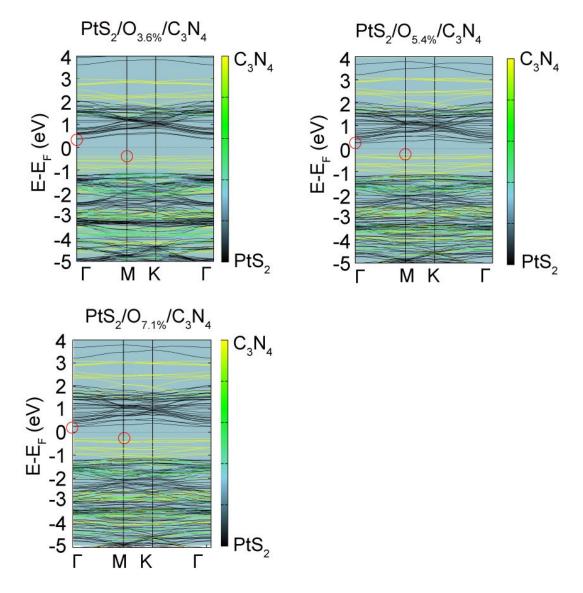

Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation

Minyeong Je 1.2, Eun Seob Sim 2, Jungwook Woo 2, Heechae Choi 1.* and Yong-Chae Chung 2.*


- ¹ Theoretical Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, Cologne 50939, Germany; mje@uni-koeln.de (M.J.)
- ² Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; ses1691@gmail.com (E.S.S.); dkdlfjqmdb20@gmail.com (J.W.)
- * Correspondence: h.choi@uni-koeln.de (H.C.); yongchae@hanyang.ac.kr (Y.-C.C.)

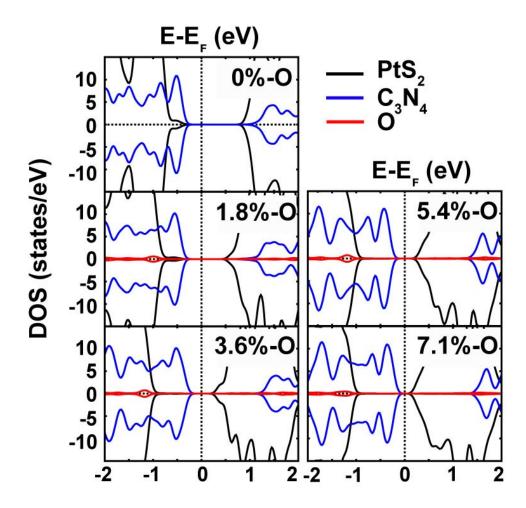

Figure S1. The stable configuration of the PtS2/Ox/C3N4 heterostructure (x=(a)1.8, (b)3.6, (c)5.4, and (d)7.1%). The purple, yellow, blue, gray, and red colors denote the Pt, S, N, C, and O atoms, respectively.

Figure S2. The charge density difference and planar-averaged electron density difference for the $PtS_2/O_{3.6\%}/C_3N_4$, the $PtS_2/O_{5.4\%}/C_3N_4$, and the $PtS_2/O_{7.1\%}/C_3N_4$ heterostructure. The purple, yellow, blue, gray, and red atoms indicate Pt, S, N, C, and O, respectively. The yellow and cyan areas indicate charge accumulation and depletion, respectively. The isovalues are 0.005 eV/Å^3 .

Figure S3. The band structure of the PtS2/O_{3.6%}/C₃N₄, the PtS2/O_{5.4%}/C₃N₄, and the PtS2/O_{7.1%}/C₃N₄ heterostructure, respectively. The contribution of each monolayer in the band structure of the PtS2/O_{3.6%}/C₃N₄, the PtS2/O_{5.4%}/C₃N₄, and the PtS2/O_{7.1%}/C₃N₄ heterostructure. The percentages of the contributions of each layer are marked in a different color. The Fermi level was set to zero.

Figure S4. The projected density of states in the $PtS_2/Ox/C_3N_4$ (X = 0, 1.8, 3.6, 5.4, 7.1 %) heterostructure. The black, blue, and red lines indicate the PtS_2 layer, the C_3N_4 layer, and the O atoms in the $PtS_2/Ox/C_3N_4$ heterostructure. The Fermi level (vertical black dotted line) was set to zero.

Table S1. The intercalation energy of the PtS₂/O₈/C₃N₄ heterostructure (x=1.8, 3.6, 5.4, 7.1%).

	Eint (eV)
PtS ₂ /O _{1.8%} /C ₃ N ₄	-1.78
$PtS_2/O_{3.6\%}/C_3N_4$	8.11
PtS ₂ /O _{5.4%} /C ₃ N ₄	4.82
PtS ₂ /O _{7.1%} /C ₃ N ₄	3.25