A Machine Learning Approach for Efficient Selection of Enzyme Concentrations and Its Application for Flux Optimization

Anamya Ajjolli Nagaraja 1,2,3,4, Philippe Charton 2,3,4, Xavier F. Cadet ⁵, Nicolas Fontaine ⁵, Mathieu Delsaut ¹, Birgit Wiltschi ⁶, Alena Voit ⁶, Bernard Offmann ⁷, Cedric Damour ¹, Brigitte Grondin-Perez ¹ and Frederic Cadet 2,3,4,*

- Laboratory of Energy, Electronics and Processes (LE2P-EnergyLab), EA 4079, Faculty of Sciences and Technology, University of La Reunion, St Denis Cedex 97444, France; anamya.ajjolli-nagaraja@univreunion.fr (A.A.N.); mathieu.delsaut@univ-reunion.fr (M.D.); cedric.damour@univ-reunion.fr (C.D.); Brigitte.Grondin@univ-reunion.fr (B. G.-P.)
- 2 University of Paris, BIGR—Biologie Intégrée du Globule Rouge, Inserm, UMR_S1134, Paris F-75015, France; philippe.charton@univ-reunion.fr (P.C.); frederic.cadet.run@gmail.com (F.C.)
- 3 Laboratory of Excellence GR-Ex, Paris, France
- 4 DSIMB, UMR_S1134, BIGR, Inserm, Faculty of Sciences and Technology, University of La Reunion, Saint-Denis F-97715, France
- 5 PEACCEL—Protein Engineering Accelerator, 6 Square Albin Cachot, box 42, Paris 75013, France; xavier.cadet.fjf@gmail.com (X.F.C.); nicolas.fontaine@peaccel.com (N.F.)
- 6 ACIB—Austrian Centre of Industrial Biotechnology, Synthetic Biology Group, Petersgasse 14, Graz 8010, Austria; birgit.wiltschi@acib.at (B.W.); alenavoit@acib.at (A.V.)
- 7 Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UFR Sciences et Techniques, Université de Nantes, UMR 6286 CNRS, 2, Chemin de la Houssinière, Nantes Cedex 03 44322, France; bernard.offmann@univnantes.fr
- * Correspondence: frederic.cadet.run@gmail.com; Tel.: +33695918108

Supplementary Table:

Table S 1: Enzymes used in this study for the upper part of glycolysis. All enzymes were from Sigma.

Enzyme	EC	Acronym	Source	Sigma Cat No.	Lot No.	Purity	MW	active enzyme	MW/subuni t
Hexokinase	2.7.1.1	НК	baker's yeast	H4502-1KU	SLBT5451	mix of isoenzymes HXK1 & HXK2	110.0 kDa	homodimer	54 kDa
Phosphoglucoisomer ase	5.3.1.9	PGI	baker's yeast	P5381-1KU	SLBW8689	n.i.	119.5 kDa	homodimer	61.3 kDa
Phosphofructokinase	2.7.1.1 1	PFK	Bacillus stearothermophilus	F0137-100UN	SLBW6641	n.i.	136.5 kDa	homotetrame r	34 kDa
Fructose biphosphate aldolase	4.1.2.1 3	FBA	rabbit muscle	A2714- 100UN	SLBR7752V SLBV7445	>80%	157.4 kDa	homotetrame r	39.3 kDa
Triose phosphate isomerase	5.3.1.1	TPI	Baker's yeast	T2507-5MG	036H8025	n.i.	53.6 kDa	homodimer	26.8 kDa
Glycerol-3-phosphate dehydrogenase	1.1.1.8	GDH	rabbit muscle	10127752001	21866328	traces of other enzymes	75.2 kDa	homodimer	37.6 kDa
Glyceraldehyde-3- phosphate dehydrogenase	1.2.1.1 2	GAPDH	rabbit muscle	G2267-1KU	SLBR0602V	>80%	144.0 kDa	homotetrame r	36 kDa
Creatine kinase	2.7.3.2	СК	rabbit muscle	10127566001	25998433	traces of other enzymes	86.2 kDa	homodimer	43.1 kDa
Glucose-6-phosphate dehydrogenase	1.1.1.4 9	G6PDH	baker's yeast	G6378- 250UN	SLBP6152V				

Enzyme	EC number	origin	specific activity (U/mg)	Comments
Phosphoglucoisomerase	5.3.1.9	Baker's yeast	556	this study
Phosphofructokinase	2.7.1.11	Bacillus stearothermophilus	73	this study
Fructose biphosphate aldolase	4.1.2.13	Rabbit muscle	10	this study
Triose phosphate isomerase	5.3.1.1	Baker's yeast	9500	Manufacturer value

Table S 2: The measured enzyme activities for the enzymes involved in the upper part of glycolysis (see also Table 2 in the main text).

Index	PGI	PFK	FBA	TPI	Index	PGI	PFK	FBA	TPI
	mg/l	mg/l	mg/l	mg/l		mg/l	mg/l	mg/l	mg/l
1	70	5	5	21.9	22	4	11	85.24	1.66
2	33	1	66.23	1.66	23	4	16	80.24	1.66
3	55	7.5	22.5	16.9	24	4	16	79.24	2.66
4	4.23	2.62	76.42	18.62	25	5	15	80.24	1.66
5	7.36	3.21	86.61	4.72	26	5	16	79.24	1.66
6	5.38	3.01	86.61	6.9	27	5	16	78.24	2.66
7	8.62	3.47	86.61	3.19	28	5	16	77.24	3.66
8	28.1	8.42	50.95	14.43	29	6	15	79.24	1.66
9	22.56	7.84	50.95	20.55	30	6	15	78.24	2.66
10	19.19	17	56.04	9.67	31	6	15	77.24	3.66
11	2	10	88.24	1.66	32	6	16	78.24	1.66
12	2	10	86.24	3.66	33	6	16	77.24	2.66
13	2	11	82.24	6.66	34	7	12	78.24	4.66
14	2	12	80.24	7.66	35	7	15	78.24	1.66
15	2	13	85.24	1.66	36	7	15	77.24	2.66
16	2	14	84.24	1.66	37	7	16	77.24	1.66
17	2	15	83.24	1.66	38	8	13	79.24	1.66
18	2	16	78.24	5.66	39	8	15	77.24	1.66
19	3	10	85.24	3.66	40	9	12	78.24	2.66
20	3	12	85.24	1.66	41	10	12	78.24	1.66
21	3	16	80.24	2.66					

Table S 3: The enzyme concentrations (mg/l) predicted from ANN and in-silico modelling to have higher flux values. For the experimental validation, we used relative concentrations of enzymes obtained as explained in Method S 1.

Table S 4: Specification of enzymes used for the calculation of cost for the preparatory stage of glycolysis from sigma. Specific activities are calculated by Fievet et al.

Enzyme	Origin	Price (EUR)	Sold units (kU)	Specific activity (calc.) (U/mg)	Units (calc.) (kU)	MW (active enzyme) (kDa)
Phosphoglucoisomerase	Baker's yeast	78.50	1.0	1370.0	1.0	119.5
Phospho-fructokinase	Bacillus stearothermophilus	178.00	0.1	70.0	0.1	136.5
Fructose biphosphate aldolase	rabbit muscle	48.75	0.1	42.0	0.1	157.4
Triose phosphate isomerase	Baker's yeast	146.00	n.a.	14690.0	50.0	53.6

Table S 5: Comparison of flux predicted between Fievet et al. selected concentration (JFievet) and new estimation during current work (Jobs).

Index	PGI	PFK	FBA	TPI	Jobs	JFievet
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	[µM s ⁻¹]	[µM s ⁻¹]
1	70.0	5.0	5.0	21.9	0.59	1.22
10	19.19	17.0	56.4	9.67	8.03	11.05

Table S 6: The calculated price for the μ M of NADH consumed per second by the enzyme concentration selected for the experiment.

T. 1		m	g/l		μΜ	/s	in EUR
Index	PGI	PFK	FBA	TPI	Jann	Jexp	Price per µM
11	2	10	88.24	1.66	12.24	15.7	0.213
12	2	10	86.24	3.66	12.06	16.3	0.208
13	2	11	82.24	6.66	12	12.1	0.294
14	2	12	80.24	7.66	12.03	16.6	0.222
15	2	13	85.24	1.66	12.7	13.9	0.263
16	2	14	84.24	1.66	12.74	18.3	0.205
17	2	15	83.24	1.66	12.72	17.1	0.226
18	2	16	78.24	5.66	12.16	20.1	0.202
19	3	10	85.24	3.66	12	14.4	0.241
20	3	12	85.24	1.66	12.53	15.8	0.230
21	3	16	80.24	2.66	12.44	20.6	0.198
22	4	11	85.24	1.66	12.32	15.4	0.235
23	4	16	80.24	1.66	12.49	16.1	0.257
24	4	16	79.24	2.66	12.36	19.3	0.216
25	5	15	80.24	1.66	12.48	18.5	0.223
26	5	16	79.24	1.66	12.41	17.8	0.237
27	5	16	78.24	2.66	12.29	16.3	0.261
28	5	16	77.24	3.66	12.18	19.7	0.217
29	6	15	79.24	1.66	12.41	17.8	0.237
30	6	15	78.24	2.66	12.29	19	0.223
31	6	15	77.24	3.66	12.19	21	0.203
32	6	16	78.24	1.66	12.34	15.6	0.277
33	6	16	77.24	2.66	12.23	17.8	0.244
34	7	12	78.24	4.66	12	17.1	0.237
35	7	15	78.24	1.66	12.33	17.7	0.243
36	7	15	77.24	2.66	12.22	18.8	0.230
37	7	16	77.24	1.66	12.27	20.4	0.216
38	8	13	79.24	1.66	12.26	15.9	0.263
39	8	15	77.24	1.66	12.26	17.9	0.245
40	9	12	78.24	2.66	12.04	15.8	0.265
41	10	12	78.24	1.66	12.05	13.6	0.312

Supplementary Figures:

Figure S 1: The cost predicted (in EUR) for the four-enzyme concentration (PGI, PFK, FBA and TPI) selected for experimental validation. The blue is lowest, to highest in red.

Figure S 2: The cost predicted (in EUR) for the four-enzyme concentration (PGI, PFK, FBA and TPI) selected by Fievet et al. (2006). The blue is lowest, to highest in red.

Supplementary methods:

Methods S1: concentration based on relative activity:

Our new methodology predicts the flux through the upper part of glycolysis based on the concentrations of the four enzymes, PGI, PFK, FBA and TPI. To make our prediction comparable to that of Fiévet et al, it was necessary to employ relative enzyme activities rather than enzyme concentrations. Depending on the specific activity of the enzyme preparation, the concentration of the enzyme represents a particular activity, which can vary from batch to batch. To account for this, we took the enzyme concentrations listed in Fiévet et al. (see Table S 3, indices 1-10) and transformed them into enzyme activities (see Equation 1) by employing the specific activities that were indicated in the paper (see also Table S 4). Then, we used the specific activities that we had assessed for the enzymes (see Table S 2 and Table 2 of the main text) and transformed the enzyme activities back into enzyme concentrations. These concentrations are indicated in Table 2 of the main text. The enzyme concentrations in 2 were used for the prediction (ANN predicted flux, JANN and simulated flux Jcopasi) while the

concentrations indicated in Table 2, index 11-41 were used for the experimental assessment of the flux.

enzyme concentration $\left(\frac{\text{mg}}{\text{L}}\right) = 1000 * \frac{\text{enzyme activity}\left(\frac{U}{\text{mL}}\right)}{\text{specific acitvity}\left(\frac{U}{\text{mg}}\right)}$ ------ Equation 1

$$C\left(\frac{mg}{L}\right) = 1000 * \frac{U_{v}\left(\frac{U}{mL}\right)}{U_{s}\left(\frac{U}{ma}\right)}$$
------ Equation 1

C, enzyme concentration (mg/l); U_v , enzyme activity per volume (U/mL); U_s , specific enzyme activity (U/mg)

Method S2: Cost Calculation

We predict the cost for μ M/s of flux through the pathway as follows:

Cost per 1U of enzyme: For each enzyme (PGI, PFK, FBA, TPI) the cost was calculated as below using theTable S 4.

$$P_{U}\left(\frac{\text{EUR}}{\text{U}}\right) = \frac{Price(EUR)}{Units \ sold(U)}$$

Pu, price per unit

Cost per reaction through the whole pathway: the cost per 1 ml of reaction is calculated as follows:

$$C_R(EUR) = \sum (U_v * P_U)$$
 ----- Equation 3

C_R, cost per reaction; U_v, enzyme activity per reaction volume (U/mL)

Cost per one μ **M/s flux:** Cost for the conversion of 1 μ M NADH in 1 second is calculated using Equation 4:

$$C_{flux} (EUR / \frac{\mu M}{s}) = \frac{C_R (EUR)}{f (\frac{\mu M}{s})}$$

 C_{flux} , cost per flux of 1 μ M/s; f, estimated flux (μ M/s)