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Computational Methodology 

All calculations were carried out with ORCA software in its version 4.2 [1]. The global hybrid 

density functional B3LYP [2,3] was used in the optimizations along with def2-TZVP(-f) basis set [4]. 

Dispersion effects were incorporated using Grimme’s semiempirical van der Waals corrections with 

the Becke-Johnson damping (D3BJ) [5,6]. Accuracy in numerical integration was established by a 

dense integration grid (ORCA Grid 7). The generation of Coulomb and exchange integrals was 

accelerated with the resolution of identity (RI) and the chain-of-spheres (COSX) approximations [7–

11] together with the SARC/J basis set [12,13]. Scalar relativistic effects were approximated by means 

of zeroth orde regular approximation (ZORA) [14,15]. Solvent effects were modeled by conductor-

like PCM (C-PCM)[16] in acetonitrile (ε = 36.6). The nature of the optimized structures was verified 

by numerical Hessian calculations, in which the stable intermediates have a positive definite Hessian. 

IR frequencies for CO stretching and bending modes were reported by harmonic frequencies. 

Due to the shortcomings of the current level of theory which introduces an overestimation of the 

vibrational frequencies [17], a scaling factor of f = 0.9816 was applied to achieve better numberical 

agreement with the measured spectra [18]. 

 

 

Figure S1. Complete asymmetric unit of compound 12-OMe, showing two individual molecules, one 

with a coordinated toluene moiety. Ellipsoids drawn at 50% probability. 
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Figure S2. Molecular structure of 12-Me. 

 

Figure S3. IR spectra of compounds 12-R in presence of 0-50 equiv. HBF4 (33 % in H2O) in acetonitrile 

at room temperature. A) Spectra of phosphinate 12-OEt. B) Spectra of phosphine oxide 12-Me. 
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Figure S4. DFT derived IR spectra of 12-Me in its neutral and protonated forms. Protonation sites are 

highlighted in green for better readability. 

 

Figure S5. Cyclic voltammograms of 12-OMe in absence and presence of HBF4 (33% in H2O). Upon 

addition of HBF4, the hydrogenase model gets protonated that results in a shift of the reduction 

potential to more positive values. 
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Figure S6. IR-differencespectrum of the reduction of 12-OEt. 

 

Figure S7. Comparison of IR-Spectra of 12-OEt, [12-OEt]− and [12-OEt]− after addition of 2 equivalents 

HOAc. 

 

 

  



Catalysts 2019, 9, x FOR PEER REVIEW 5 of 31 

 

NMR- and Mass spectra 

Bis(hydroxymethyl)phosphinic acid (1)  

 

 

 

Figure S8. 1H-MNR spectrum of 1. 

 

 

Figure S9. 31P-NMR spectrum of 1. 
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Figure S10. ESI-MS mass spectrum of 1. 

 

Bis(chloromethyl)phosphinic chloride (2) 

 

 

 

Figure S11. 1H-MNR spectrum of 2. 
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Figure S12. 13C-NMR spectrum of 2. 

 

 

Figure S13. 31P-NMR spectrum of 2. 
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Figure S14. ESI-MS mass spectrum of 2. 

 

Bis(chloromethyl)phosphinic acid (5) 

 

 

 

Figure S15. 1H-MNR spectrum of 5. 
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Figure S16. 13C-NMR spectrum of 5. 

 

 

Figure S17. 31P-NMR spectrum of 5. 

 

Ethyl bis(chloromethyl)phosphinate (3-Et) 
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Figure S18. 1H-NMR spectrum of 3-Et. 

 

 

Figure S19. 13C-NMR spectrum of 3-Et. 
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Figure S20. 31P NMR of 3-Et. 

 

Methyl bis(chloromethyl)phosphinate(3-Me) 

 

 

 

Figure S21. 1H-MNR spectrum of 3-Me. 
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Figure S22: 13C-NMR spectrum of 3-Me 

 

 

Figure S23: 31P-NMR spectrum of 3-Me 
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Phenyl bis(chloromethyl)phosphinate (3-Ph) 

 

 

 
Figure S24: 1H-MNR spectrum of 3-Ph 

 

 
Figure S25: : 13C-NMR spectrum of 3-Ph 
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Figure S26: 31P-NMR spectrum of 3-Ph 

 

 

Figure S27. ESI-MS mass spectrum of 3-Ph. 

 

Bis(chloromethyl)methyl phoshine oxide (4) 
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Figure S28. 1H-MNR spectrum of 4. 

 

 

Figure S29. 13C-NMR spectrum of 4. 
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Figure S30. 31P-NMR spectrum of 4. 

 

 

Figure S31. ESI-MS mass spectrum of 4. 
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Ethyl bis((acetylthio)methyl)phosphinate (7-Et) 

 

 

 
Figure S32: 1H-MNR spectrum of 7-Et 

 

 

Figure S33: 13C-NMR spectrum of 7-Et 
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Figure S34: 31P-NMR spectrum of 7-Et 

 

 

Phenyl bis((acetylthio)methyl)phosphinate (7-Ph) 

  
 

 
Figure S35: 1H-MNR spectrum of 7-Ph 
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Figure S36: 13C-NMR spectrum of 7-Ph 

 

 
Figure S37: 31P-NMR spectrum of 7-Ph 

bis((acetylthio)methyl)methyl phosphine oxide (9) 
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Figure S38: 1H-MNR spectrum of 9 

 

 

Figure S39: 13C-NMR spectrum of 9 
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Figure S40: 31P-NMR spectrum of 9 

 

 

 
Figure S41: ESI-MS mass spectrum of 9 
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Ethyl bis(mercaptomethyl)phosphinate (8-Et) 

 

 

 
Figure S42: 1H-MNR spectrum of 8-Et 

 

 

Figure S43: 13C-NMR spectrum of 8-Et 
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Figure S44: 31P-NMR spectrum of 8-Et 

 

 

 

 

Figure S45: ESI-MS mass spectrum of 8-Et 
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Phenyl bis(mercaptomethyl)phosphinate (8-Ph) 

 

 

 
Figure S46: 1H-NMR spectrum of 8-Ph 

 

 

Figure S47: 13C-NMR spectrum of 8-Ph 
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Figure S48: 31P-NMR spectrum of 8-Ph 

 

 

 
Figure S49: ESI-MS mass spectrum of 8-Ph 
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Bis(mercaptomethyl)methyl phosphine oxide (10) 

 

 

Figure S50: 1H-MNR spectrum of 10 

 

 

Figure S51: 31P-NMR spectrum of 10 
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Figure S52: ESI-MS mass spectrum of 10 
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Table S1: Crystallographic data and refinement parameters of compounds 12-R. 

Property Value 

Identification code 12-OMe 12-OEt 12-Me 4 

Empirical formula C24H20Fe4O17P2S4 C10H9Fe2O8PS2 C9H7Fe2O7PS2 C3H7Cl2OP 

Formula weight 993.98 463.96 433.94 160.96 

Temperature/K 108(12) 114(2) 100.0(2) 293(2) 

Crystal system triclinic triclinic orthorhombic orthorhombic 

Space group P-1 P-1 Pca21 Pna21 

a/Å 7.3694(2) 7.11406(19) 22.1755(15) 5.8835(9) 

b/Å 15.3319(4) 9.4564(3) 6.9433(8) 17.677(2) 

c/Å 17.5708(3) 12.8023(4) 20.1450(16) 6.7983(18) 

α/° 110.813(2) 84.927(3) 90 90 

β/° 92.797(2) 74.521(3) 90 90 

γ/° 98.585(2) 87.660(2) 90 90 

Volume/Å3 1823.76(8) 826.63(5) 3101.7(5) 707.0(2) 

Z 2 2 8 6 

ρcalcg/cm3 1.810 1.864 1.858 2.268 

μ/mm-1 1.946 17.700 18.767 14.374 

F(000) 996.0 464.0 1728.0 492.0 

Crystal size/mm3 
0.329 × 0.066 × 

0.026 

0.2737 × 

0.2174 × 

0.0959 

0.02 x 0.02 x 0.02 0.02 x 0.02 x 0.02 

Radiation 
Mo Kα (λ = 

0.71073) 

CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

2Θ range for data 

collection/° 
2.494 to 53.548 

7.188 to 

152.468 

7.974 to 145.702 10.008 to 144.94 

Index ranges 
-8 ≤ h ≤ 9, -19 ≤ k 

≤ 19, -22 ≤ l ≤ 22 

-8 ≤ h ≤ 8, -11 

≤ k ≤ 11, -15 ≤ l 

≤ 16 

-20 ≤ h ≤ 27, -5 ≤ 

k ≤ 8, -24 ≤ l ≤ 19 

-7 ≤ h ≤ 7, -21 ≤ k 

≤ 18, -7 ≤ l ≤ 8 

Reflections collected 24372 14320 8025 1465 

Independent reflections 

7570 [Rint = 

0.1095, Rsigma = 

0.0696] 

3386 [Rint = 

0.0521, Rsigma = 

0.0251] 

4462 [Rint = 

0.1237, Rsigma = 

0.1583] 

948 [Rint = 

0.0328, Rsigma = 

0.0424] 

Data/restraints/parameters 7570/0/463 3386/0/209 4462/1/192 948/1/65 

Goodness-of-fit on F2 1.066 1.048 1.182 1.666 

Final R indexes [I>=2σ (I)] 
R1 = 0.0827, wR2 

= 0.2124 

R1 = 0.0297, 

wR2 = 0.0757 

R1 = 0.1634, wR2 

= 0.3642 

R1 = 0.0945, wR2 

= 0.2353 

Final R indexes [all data] 
R1 = 0.0946, wR2 

= 0.2210 

R1 = 0.0311, 

wR2 = 0.0766 

R1 = 0.2272, wR2 

= 0.4231 

R1 = 0.1032, wR2 

= 0.2445 

Largest diff. peak/hole / e Å-

3 
1.19/-1.15 0.35/-0.52 

5.63/-1.54 0.61/-0.80 
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CCDC reference 1996968 1996967 - - 
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