Supplementary Materials

The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts

Jinjun Wen¹, Chunlei Huang¹, Yuhai Sun¹, Long Liang¹, Yudong Zhang¹, Yujun Zhang¹, Mingli Fu^{1,2}, Junliang Wu^{1,2}, Limin Chen^{1,2,*} and Daiqi Ye^{1,2}

- ¹ Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; mrwenjj@163.com (J.W.); h13771888573@163.com (C.H.); sunyuhai1110@163.com (Y.S.); ll2235653307@163.com (L.L.); zyd1536872623@163.com (Y.Z.); zhangyujun34@163.com (Y.Z.); mlfu@scut.edu.cn (M.F.); ppjl@scut.edu.cn (J.W.); cedqye@scut.edu.cn (D.Y.)
- ² National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, Guangdong, China
- * Correspondence: liminchen@scut.edu.cn; Tel.: +86-20-3938-0508

Received: 29 March 2020; Accepted: 6 May 2020; Published: 12 May 2020

Figure S1. SEM images of pristine plate ZnO (a) and 1Cu/ZnO (b) after reduction

Figure S2. XRD patterns of ZnO:XCu model catalysts after H₂ reduction, X = 0.5, 1.0, 1.5, 3.5, 6.5.

Figure S3. The correlation of the intensity ratio of $E_1(LO)$ to E_2^{high} and the Cu content.

Figure S4. Raman spectra of the reduced pristine ZnO and ZnO:XCu model catalysts, X = 0.5, 1, 1.5, 3.5, 6.5.

Figure S5. H₂-TPD profile of pristine ZnO plate after reduction in H₂ without H₂ adsorption (detected by MS).

Figure S6. H₂-TPD profile of plate ZnO:1Cu model catalyst after reduction in H₂ without H₂ adsorption (a) and with H₂ adsorption (b), detected by TCD detector.

Figure S7. CO₂-TPD profiles of the 1Cu/ZnO model catalyst.

Figure S8. SEM image of ZnO:1Cu model catalyst after RWGS stability evaluation.

Table S1. The intensity ratios of $E_1(LO)$ to E_2^{high} and wavenumber of E_2^{high} for the reducedpristine ZnO and ZnO:XCumodel catalysts.

Samples	ZnO	ZnO:0.5Cu	ZnO:1Cu	ZnO:1.5Cu	ZnO:3.5Cu	ZnO:6.5Cu
$E_1(LO)/E_2^{high}$	0.12	0.25	0.29	0.31	0.48	0.54

Table S2. Specific surface area of calcined ZnO andCu-ZnO model catalysts.

Samples	ZnO ^b	ZnO:0.5Cu	ZnO:1Cu	ZnO:1.5Cu	ZnO:35Cu	ZnO:6.5Cu	1Cu/ZnO
Sbet (m²/g)ª	2.93	3.86	4,29	4.42	3.90	4.29	4.94

 $^{\rm a}$ determined by N_2 adorption-desorption isotherm.

^b used for RssA calculation of 1Cu/ZnO model catalyst.

Table S3. Surface compositional analysis of ZnO:1Cu model catalyst based on XPS experiments.

Treatment	Sui			
Treatment _	Cu	Zn	0	Cu/Zn ^a
Reduced	2.47	45.71	51.82	5.40
After reaction	2.72	48.61	48.66	5.60

 $^{\rm a}$ calculated from O1s, Zn2p_{3/2} and Cu2p_{3/2}.