Supplementary Information

for

Influence of different birnessite interlayer alkali cations on soot and light hydrocarbons catalytic oxidation activity

Tomasz Jakubek¹, Camillo Hudy¹, Paweł Stelmachowski¹, Ewa Nowicka², Stan Golunski^{2,*} and Andrzej Kotarba^{1,*}

- ¹ Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- ² Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
- * Correspondence: GolunskiSE@cardiff.ac.uk (S.G.), ak@uj.edu.pl (A.K.)

Figure S 1. Detailed scans of Mn 3s range and envelope curves for Mn oxidation states for studied birnessite samples: red +IV, blue +III, green +II.

Figure S 2. Detailed scans of Mn 2p range and envelope curves for Mn oxidation states for studied birnessite samples: red +IV, blue +III, green +II.

Figure S 3. Detailed scans of O 1s range for studied birnessite samples.

Figure S 4. Detailed scans of relevant alkali bands for studied birnessite samples.

Figure S 5. Correlations of Mn average oxidation state: A) with alkali amount as determined by XRF; B) with O/Mn ratio determined form XPS.

Figure S 6 Mass-spectrometry followed temperature-programmed profiles of oxygen release from birnessite samples with fitted Gaussian peaks.