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Abstract: Converting water into hydrogen through the photo-electrochemical (PEC) process is
one of the most exciting approaches in this field, and there is a quest to design or search for new
electro-photo-catalytic materials. In this work, simple steps for fabrication and transformation of
metallic tungsten thin film into the photo-active Magnéli-phase (W18O49) of tungsten oxide thin film
is demonstrated. The post-annealing temperature has a significant impact on the phase evolution of
tungsten film into W18O49. The film thickness of W18O49 is controlled by controlling the sputtering
time (or deposition time) of W film. The PEC performance of the as-prepared electrodes is evaluated by
monitoring the water oxidation reaction under visible radiation. The PEC findings reveal a correlation
between PEC performance and phase, morphology, and thickness of the film. The as-derived W18O49

can efficiently catalyze the water oxidation reaction at neutral solution pH, generating 0.6 and
1.4 mA cm−1 photo-current at 0.6 and 0.8 V vs. Saturated calomel electrode (SCE), respectively,
in addition to excellent stability. The electrical conductivity and the charge transfer kinetics are
investigated employing the electrochemical impedance spectroscopic (EIS) technique.

Keywords: photo-electrochemical; water spitting; thin films; tungsten oxide

1. Introduction

Strong overuse and dependence of fossil fuels (coal, oil, and natural gas) are intensifying air
pollution and climate change. Water splitting is one of the most promising methods to generate clean
energy through hydrogen and oxygen evolution reactions using a clean and sustainable approach.
However, developing low-cost water-splitting catalysts is still a scientific challenge to generating
chemicals and renewable fuels from different renewable feedstocks [1–3]. Photo-electrochemical (PEC)
is a process of splitting water into its two constituents, oxygen and hydrogen, using solar power [4–6].

To date, several different semiconductor metal oxides such as ZnO, TiO2, CuO, Bi2WO6, and
MoO3 have been developed for water splitting [7–11]. Among them, tungsten oxide is one of the most
common semiconductor oxides used in PEC cells due to its ability to absorb the visible light spectrum,
high stability in the electrolyte solutions, and the ability to exist in various compositional forms such
as WO2, WO3, and W18O49 [12–14]. Additionally, the tungsten oxide valance band potential edge is
much higher (3.2 eV) than the potential required to oxidize the water (1.23 eV) [15,16].

The Magnéli-phase (W18O49) [17], which is attracting considerable interest in different applications,
such as solar cells, photo-catalysis, and sensors, is a non-stoichiometric tungsten oxide phase that
possesses abundant oxygen vacancies [18,19]. The oxygen vacancies present in W18O49 is functionalized
as active sites to enhance the adsorption of oxygen molecules from the water [18]. Moreover, the
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W18O49 phase is capable of absorbing visible light illumination, without the addition of other dopant
materials [20,21].

The photo-catalytic activity of Magnéli-phase W18O49 is dictated by several factors, such as
morphology, particle size, and surface area, which are ultimately controlled by the fabrication method.
For example, Chongshen et al. [22] demonstrated that the light absorption properties of the W18O49

changed with changing the bulk W18O49 to nanorods, nanograins, nanofibers, and nanoparticles.
Guojuan et al. [23] found that the directional growth of W18O49 significantly affected oxygen vacancies,
bandgap width, electron/hole separation, and optical attributes.

Herein, we demonstrate the preparation of W18O49 thin films by annealing the metallic films of
tungsten prepared by direct current (DC) sputtering. Formation of W18O49 thin films are optimized by
changing the sputtering deposition time (and hence the film’s thickness), and varying the annealing
temperature. The PEC performance of the as-obtained W18O49 thin films is investigated by monitoring
the water oxidation reaction. The crystallinity, morphological features, oxidation state, oxygen vacancy,
and charge transfer resistance of the fabricated films are determined and correlated to PEC performance.

2. Results and Discussion

Figure 1 shows the X-ray diffraction (XRD) patterns of the sputtered W film and W18O49 films
prepared under different conditions. The diffraction patterns of the W18O49 films synthesized by
post-annealing of sputtered W films are presented in Figure 1a. As can be observed, the XRD of films
prepared after different deposition time shows sharp reflections at 26.8◦, 34.1◦, 38.1◦, 51.8◦, and 54.8◦,
which are attributed to FTO glass substrate. Furthermore, the diffractions centered at 23.5◦, 24.0◦, 24.6◦,
28.9◦, 33.5◦, and 34.0◦ are ascribed to (010), (502), (103), (004), (113), and (505) planes of monoclinic
W18O49 with P2/m space group (JCPDS No: 84-1516) [24]. With increasing film thickness (deposition
time), the intensity of the characteristic diffractions of W18O49 is increasing. The enhancement of
the crystallinity by increasing the thickness of the film might be due to the energy of the impinging
nanoparticle [25].
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Figure 1. X-ray diffraction (XRD) patterns of the (a) W18O49 films with various thickness fabricated by
post-annealing of sputtered W film at 500 ◦C in air (b) metallic W film to W18O49 phase transformation
as a function of post-annealing treatment.

Figure 1b shows the phase evolution from W to W18O49 as a function of annealing temperature.
As can be seen, the diffractions of the as-fabricated w film and those annealed at 100 ◦C and 200 ◦C show
the patterns of the FTO substrate only, indicating the amorphous nature of the deposited films at these
annealing temperatures. As the temperature was increased to 400 ◦C, the change of the amorphous to
the crystalline phase is demonstrated by the appearance of the diffractions at 35.8◦, 40.3◦, and 44.1◦.
These reflections are attributed to (002), (110), and (112) planes of the W3O phase with Pm-3n space
group (JCPDS No: 41-1230) [26]. Formation of W18O49 was observed at a higher temperature; the
diffraction peaks of W film annealed at 500 and 600 ◦C matches the monoclinic phase of W18O49,
indicating the phase transformation from W3O to W18O49 thin film. Thermal treatment of the W3O
films in the air provides further oxygen molecules that are needed for the formation of W18O49. It is
worth mentioning that no other diffraction peak appeared after the thermal heating procedures.

The surface morphologies of the fabricated films were investigated in detail by field-emission
scanning electron microscopy (FE-SEM). FE-SEM images of the W18O49 films obtained after the
post-annealing of sputtered W films prepared as a function of deposition time are shown in Figure 2.
It can be observed that the thinnest film, deposited for 1 min, has a film thickness of 52 nm (Figure 2a,e),
and it is originally grown in the form of packed spherical grains that have an average grain size ranging
between 20 and 40 nm, numerous large particles with an average size of 70 nm, and small sheets.
The diameter and length of these sheets are measured to be about 20 nm and 1.5 µm, respectively.
Upon increasing the deposition time to 5 min, Figure 2b,f, the flat and compact surface of the W18O49
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film evolved into a film with a thickness of 146 nm that attached as various large sheets over several
micrometers. This transformation may be due to the formation of planar defects induced by the
structural strain caused by heat treatment followed by aggregation process. The film deposited
for 10 min has a thickness of 290 nm, as shown in Figure 2c,g. It consists of well-distributed and
interconnected nanosized sheets without any significant voids. Meanwhile, W18O49 film deposited for
20 min shows uniform and stacked sheets to form a nanorod-like structure with a thickness of 550 nm,
as shown in Figure 2d,h.

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 17 

 

W18O49 film deposited for 20 min shows uniform and stacked sheets to form a nanorod-like structure 

with a thickness of 550 nm, as shown in Figure 2d,h. 

Low and high-magnification FE-SEM images of the sputtered W films annealed at different 

temperatures are shown in Figure 3. It can be noticed from Figure 3 that the microstructure of the 

films annealed at 100 °C and 200 °C revealed a compact, voids-free and smooth microstructure with 

small grains. At 300 °C, the deposited film started to crack, forming a first oxide phase (W3O) as a 

result of particles accumulation. With further heating, the particles built-up to form small sheets as 

shown in the samples annealed at 400 °C. At 500 °C, all the nanoparticles accumulated in groups to 

form uniform W18O49 nanosheets. By increasing the annealing temperature to 600 °C, the W18O49 

nanosheets grew vertically to form a pillar-like structure as shown in the high-resolution inset image 

of 600 °C annealed sample. 

 

Figure 2. Field-emission scanning electron microscopy (FE-SEM) images of W18O49 films deposited 

for (a) 1, (b) 5, (c) 10, and (d) 20 min. and FE-SEM cross-section images of W18O49 films deposited for 

(e) 1, (f) 5, (g) 10, and (h) 20 min. All the films were annealed at 500 °C in air. 

2  m

500 nm

2  m

500 nm

2  m

500 nm

70 

nm

(a)

500 nm

2  m

550 nm52 nm
146 nm

290 nm

2  m2  m200  m 2  m

(b) (c) (d)

(e) (f) (g) (h)

Figure 2. Field-emission scanning electron microscopy (FE-SEM) images of W18O49 films deposited for
(a) 1, (b) 5, (c) 10, and (d) 20 min. and FE-SEM cross-section images of W18O49 films deposited for (e) 1,
(f) 5, (g) 10, and (h) 20 min. All the films were annealed at 500 ◦C in air.

Low and high-magnification FE-SEM images of the sputtered W films annealed at different
temperatures are shown in Figure 3. It can be noticed from Figure 3 that the microstructure of the
films annealed at 100 ◦C and 200 ◦C revealed a compact, voids-free and smooth microstructure with
small grains. At 300 ◦C, the deposited film started to crack, forming a first oxide phase (W3O) as a
result of particles accumulation. With further heating, the particles built-up to form small sheets as
shown in the samples annealed at 400 ◦C. At 500 ◦C, all the nanoparticles accumulated in groups to
form uniform W18O49 nanosheets. By increasing the annealing temperature to 600 ◦C, the W18O49

nanosheets grew vertically to form a pillar-like structure as shown in the high-resolution inset image
of 600 ◦C annealed sample.

The optical properties of the fabricated films are presented in Figure 4. Figure 4a shows the
influence of W18O49 film’s thickness on the ability to absorb the light in the visible and ultraviolet (UV)
range. As can be seen, the light absorption increased with increasing the deposition time of the films in
both visible and UV range. This behavior is due to the increase in the average particle size caused
by the increase of the W mass thickness. Furthermore, the absorption edge of W18O49 films shifted
to a shorter wavelength (blue shift) when increasing the deposition time, which can presumably be
ascribed to the quantum size effect. The optical band gap of the prepared photo-anodes is calculated
using the Tauc relation [27,28]:

(αhv)n = A(hv− Eg)

where, α is the absorption coefficient, (Eg) is the optical band gap, h is the Planck’s constant, ν is the
frequency, A is constant, n = 2 for direct bandgap and n = 1

2 for indirect bandgap. From Figure 4b,
it was noticed that the bandgap decreases, from 3.65 eV (for 1 min film) to 3.18 eV (for 20 min film),
as a result of increasing the thickness of the film, hence shifting its behavior from one dimension
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material to the bulk material. A similar shift in the bandgap of thin films induced by the variation
of the thickness has been reported elsewhere [29]. Furthermore, annealing temperature also affected
the optical properties of the W18O49 films. Films annealed at temperatures of 100 ◦C to 400 ◦C were
opaque, indicating the metallic nature of the films while W18O49 film annealed at 500 ◦C and 600 ◦C
(Figure 4c) showed a certain level of light absorption in the UV and visible range. Moreover, W18O49

film annealed at 600 ◦C showed a lower absorption level compared to the film annealed at 500 ◦C.
This can be attributed to variation in the morphology of the two films as indicated by the FE-SEM
images. The bandgap measurement plot of the W18O49 films annealed at 500 ◦C and 600 ◦C is shown
in Figure 4d. The bandgap of W18O49 films annealed at 500 and 600 ◦C are calculated to be 3.45 and
3.50 eV. The value of bandgap slightly increased with increasing annealing temperature. This can
presumably be due to the improvement in the crystallinity that resulted in the decrease of localized
states in the bandgap [30].Catalysts 2020, 10, x FOR PEER REVIEW 6 of 17 
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(c) 300, (d) 400, (e) 500, and (f) 600 ◦C in air.
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Figure 4. Ultraviolet–visible (UV-Vis) absorption spectra and bandgap of W18O49 films as a function of
deposition time (a,b), and UV-Vis absorption spectra and Tauc’s plot of W18O49 films (c,d) fabricated
by post-annealing of sputtered W films at 500 and 600 ◦C in air.

The bonding and chemical environment of the deposited films was investigated by using X-ray
photo-electron spectroscopy (XPS). Figure 5a,b show the XPS survey scans of the as-deposited W film
and W18O49 film prepared at 500 ◦C. The results show the XPS spectra of W and O, confirming the high
purity of the fabricated films. Moreover, the change in W 4f and O 1s peak intensities of these two films
reveal the transformation of metallic W film to oxide phase. The de-convoluted peaks of W 4f XPS
spectra show different chemical binding energies corresponding to different oxidation states, i.e., W◦

(W4f7/2 (31.1 eV), W4f5/2 (32.9 eV)), W5+ (W4f7/2 (35.0 eV) W6+ (W4f7/2 (35.0 eV), W4f5/2 (37.1 eV)) and
Wx+ (W4f7/2 (eV), W4f5/2 (eV), which is an intermediate oxidation state between W◦ and W4+ [31,32].
Figure 5c demonstrates the W 4f spectra of as-grown W film, which shows the doublet peaks W 4f7/2

and W 4f5/2 formed due to the spin-orbit coupling. The presence of the small peaks at 31.6 and 33.8 eV
is assigned to Wx+ such as W3O. The XPS spectrum of the prepared W18O49 thin film is displayed in
Figure 5d. The W 4f peaks of the W18O49 films are shifted toward higher binding energy, compared
with the W 4f spectra of the as-deposited film, which confirms the formation of the high oxidation state
of W (5+, and 6+) [33,34]. The high-resolution XPS spectra of O 1s peaks of the as-fabricated sputtered
W and W18O49 films are demonstrated in Figure 5e,f. The decomposition of the O1s peaks showed two
different peaks at 530.5 and 532.3 eV which correspond to the lattice oxygen (OL) and oxygen vacancy
(OV), respectively [35].
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The PEC performance of the fabricated W18O49 photo-anode films was evaluated in 0.1 M of
Na2SO4 electrolyte under the illumination of a 300 W Xenon lamp. Figure 6a shows the photo-current
density generated by W18O49 films prepared at different deposition time at a bias 0.6 V. Under
dark conditions, these samples did not produce any noticeable current. In the presence of light,
photo-current was measured to be 0.10, 0.25, 0.60, and 0.62 mA/cm2 for W18O49 films deposited for
1, 5, 10, and 20 min, respectively. The weak photo-current recorded in the presence of W18O49 thin
films deposited 1 and 2 min could be ascribed to the discontinuity of the film’s layer as indicated by
FE-SEM images (Figure 2). The interconnected sheets of W18O49 film deposited for 10 min showed
a significantly higher current density compared to the films prepared after shorter deposition time.
This can be correlated to the lower bandgap (3.45 eV), and hence its ability to generate a larger
number of electron/hole pairs. W18O49 deposited for 20 min generated comparable or a slightly higher
photo-current than that of the film prepared after 10 min. A probable explanation can be as follows.
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All the photo-electrodes were illuminated from the front or coated side. The generated holes oxidize
the water, while the electrons are transported to the counter electrode [36]. The photo-generated
electrons have to diffuse through the entire film’s thickness to reach the FTO/W18O49 interface. In other
words, the increase in film thickness after the optimal point enlarges the diffusion path for electrons
and thus increases the probability of electron/hole pair recombination [37]. Potential-current curves
obtained under intermittent illumination are shown in Figure 6b. The W18O49 films deposited for
10 and 20 min produced higher photo-current as compared to the films prepared after 1 and 5 min.
It is noteworthy that no current was recorded under dark conditions even at high potential (0.8 V
vs. SCE). The effect of annealing temperature on the PEC performance of W18O49 films is shown in
Figure 6c. The potentiostatic measurements were carried out at 0.6 V vs. SCE. Since the as-prepared
samples and those heated up to 300 ◦C (dashed line) were almost metallic, the production of low
current was discerned under dark conditions. At 400 ◦C, the formation of W3O phase was observed,
as confirmed by XRD and XPS. The film consisting of W3O layers was found to be photo-active and
produced a photo-current of 0.4 mA/cm2. However, the generation of relatively high dark current was
observed. The film obtained at 500 ◦C generated 0.6 mA/cm2. This film was formed in the shape of
an interconnected nanosheet structure, which has high light absorption and high oxygen vacancies
as confirmed by ultraviolet–visible (UV–Vis) and XPS results, respectively. These nanosheets were
transformed into a nanopillar-like structure in the case of W18O49 prepared at 600 ◦C, resulting in
reducing the absorbed light by the film, and hence, reducing its photo-current density to 0.3 mA/cm2.
A similar trend was observed in the dark or light when linear sweep voltammetry (LSV) measurements
were conducted at a voltage range from 0.25 to 0.80 V vs. SCE, Figure 6d. At low biased voltages, 0.0 to
0.20 V, 400 ◦C sample generated higher dark current, compared with 500 ◦C and 600 ◦C, due to its
metallic nature (W3O phase).
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Figure 6. Photo-electrochemical (PEC) performance measurements: Potentiostatic (a,c) and
potentiodynamic (b,d) response of the films obtained at different deposition time and annealing
temperatures. Measurements were carried out under intermittent light illumination.

The charge transfer process and electrical conductivity are very important factors in semiconductor
photo-anode materials. Figure 7 shows EIS results obtained at 0.6 V vs. SCE at frequency ranging from
105 to 10−2 Hz in 0.1 M Na2SO4 electrolyte. Figure 7a shows the Nyquist plots (imaginary vs. real
impedance) of W18O49 films deposited at different sputtering deposition times and annealing at 500 ◦C.
All the experiments and measurements were carried out under illumination. One time constant circuit
was used as equivalent circuit, in which, solution resistance (Rs) is connected in series with a sub-circuit
formed of a capacitor connected in parallel with charge transfer resistance (Rct) [38]. It can be seen that
the arc radiuses of the W18O49 films deposited for 20 min (Rct = 135 Ω) and 10 min (Rct = 172 Ω) were
enormously short compared with 1 min (Rct = 760 KΩ) and 5 min (165 KΩ) W18O49 films, suggesting
significantly faster charge transfer kinetics in the first mentioned W18O49 films [39]. This result was in
good agreement with the PEC results. Nyquist plots of W films annealed at 300, 400, 500, and 600 ◦C
were recorded under illumination and are shown in Figure 7b. The deposition time for all the film
was 10 min. The Rct of photo-active materials prepared at 300, 400, 500, and 600 ◦C were measured
to be 430, 240, 172, and 260 Ω, respectively. The surface charge resistance decreases with increasing
calcination temperature from 300 to 500 ◦C, followed by an increase for the sample heated at 600 ◦C.
The reduction in charge transfer resistance can be rationalized to the improvement in the crystallinity
of the photo-catalysts, which increases with increase in calcination temperature. However, high
calcination temperature, such as 600 ◦C, can also lead to sintering, change in morphology, and surface
area of photo-catalytic materials. This notion was corroborated by microscopic analyses; the sheet
morphology of the sample prepared at 500 ◦C was transformed into a nanopillar-like structure when
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heated at 600 ◦C. Such factors can undermine the photo-catalysts’ surface quality, which can affect the
surface charge transfer negatively. For optimal performance, a balance between the crystallinity and
other surface properties should be maintained. Charge transfer resistance of W18O49 film fabricated
at 500 ◦C was also recorded with and without the light, and the results are shown in Figure 7c.
It can be seen that in the absence of light, the Rct of the W18O49 film was significantly high (large
semi-circle), which is in good agreement with the dark current shown in Figure 6c,d), and reflects the
high photo-catalytic activity of W18O49 film. Figure 7d shows the stability of the photo-current density
of W18O49 film deposited for 10 min and annealed at 500 ◦C at a biased voltage of 0.6 V vs. SCE under
illumination. A slow drop was observed at the beginning (first 2000 s) due to the double layer charge
capacitance at the W18O49 film/Na2SO4 interface [40]. After that, the photo-current density stabilizes at
0.56 mA/cm2, and it maintained 100% of this value for the 5200 s, which indicates the excellent stability
of the photo-anode film.
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Figure 7. (a) Nyquist plots of W18O49 films deposited for 1, 5, 10, and 20 min under light. (b) Nyquist
plots of W films annealed at 300, 400, 500, and 600 ◦C under light. (c) Nyquist plots of W18O49 films
deposited for 10 min and annealed at 500 ◦C under dark and light. (d) Stability test of W18O49 films
deposited for 10 min and annealed at 500 ◦C under light for 7200 s.

Table 1 compares the photo-current density of the W18O49 film fabricated at 500 ◦C with those
of other tungsten oxide photo-anodes, prepared by different methods. In this work, the fabricated
photo-anode shows high photo-catalytic performance as compared to the most reported works in the
table, indicating the high photo-catalytic activity of this phase and the effectiveness of the designed
fabrication method.



Catalysts 2020, 10, 526 11 of 15

Table 1. A comparison between the optimized W18O49 film fabricated at 500 ◦C in air and different
tungsten oxide photo-anodes reported in the literature.

Preparation
Method Structure Photo-Current

mA/cm2 Bias Voltage Electrolyte Light Source Ref.

solvothermal plates-like 0.20 0.6 V vs.
Ag/AgCl

0.5 M
Na2SO4

solar simulation
A.M. 1.5 G spectrum
with the intensity of

100 mW·cm−2

[41]

solvothermal spindle-like 0.20 Ag/AgCl 0.5 M
Na2SO4

- [42]

tungsten foil
anodization

nanoporous
layer 0.40 0.6 V vs.

Ag/AgCl
0.5 M

Na2SO4
300 W Xe lamp [43]

Spin coating Nano
particles 0.25 1.25 V vs.

RHE
0.1 M

Na2SO4
300 W Xenon lamp [38]

electrodeposition Nano-islands 0.02 0.7 V vs.
Ag/AgCl 0.5 M H2SO4

Xenon solar simulator
(AM 1.5 G, 100 mW/cm2) [44]

hydrothermal
method Nanosheets 0.9 1.2 V vs.

RHE
0.5 M

Na2SO4

LED lamp coupled with
an AM 1.5 G filter

(100 mW cm−2,
CEL-LED 100)

[45]

hydrothermal
method Nanosheets 0.3 1.2 V vs.

RHE
0.5 M

Na2SO4
1000 W xenon arc lamp [46]

RF-sputtering Rough film 0.01 1 V vs.
Ag/AgCl 1 M HClO4

400 W ozone-free Xe arc
lamp (AM 1.5 G filter) [47]

RF-sputtering film 0.9 0.6 V vs.
SCE

0.5 M
Na2SO4

mercury arc lamp
350 nm < λ < 450 nm [48]

RF-sputtering film 0.3 0.6 V vs.
SCE

0.5 M
Na2SO4

300 W LOT-qd Xe lamp,
equipped with an AM

1.5 G filter
[49]

RF-sputtering Nanosheets <0.5 0.6 V vs.
SCE

0.33 molar
H3PO

AM 1.5 G illumination
generated by solar

simulator
[50]

RF-sputtering film 0.2 0.6 V vs.
Ag/AgCl

0.5 mol/L
H2SO4

A 500 W Xe lamp/A
400 nm cutoff filter [51]

RF-sputtering film 0 0.6 V vs.
RHE

0.1 M
Na2SO4

Xe lamp
(150 W)/wavelengths

range from 300 to 570 nm
[52]

DC-sputtering film 0.05 1.0 V vs.
Ag/AgCl

0.5 M
Na2SO4

visible light irradiation
(λ > 420 nm) [53]

DC-sputtering Nanosheets 0.6 0.6 V vs.
SCE

0.5 M
Na2SO4

300 W Xenon lamp
UV-visible (300–600 nm)

This
work

RHE: reversible hydrogen electrode, SCE: saturated calomel electrode, LED: light emitting diode.

3. Experimental Details

3.1. Preparation of W18O49 Thin-Film Electrodes

Tungsten oxide (W18O49) photo-anode films were fabricated by annealing the film of metallic
tungsten prepared by the sputtering system (model NSC-4000, Nanomaster, TX, USA). Tungsten target
(99.995% purity) was purchased from ACI alloys INC, (San Jose, CA, USA) and was used to deposit
W films on FTO-coated glasses. The deposition was carried out in an argon atmosphere at a power
of 100 watts. To investigate and reproduce the PEC performance of the W18O49, two films of each
W18O49 were synthesized with varying thin-film thickness and post-annealing treatment. In both two
parameters, the base and deposition pressure inside the sputtering chamber were fixed at 9 × 10−6 and
3.5 × 10−3 torr, respectively. To study the effect of the thin film thickness on the PEC activity of the
W18O49, the sputtered W metallic films were deposited at varying thicknesses (1, 5, 10, and 20 min),
while keeping all other parameters constant. To investigate the effect of post-annealing treatment
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on the performance of the W18O49, the sputtered W metallic films were annealed in a tube furnace
(OTF-1200X from MTI corp.) at different temperatures in the ambient air. In detail, the deposited film
was inserted in the middle of the tube furnace. Then, the furnace was adjusted to heat-up at the rate of
20 ◦C/min. to reach the targeted temperature (100, 200, 300, 400, 500, and 600 ◦C). After 2 h annealing,
the tube furnace was switched off and the sample was left to cool down, inside the furnace in order to
reach room temperature.

3.2. Thin Films’ Characterization

The fabricated photo-anode films were studded using different characterization techniques.
The structural information and crystal phase of the fabricated films was investigated by X-ray diffraction
(XRD, Rigaku Miniflex 600 X-ray Diffraction, Tokyo, Japan, with Cu K irradiation at λ = 1.5406 Å).
The morphological properties were obtained using FE-SEM (Tescan Lyra-3, Brno-Kohoutovice,
Czech Republic). The optical bandgap of the prepared films was calculated through ultraviolet and
visible light absorption using an UV–Vis spectrophotometer (Jasco V-570, Tokyo, Japan). The subsurface
composition was analyzed by X-ray photoelectron spectroscopy (XPS, Model: ESCALAB250Xi, Thermo
Fisher, Waltham, MA, USA).

3.3. Evaluation of Photo-Electrochemical (PEC) Activity

The photo-electrochemical performance of the fabricated W18O49 photo-anode was carried out in
a three-electrode cell connected to a potentiostat. In this assembly, W18O49 films, saturated calomel
electrode (SCE; Hg/Hg2Cl2), and platinum coil were used as a working, reference, and counter
electrodes, respectively. The photo-anodes were illuminated by a 300-watt Xenon lamp (Model:
Max-303, Tokyo, Japan). The resistivity measurements of the fabricated electrodes were investigated
by electrochemical impedance spectroscopy (EIS) in the frequency range of 10−2 to 105 Hz. All the
above measurements were undertaken in 0.1 M of sodium sulfate (Na2SO4).

4. Conclusions

In summary, the study demonstrated the fabrication of tungsten metal film by a DC sputtering
magnetron, and its transformation into Magnéli-phase (W18O49) thin film of tungsten oxide by
post-annealing under an air environment. The thickness (52, 146, 290, and 550 nm) and the morphology
(nanoparticles, nanosheets, nanorods, and nanopillars) of the thin films were controlled by adjusting
film growth time and post-annealing process. The as-derived W18O49 efficiently catalyzed the water
oxidation reaction and produced 0.6 and 1.4 mA cm−1 photo-current at 0.6 and 0.8 V vs. SCE, respectively.
In addition, the photo-electrode showed excellent stability; the performance was stable for ~2 h.
The electrical conductivity and the charge transfer kinetics were improved with increasing deposition
time and post-annealing temperature. The photo-electrode with the lowest resistance exhibited the
highest PEC performance.
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