Promoting light hydrocarbons yield by catalytic hydrodechlorination of residual chloromethanes using palladium supported on zeolite catalysts

Carlos Fernandez-Ruiz¹, Jorge Bedia¹,*, Javier Mario Grau², Ana Clara Romero², Daniel Rodríguez¹, Juan José Rodríguez¹, Luisa María Gómez-Sainero¹

- ¹ Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- ² Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera" –INCAPE-(FIQ-UNL, CONICET), CCT CONICET Santa Fe "Dr. Alberto Cassano", Colec. Ruta Nac. N° 168 KM 0 Paraje El Pozo, S3000AOJ Santa Fe, Argentina
- * Correspondence: jorge.bedia@uam.es; Tel.: +34 91-497-2911

ELECTRONIC SUPPLEMENTARY INFORMATION

Mass external concentration (% w.t.)							
Catalysts	С	0	Al	Si	К	Na	Pd
HMOR	5.3	52.4	2.7	39.0	-	-	0.6
HL	5.8	46.8	6.2	29.8	11.1	-	0.3
KL	5.3	51.1	6.9	33.6	2.6	-	0.4
HY	5.6	49.2	8.8	35.0	-	1.3	0.1
NaY	8.5	46.2	35.9	6.8	-	1.9	0.7

Table S1. XPS analysis of the fresh catalysts at high resolution.

Figure S1: XRD patterns of the catalysts.

Figure S2: XPS Pd3d deconvoluted spectra Pd 1%.

Figure S3: Selectivity versus reaction temperature on the HDC of DCM with the catalysts $(\tau = 0.8 \text{ kg}_{cat} \text{ h mol}^{-1}, 1000 \text{ ppmv}, \text{H}_2/\text{DCM} = 100).$

Figure S4: Selectivity versus reaction temperature on the HDC of TCM with the catalysts $(\tau = 0.8 \text{ kg}_{cat} \text{ h mol}^{-1}, 1000 \text{ ppmv}, \text{H}_2/\text{TCM} = 100).$