2D structure produced by the cetyltrimethylammonium
bromide (CTAB)-templated silica on the nanotubes as well as its Ru deposition are shown in Figure 1.
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The mesoporous silica phase with a one-direction channel system bonded to the outer surface of
aluminosilicate HNTs was kept during the metal loading under microwave irradiation [49].
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Figure 1. Transmission electron microscopy (TEM) micrographs (a–c,g–i) and the Ru-nanoparticle size
distribution (d–f,j–l) in catalysts Ru/ halloysite nanotubes (HNT) and Ru/Mobil Composition of Matter
No. 41 (MCM-41)/HNT.

The retention of the MCM-41/HNT structure after Ru impregnation was also proved by
low-temperature nitrogen adsorption/desorption technique. As shown in Figure 2, Ru/MCM-41/HNT
catalysts were characterized by isotherms of IV type with a capillary condensation step in the range of
relative partial pressures P/P0 of 0.4–0.6, corresponding to the presence of a mesoporous framework
(Figure 2a) [49,50]. Meanwhile, the N2 isotherms for the Ru/HNT catalysts are of III type with
a hysteresis loop at a P/P0 ratio of 0.5–1.0, indicating a capillary condensation in the meso/macropores
of halloysite lumen (Figure 2b) [15,16,29,45]. The pore size distribution for both the mesoporous
MCM-41/HNT composite-supported and the pristine HNT-based Ru catalysts had a narrow peak
centered at 30–32 Å (Figure 2, Table 1).
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Table 1. Ru content (from X-ray fluorescence (XRF) and temperature-programmed reduction (TPR-H2))
and the textural characteristics of MCM-41/HNT and HNT-supported catalysts.

Sample

Textural Characteristics Ru, wt%
Ru Average

Particle Size, nm **
SBET,

m2·g−1
Dp,
Å

Vp, cm3

g−1
From
XRF

From
TPR-H2

From XRF
(Recycled) *

HNT 70 70 0.16 - - - -

Ru/HNT(1) 68 69 0.14 0.74 0.80 0.62/0.62/0.61 3.6 ± 0.1

Ru/HNT(2) 61 68 0.13 1.65 1.68 1.29/1.28/1.27 4.1 ± 0.1

Ru/HNT(3) 56 67 0.11 2.82 2.75 2.14/2.12/2.09 5.4 ± 0.1

MCM-41/HNT 520 28 0.43 - - - -

Ru/MCM-41/HNT(1) 433 30 0.34 0.74 0.82 0.68/0.68/0.67 3.4 ± 0.1

Ru/MCM-41/HNT(2) 411 31 0.33 1.59 1.50 1.49 3.7 ± 0.1
6.7 ± 0.1

Ru/MCM-41/HNT(3) 373 33 0.31 3.06 2.96 2.83 3.4 ± 0.1
7.2 ± 0.2

* Measured by XRF after 1 recycle for Ru/MCM-41/HNT (2 and 3) and after each of 3 recycles for other catalysts,
** According to TEM data.

The relative intensity of the shoulder in the range of 20–30 Å (Figure 2b,d) increased with the metal
loading, which indicated the partial agglomeration of the Ru nanoparticles inside the pores leading to
a decrease in pore volume. It also corresponded with the Ru average particle size calculated based
on the TEM data. Thus, for both the MCM-41/HNTs and the pristine HNT-templated catalysts, the
pores with more than 40 Å in diameter corresponding to HNTs were also observed [15,30]. The higher
metal content and the lower area was found under the part of the pore size distribution curve between
40–80 Å due to the Ru loading into the lumen that was also depicted in the TEM images.

When the metal content increased, the specific surface area of the catalysts decreased. Thanks to
the well ordered MCM-41 hexagonal porous arrangement, the SBET for the composite-supported Ru
catalysts was significantly higher compared to the pristine HNT-based counterparts. The impregnation
of supports with an aqueous solution of ruthenium salt under microwave irradiation provided highly
dispersed catalysts having metal nanoparticles being uniformly distributed over the carrier surfaces
and in the lumen [15,45] (Figure 1). The impregnation procedure applied gave rise to the forming
ruthenium nanoparticles with diameters of 3.6–5.4 nm in the inner surface of the halloysite. This fact
was unusual because the positive charge of the lumen normally prevents ruthenium cation intercalation
(Figure 1) [29,42,46]. Increasing the metal content leads to then formation and aggregation of partially
outside nanoparticles, in accordance with the data published [16,47,48,51]. The average particle size for
the Ru/HNT(1) catalyst was about 3.6±0.1 nm and the size distribution curves were approximated by
Weibull distribution. For two other counterparts with 1.7 and 2.8wt% of Ru the particles with 4.1 ± 0.1
and 5.4 ± 0.1 nm in diameter were formed, respectively (Table 1, Figure 1). Thus, the higher the metal
loading, the higher are the sizes of the particles observed. Moreover, the particle size distributions
curves were broadened. The well ordered MCM-41 hexagonal porous arrangement provided uniform
particle size distribution. The unimodal distribution with an asymmetric peak for catalysts with
a lower Ru content proved the selective nanoparticle intercalation into the mesoporous structure
(3.4 ± 0.1 nm), while for Ru/MCM-41/HNT(2) and Ru/MCM-41/HNT(3), bimodal distribution was
realized with particle diameters of 3.4 and 6.7–7.2 ± 0.1 nm, respectively, and Ru was intercalated
into lumen.

The TPR-H2 profiles for the Ru/HNT samples and the quantification data are presented in Figure 3
and Table 1, respectively. The ruthenium content was calculated based on the hydrogen consumption
caused by the complete reduction of RuO2.
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Figure 2. Nitrogen adsorption/desorption isotherms (a,c) and the pore size distribution (b,d) for the
MCM-41/HNT and the HNT-supported Ru catalysts.
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Figure 3. TPR-H2 profiles for the Ru catalysts templated on HNTs and the MCM-41/HNT composite (a)
Ru/HNT(1) and Ru/MCM-41/HNT(1), (b) Ru/HNT(2) and Ru/MCM-41/HNT(2), (c) Ru/HNT(3) and
Ru/MCM-41/HNT(3).

The TPR profiles of the Ru/HNT catalyst had one intense peak at 140 ◦C corresponding to the
reduction of RuO2, which was strongly bonded to the outer surface of the nanotubes [15,30]. An increase
in the metal content followed by a partial Ru intercalation into the HNTs lumen, broadens the peak and
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shifts it to a higher temperature. Thus, the shoulder at a temperature in the range of 155 ◦C–157 ◦C
was ascribed to the reduction of RuO2 particles formed inside the nanotubes [30]. For the Ru/HNT(2)
catalyst, the peak broadening at about 120 ◦C as well as a small shoulder in the TPR-H2 profile for
the Ru/HNT(3) may correspond to the reduction of either agglomerated or physically adsorbed RuO2

nanoparticles. For the MCM-41/HNT-based catalyst, with a low Ru content the peak in the TPR-H2

profile was the same as for the HNT-templated counterpart. Thus, it should be concluded that the
Ru nanoparticles were located preliminary outside the mesopores. When the Ru content increased,
peaks in the TPR-H2 profile held stable and the peaks were symmetrical but broadened. The shoulder
at 130 ◦C was ascribed to the Ru nanoparticles physically adsorbed outside of both the MCM-41 and
the HNTs pores [52]. Meanwhile, for the Ru/MCM-41/HNT(3) sample it may have been caused by
particle agglomeration. On the right side from the mean center of the curve, at 165 ◦C the reduction of
the nanoparticles incorporated into the porous MCM-41 structure occurs, which strongly bonded to
the support’s surface.

The catalytic properties of the samples obtained were compared for the hydrogenation of benzene.
They were evaluated as the specific activity (Asp) calculated from initial activity (mol (benzene)/mol
Ru per hour) and the final benzene conversion at the end of the test (180 min). The results for the
hydrogenation of benzene are summarized in Figure 4 and Table 2. Cyclohexane was the only product
of benzene hydrogenation over all the Ru/HNT and Ru/MCM-41/HNT catalysts.

As depicted in Figure 4, the final benzene conversion over the catalysts based on MCM-41/HNT
was higher in all the tests excluding the samples with 3%wt. Ru content. Meanwhile, the Ru/HNT(2) and
the Ru/HNT(3) samples had comparable specific activities with those obtained in the composite-based
counterparts (Table 2). It may be due to the partial Ru agglomeration on the external surface of HNTs
being more available for benzene molecules, while for MCM-41/HNT-supported catalysts the Ru
nanoparticles were incorporated into a well ordered silica porous system, which needed time for the
diffusion of reagents to the active sites (Figure 1). For the Ru/HNT(2) and the Ru/MCM-41/HNT(2)
composites the specific activities were 1856 and 2079 h−1, respectively, while the final benzene
conversion over the halloysite-based catalysts was lower compared to the composite-supported ones.
In the case of the Ru/MCM-41/HNT(3) and the Ru/HNT(3) catalysts, the ruthenium nanoparticles
were partially deposited in the lumen of the halloysite leading to their comparable activity (1535 vs.
1492 h−1). This difference in activities may have been caused by the lower dispersion of the active phase
over the surface of the MCM-41/HNT composite, having the high content of large Ru nanoparticles.
Ru/MCM-41/HNT(1), with an average particle size of 3.4 ± 0.1 nm being uniformly distributed over
the surface of mesoporous aluminosilicate support, was the most active with Asp = 5594 h−1 (Figure 4a,
Table 2). Thus, benzene conversion over this catalyst exceeded 90% in 45 min and attained 100% in
90 min. This tendency was maintained for the calculated specific normalized activity (Table 2).
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Figure 4. Benzene hydrogenation over the HNTs and the MCM-41/HNT-supported Ru catalysts
(temperature 80 ◦C, hydrogen pressure 3MPa, H2/substrate molar ratio of 3.3). (a) Ru/HNT(1) and
Ru/MCM-41/HNT(1), (b) Ru/HNT(2) and Ru/MCM-41/HNT(2), (c) Ru/HNT(3) and Ru/MCM-41/HNT(3).
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Table 2. Catalytic properties of the fresh and recycled Ru-catalysts based on the HNT and the
MCM-41/HNT composite.

Sample Asp, h−1 Aspn *,
mol·m−2·h−1

Final Benzene
Conversion, %

Fresh

Ru/HNT(1) 4610 0.34 92
Ru/HNT(2) 1856 0.16 96
Ru/HNT(3) 1492 0.17 100

Ru/MCM-41/HNT(1) 5594 0.39 100
Ru/MCM-41/HNT(2) 2079 0.22 100
Ru/MCM-41/HNT(3) 1535 0.17 100

After 3rd recycle

Ru/HNT(1) 1986 n.a. 71
Ru/HNT(2) 1680 n.a. 74
Ru/HNT(3) 580 n.a. 75

Ru/MCM-41/HNT(1) 4667 n.a. 95

After 1st recycle Ru/MCM-41/HNT(2) 2064 n.a. 98
Ru/MCM-41/HNT(3) 1384 n.a. 99

* calculated from Ru average particles size for the bimodal distribution.

As mentioned above, the most active catalysts were Ru/MCM-41/HNT(1) and Ru/HNT(1) with
Aspn 0.39 and 0.34 mol·h−1

·m−2, respectively.
It should be noted that for ruthenium catalysts based on MCM-41/HNT composite (samples

2 and 3), the decrease in the Asp and Aspn (Asp normalized per ruthenium specific surface area)
parameters was close (24% and 26%, respectively), which was caused by the similar average NPs
diameters, while the Ru content became the major factor influenced by catalytic activity (Tables 1
and 2). In the case of Ru/HNT(2), it was calculated that Asp as well as Aspn decreased more than twice
as compared to the Ru/HNT(1) counterpart. As for Ru/HNT(2) and Ru/HNT(3), the Aspn parameters
were close, while Asp was reduced by 20%, confirming the negative enlargement effect of nanoparticles
on a decrease in catalytic activity [53].

For the supported metal catalysts, stability, as well as selectivity and activity, are the key factors for
its further industrial application. From this point of view, we performed stability tests under the same
conditions as compared to the fresh catalysts. As depicted in Figure 5a–c, after recycling, the activity of
HNT-based catalysts decreased. It should be noted that the greatest reduction in activity occurred after
the first cycle for all the catalysts probably caused by the ruthenium leaching. After the first cycle,
the ruthenium content decreased by more than 10% from its initial value and remained practically
unchanged for the second and third cycles (Table 1). It was also proved by similar kinetic curves for all
the Ru/HNT catalysts, in addition to the final benzene conversions almost being the same (70%–80 %)
(Figure 5a–c, Table 2).
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Figure 5. Recycle tests for the HNT-supported Ru catalysts (temperature 80 ◦C, hydrogen pressure
3MPa, H2/substrate molar ratio of 3.3). (a) Ru/HNT(1), (b) Ru/HNT(2), (c) Ru/HNT(3).

Another finding was observed for the catalysts supported on the MCM-41/HNT composite.
For all the samples, partial leaching with lower rates compared to the HNT-supported systems was
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found (Table 1). This may be due to the hierarchical structure and high specific surface area of
MCM-41/composite-based catalysts, which resulted in the stabilization of ruthenium nanoparticles
within the porous system. As a result, the specific catalytic activity and the final benzene conversion for
Ru/MCM-41/HNT(1) after three cycles were comparable with those obtained on the fresh Ru/HNT(1)
(Table 2, Figures 5 and 6).
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Figure 6. Recycle tests for the MCM-41/HNT-composite supported Ru catalysts (temperature
80 ◦C, hydrogen pressure 3MPa, H2/substrate molar ratio of 3.3). (a) Ru/MCM-41/HNT(1),
(b) Ru/MCM-41/HNT(2), (c) Ru/MCM-41/HNT(3).

Finally, we compared the best Ru/HNT(1) and Ru/MCM-41/HNT(1) catalysts with the other
systems represented in the literature for benzene hydrogenation (Table 3). As can be seen from Table 3,
the specific catalytic activities of the investigated catalysts were much higher compared to the other
ruthenium-containing catalysts, based on their supports of a different nature, reported in the literature.

Table 3. Comparison of the activity for Ru/HNT(1) and Ru/MCM-41/HNT(1) with the different catalysts
reported in the literature.

Sample TOF,
h−1

Ru,
wt%

Benzene/Ru
Molar Ratio

Benzene
Conversion, %

Time,
Min

Sel. to
Cyclohexane

Temperature,
◦C;

P(H2),
MPa Reference

Ru/C 1600 4.9 2000 100 75 100 110 4 [54]
Ru/Al2O3 1416 4.0 1400 100 60 100 80 2 [55]
Ru/CNTs 649 4.0 500 53 60 98 70 1 [56]

Ru/montmorillonite 270 0.83 275 100 60 100 100 3,5 [57]
Ru/PAFs 1600 4.83 2000 79 60 100 80 3.3 [58]
Ru/MOFs 3478 5.0 8000 100 135 100 160 6 [59]
Ru/TEGO* 1302 4 500 75 30 100 70 1 [9]

Ru/hydrotalcite 1300 1 1300 100 60 100 120 6 [60]

Ru/HNT(1) 4610 0.74
2300

92 90
100 80 3 this workRu/MCM-41/HNT(1) 5594 0.74 100 75

* TEGO-thermally exfoliated graphite oxide.

It can be concluded that catalysts based on mesoporous MCM-41/HNT have both the higher
hydrogenation activity and stability in benzene hydrogenation to cyclohexane. Most probably, it is
caused by the extremely high specific surface area of the MCM-41/HNT support as compared with the
HNT (as high as 5–8 times, see Table 1). It should be also noted that for all samples based on HNT,
as well as on MCM-41/HNT, the higher is metal loading is, the more the catalytic activity decreases.
The higher hydrogenation activity of the catalysts with Ru-loading < 1 wt% is explained by the forming
of highly dispersed metal particles on the carrier surface. In the case of Ru-loading in the range of
1.3–3 wt%, the metal particles are larger within the partial agglomeration and the distribution thereof
is non-uniform (Figure 1). When the metal content is high, the Ru crust forming egg-shell may occur
resulting in the blockage of active sites, and the catalysts’ specific activity decreasing.
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3. Materials and Methods

3.1. Chemicals

The following chemicals were used for the synthesis of catalysts and as reference compounds for
the gas chromatography analysis: ruthenium (III) chloride (high purity grade, Aurat, Moscow, Russia),
halloysite nanoclay (≥98%, Sigma-Aldrich, St. Louis, MO, USA), hexadecyltrimethylammonium
bromide (≥98%, Sigma-Aldrich, St. Louis, MO, USA), tetraethyl orthosilicate (≥98%, Sigma-Aldrich,
St. Louis, MO, USA), benzene (≥99%, chemical grade, ECOS-1, Moscow, Russia), cyclohexane (for gas
chromatography, Supelco, St. Louis, MO, USA), boric acid (purum, ChemMed, Moscow, Russia).

Double distilled water, ethanol and isopropanol (Reachim, Purum, Moscow, Russia) were used as
solvents, and ammonia hydroxide (~25%, ECOS-1, Moscow, Russia) was used for adjusting the pH in
the MCM-41/halloysite synthesis.

3.2. The Synthesis of Catalysts

The ordered mesoporous composite MCM-41/HNT was prepared by the template synthesis,
using CTAB as a structure-directing agent for the MCM-41 phase formation [49,61]. The ruthenium
deposition was performed by the incipient wetness impregnation technique under microwave
irradiation as follows. MCM-41/HNT (1 g) powder was dispersed in a water solution (40 mL)
of RuCl3 in the required amount to obtain appropriate metal loading. The dispersion obtained was
placed in an ultrasonic bath for 30 min followed by microwave irradiation (800 W) for 3 min and
centrifugation (7000 rpm for 2 min). The precipitate was separated and treated with an aqueous
solution (30 mL) of NaBH4 (0.5 M) for the ruthenium reduction. The resulting materials were washed
with distilled water, separated via centrifugation and dried at 60 ◦C for 24 h. The finished solid
catalysts were grinded into powder and denoted as Ru/MCM-41/HNT(1), Ru/MCM-41/HNT(2) and
Ru/MCM-41/HNT(3) according to their ruthenium content. The ruthenium deposition over the
HNTs was performed by the intrinsic wetness procedure under microwave irradiation described
in [8,19,20,35].

3.3. Analyses and Instrumentations

The ruthenium content was determined using an ARL Perform’X X-ray fluorescence spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The analysis was performed in vacuum using the
UniQuant (Thermo Fisher Scientific, Waltham, MA, USA) program without a standard. Before the
analysis, the sample was pressured in tablets with boric acid.

Transmission electron microscopy (TEM) images were obtained on a Jem-2100 (JEOL, Tokyo, Japan)
microscope with an accelerating voltage of 100 kV. The sample analyzed was ultrasonically dispersed in
ethanol. The particle size distribution was obtained by a statistical evaluation of around 1000 particles
from different areas of a number of various TEM images using Image-Pro Plus 6.0 software.

The textural properties of the synthesized and catalyst materials, such as the specific surface area
(SBET), volume (Vp) and diameter (Dp) of the pores were determined by a low temperature nitrogen
adsorption/desorption technique using a Gemini VII 2390t (Micromeritics Instrument Corp., Norcross,
GA, USA) instrument at a temperature of 77 K. Before measurements, the samples were outgassed in
vacuum at 300 ◦C for 4 h. The specific surface was calculated according to the Brunauer–Emmett–Teller
(BET) equation in a relative pressure range from 0.04 to 0.25 of the adsorption data. The volume of the
pores and their diameter were estimated in terms of the Barrett–Joyner–Halenda model (data obtained
from the desorption branch of the isotherm).

Temperature-programmed reduction with hydrogen (TPR-H2) was performed with a AutoChem
2950HP instrument (Micromeritics Instrument Corp., Norcross, GA, USA). Before the analysis,
the catalyst (100 mg) was pretreated at 400 ◦C for 30 min under air flow to oxidize the ruthenium
nanoparticles. Then, a sample was purged with Ar flow at 400 ◦C for 1 h, cooled to 50 ◦C. The reduction
step was performed under the 30 mL/min flow of 8 vol.% H2–92 vol.% Ar mixture in the range
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of 50 ◦C–400 ◦C with a ramp of 10 K/min. The consumption of H2 and the ruthenium content
were calculated using the AutoChem HP V2.04 program (Micromeritics Instrument Corp., Norcross,
GA, USA).

3.4. Catalytic Experiments

The catalytic activity in benzene hydrogenation was evaluated in a Parr 5000 Multiple Reactor
System (Parr Instruments, Frankfurt am Main, Germany) with stainless steel batch reactors having
a Teflon inlet and a magnetic stirrer. The reactor was loaded with benzene (0.01 moles) without
any solvent and 60 mg of the catalyst, purged with hydrogen and then pressurized. The catalytic
tests were run with 1500 rpm stirring at a hydrogen pressure of 3.0 MPa and a temperature of 80 ◦C.
After reaction, the reactor was cooled down to room temperature, the pressure was dropped to
atmospheric and the catalyst was removed from the reaction products via centrifugation, washed
3 times with 10 mL of ethanol and dried at 60 ◦C for 24 h. The recycling tests were performed under the
same conditions as for fresh catalysts. The hydrogenation products were analyzed in isotherm (110 ◦C)
using a Chromos GC-1000 gas chromatograph (Chromos Engineering, Dzerjinsk, Russia) equipped
with a flame-ionization detector and a capillary column MEGA-WAX Spirit (MEGA, Legnano, Italy).

The specific catalyst’s activity in hydrogenation (Asp, h−1) was calculated as the amount of reacted
benzene (Nb*Cb) per mole of ruthenium and the time in hours, according to the formula:

Asp =
N×Cb

mcat ×
ωRu
MRu
× ti

,

where Nb—moles of benzene, Cb—benzene conversion, mcat—the catalyst weight,ωRu—ruthenium
content determined by XRF, MRu—ruthenium molar mass and ti is the time for which the benzene
conversion (Cb) was evaluated.

The specific catalyst’s activity normalized per ruthenium specific surface area (Aspn) was calculated
as follows:

Aspn =
Asp

Ssp ×MRu
,

where Asp—specific catalyst’s activity and Ssp—ruthenium specific surface area, calculated as:

Ssp =
6

d× ρRu
,

where d—average nanoparticle diameter, ρ—metal density, and k—shape factor (6 for
spherical nanoparticles).

Each experiment was carried out three times under the same conditions, with the results differing
by no more than 2% from the corresponding average value. The measurement error did not exceed 1%.

4. Conclusions

Mesoporous ruthenium catalysts (0.74–3.06 wt%), based on ordered MCM-41 silica arrays on
aluminosilicate halloysite nanotubes (HNTs), as well as HNT-based counterparts, were synthesized
and tested in benzene hydrogenation. The TEM and low-temperature nitrogen adsorption/desorption
analyses for the HNT core-shell silica composite-supported Ru catalysts proved the well ordered
mesoporous silica structure of the MCM-41 type assembled on the outer surface of the HNTs and
retained after Ru loading. According to calculations based on the TEM results, the higher the metal
loading, the higher the sizes of the particles formed by both the MCM-41/HNT and the HNT-based
catalysts. The latter ones had particles varying from 3.6 to 5.4 nm in diameter, located predominantly
on the outer surface of the HNTs. For the MCM-41/HNT-supported ones, at higher metal content the
particle size distribution became bimodal, and particles with more than 6.7–7.2 nm in diameter formed.
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When the metal loading increased, the Ru nanoparticles both intercalated into the MCM-41/HNT
porous system and agglomerated outside the mesopores.

For all samples based on HNT, as well as on MCM-41/HNT, the higher is metal loading was,
the more the specific catalytic activity decreased. The higher hydrogenation activity of the catalysts
with Ru loading < 1 wt% was explained by the formation of metal particles highly dispersed over the
surface of the MCM-41/HNT composite. The Ru/MCM-41/HNT(1) catalyst with an average particle
size of 3.4 ± 0.1 nm, being uniformly distributed over the surface of the mesoporous aluminosilicate
support, was the most active in the hydrogenation of benzene to cyclohexane and the specific activity
of 5594 h−1 was achieved with Aspn 0.39 mol·h−1

·m−2. For catalysts based on the MCM-41/HNT
composite with a higher Ru content, the decrease of the Asp and Aspn parameters was close, which was
caused by similar average NPs diameters, while the Ru content became the major factor influenced by
catalytic activity. As for the Ru/HNT(2) and Ru/HNT(3), the Aspn parameters were close, while the Asp

was slightly reduced by 20%, confirming the negative enlargement effect of nanoparticles on a decrease
in catalytic activity.

The MCM-41/HNT composite-supported Ru catalysts were found to be more stable under recycling
due to hierarchical structure and a high specific surface area, resulting in the stabilization of the
ruthenium nanoparticles within the porous system. As a result, the specific catalytic activity and final
benzene conversion for Ru/MCM-41/HNT(1) after 3 cycles were comparable for those obtained with
the fresh Ru/HNT(1).

These catalysts, based on a synergistically strong, new type material, consisting of synthetic
mesoporous silica of MCM-41 type arrays on natural clay nanotubes, are safe, environmentally friendly
materials and could be easily scaled up for industrial application.
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