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Abstract: Carbon dioxide is an intrinsically stable molecule; however, it can readily react with various
nucleophilic reagents. In the presence of a cyanide source, CO2 was proven to be useful to promote
addition reactions. Here we report the use of CO2 to facilitate 1,4-conjugate cyanide addition reaction
to chalcones to generate organonitriles. Nitriles are key component in organic synthesis due to their
utility in numerous functional group transformation, however, conjugation addition of cyanide has
been a challenge in this substrate class due to side reactions. To mitigate this, we employed simple
ammonium and metal cyanide sources as nucleophiles under carbon dioxide atmosphere where high
selectivity toward the desired product was obtained. The presented reaction is not feasible under inert
atmosphere, which highlights the important role of CO2, as a Lewis and Brøndsted acidic catalyst.
Further derivatization of organonitriles compounds were performed to showcase the utility of the
reaction, while an unprecedented dimerization reaction was identified and characterized, affording a
cyclopentanone scaffold.
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1. Introduction

Carbon dioxide (CO2) is a thermodynamically stable and kinetic inert molecule however utilization
and functionalization of CO2 found many unique modes of actions [1,2]. For example, CO2 can be
used as temporary protecting group, thus preventing polymerization of acrylonitriles initiated by
cyanide anion [3,4]. In principle, the nucleophilicity of cyanide is sufficiently high however it requires
catalytic species to enhance reaction rates under controlled manner to improve selectivity [5]. This is
particularly the case with insoluble metal cyanides, such as NaCN and KCN, when reactions are
performed in organic solvents. Nevertheless, the obtained organonitriles are ubiquitous functional
group in organic synthesis, enabling facile synthesis of various molecular scaffolds via meta-selective
C-H activation [6,7], reduction (amines) [8], hydrolysis (carbonyls) [9], radical reactions (cyanide
abstraction) [10,11] and umpolung chemistry (cyanohydrins) [12]. Among many reaction pathways,
hydrocyanation with gaseous HCN showed the most atom economic reaction with olefin substrates [13].
The use of solid metal cyanide sources is desirable to avoid volatile HCN, however, it often requires
high reaction temperature due to the low solubility and reactivity of alkali metal cyanides [14]. Recently
our group demonstrated the employment of catalytic amounts of CO2 for 1,4-conjugate cyanide
addition reaction of coumarin substrates [15]. The use of ammonium cyanide as a nucleophile was
sufficient to quantitatively convert the starting materials to the desired products under 1 atm of
CO2 (Scheme 1A). In addition, we found that cyanohydrin synthesis can be facilitated under CO2

atmosphere, implying potential catalysis mediated by CO2. Here we expand our system to a general
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Michael acceptor namely chalcones, which exhibit broad application potentials after cyanation reaction
under CO2 atmosphere. Previous studies on chalcone cyanation reactions were limited to metal
catalysts, including a Ni-catalyzed cyano-borrowing process [16] a Sm-mediated reaction [17] and
a Sc(OTf)3 mediated reaction with an ammonium cyanide nucleophile [18]. Organic and inorganic
bases, tetraarylphosphonium inner salts and Cs2CO3 were reported to catalyze addition of TMSCN
(trimethylsilyl cyanide) to chalcones [19,20]. To the best of our knowledge, the CO2-promoted cyanation
reaction of chalcones exhibit the first metal-free 1,4-cyanation reaction without generating HCN under
practical reaction conditions by using cyanide salts [21–23].

Scheme 1. (A) Previous work: CO2-catalyzed cyanation of coumarins, TEACN: tetraethylammonium
cyanide (B) cyanation of chalcone (1) under CO2 atmosphere (1 atm).

2. Results

We commenced our investigation on chalcone cyanation reactions by optimizing reaction
conditions under CO2 atmosphere. It was clear that the reaction showed no product formation
under inert atmosphere (N2) although the starting material was fully consumed. This can be ascribed
to the reversibility of the reaction and the decomposition of the cyanated product (2) to form the
corresponding cyanohydrin (1,2-adduct), dehydration products and oligomers. We hypothesized that
the presence of CO2 diminished the polymerization of chalcone substrates by forming carboxylate
intermediates on the α-position of the product [5]. It is noteworthy that the formation of cyanohydrin
of 1,4-conjugate addition products 2 can occur, without the formation of 1,2-adducts (2′). The desired
products can be obtained after standard work-up.

2.1. Optimization

To understand the cyanation process, we attempted to optimize reaction conditions. At the
outset, we observed that the presence of CO2 is critical to obtain the desired product (entry 1, Table 1).
The structure of the cyanation product 2a was unambiguously confirmed by isolating crystalline
product which was recrystallized and analyzed by X-ray crystallography. On the other hand, the crude
reaction mixture, under nitrogen atmosphere, often showed complicated mixtures of byproducts and
insoluble particles, indicating formation of polymeric species. Under carbon dioxide atmosphere
(1 atm), it was found that 2–3 equivalents of the cyanide nucleophile were necessary to afford satisfactory
yields of the desired product (up to 85% isolated yield, entries 2 and 3). Interestingly, the employment
of KCN instead of tetraethylammonium cyanide (TEACN) showed a lower yield (19%) confirming
the importance of solubility of cyanide nucleophile. This can be controlled by adding an additional
phase-transfer reagent (NMe4Cl) in the presence of excess amounts of KCN (3.3 equiv) as a nucleophile,
affording the product in a good yield (72%). Solvent screening and temperature screening showed no
further improvement of the reaction conditions (entries 6–9). However, we concluded that the positive
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CO2 effect was quite general in some of the tested organic solvents, for example, under nitrogen
atmosphere, un-optimal solvents afforded lower yields of the product compared to the reactions
under CO2.

Table 1. Optimization of reaction conditions a.

Entry. Deviation from the Standard
Reaction Conditions Yield (%) b

1 Under N2 instead of CO2 trace
2 1.1 equiv. of NEt4CN 67%
3 3 equiv. of NEt4CN 81%
4 KCN (2 equiv) instead of NEt4CN 19%

5 KCN (3.3 equiv) instead of
NEt4CN + 2 equiv of NMe4Cl 72%

6 DCM as a solvent 20%
7 DMF as a solvent 35%
8 DMSO as a solvent 65%

9 un-optimal solvents (EtOH, Et2O,
TFH, dioxane) under CO2/N2

n.r.

a General conditions: 1a (0.24 mmol) was added to a solution of TEACN (2 equiv.) in a solvent (2 mL) under the
corresponding atmosphere with a balloon. The reaction mixture was stirred at room temperature for 5 h. b Yield
determined by 1H-NMR in the presence of an internal standard (1,3,5-trimethoxybenzene).

2.2. Substrate Scope

With optimized reaction conditions in our hands, we turned our attention to evaluate our
methodology in electronically differentiated substrates 1b-m to show generality of the process
(Table 2). The corresponding chalcone substrates were readily prepared via condensation reactions
(See Supplementary Materials). In general our reaction conditions was proven to be applicable for
most of chalcones affording conjugated addition product in good yields (59–73% isolated yield) within
short reaction time. When the reaction time was prolonged, the reaction proved to form various
byproducts, presumably via dimerization and oligomerization. It is noteworthy here that some of
cyanation product were obtained in low yields (2d: 13%, 2g: 20%), however, these are unique cases
with highly electron-withdrawing group (-NO2) and a free amine (-NH2), which are difficult to control
for other types of side reactions. Further investigations with cyclic enone substrates (1h-1l) showed
promising reactivity for cyanation under CO2, delivering the desired products in moderate to good
yields. Indanone-derived product 2h was spontaneous crystallized (15% from the reaction mixture),
which confirmed the product unambiguously by X-ray crystallography as a single diastereomer.
Interestingly, chroman-4-one derived chalcones (1k and 1l, entries 10 and 11) showed different reaction
pathways: chalcone 1k was converted to ring-opened form (2k), presumably after a cyanation-induced
ring opening reaction and then double bond isomerization to afford thermodynamically stable products.
For the reaction with chalcone 1l, we tentatively assigned the main product as chromone derivative
(2l) without the incorporation of cyanide, indicating many potential reaction pathways, which can
lead to the formation of unexpected byproducts.
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Table 2. Substrate scope for the cyanation of different chalcone derivates under CO2
a.

Entry Chalcone, 1 Time/h Product, 2 Yield/% c

1 7.5 73

2 2.5 63

3 2 13 b

4 2 59

5 7.5 64

6 2 20 b

7 18 15 d

8 18 37

9 18 74
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Table 2. Cont.

Entry Chalcone, 1 Time/h Product, 2 Yield/% c

10 18 23

11 18 41

12 18 88

a General conditions: In a vial, NEt4CN and 1b-1m (0.40 mmol) were stirred in 3 mL solvent at room temperature under
CO2 atmosphere via balloon. b Yields were determined by 1H-NMR via internal standard (1,3,5-trimethoxy-benzene).
c Isolated Yield. d isolated yield based on the precipitated crystals.

Among many possible side reaction pathways, we found out that a dimerization reaction occurred
at a higher concentration (7.5 g-scale, 36.0 mmol, 0.36 M) to generate cyclopentenone scaffold 8 in
50% isolated yield. A proposed reaction mechanism includes Robinson annulation (1,4-conjugate
cyanation reaction and subsequent aldol condensation reaction). We confirmed that the obtained
cyclopentenone 8 showed reasonable stability in the reaction mixture. Based on our analysis of the
reaction mixture, the cyclic enone (8) showed no reactivity in the presence of additional cyanide
nucleophiles under the same reaction conditions. In 1959, R. B. Davis reported the isolation of a similar
compound from a reaction of benzaldehyde, sodium cyanide and acetophenone in methanol without
detailed characterization of the compound [24]. To verify this, we investigated the reaction mechanism
by analyzing the reaction mixture at earlier stages and isolated dimer 8-int (Scheme 2), which was
formed after the cyanation reaction. This dimerization process can be controlled by increasing the
concentration of CO2 (dry ice, 25 g for 2.4 mmol chalcone) or in the presence of stoichiometric amounts
of a proton donor (2,6-diisopropylphenol): the desired product was obtained in good yield 80% and 81%
respectively. The role the additional proton source needs further investigation, however, we presumed
that the formation of ammonium enolate (i.e., 1a-CN) prohibits the selective conversion of the starting
material to the product 2. In the presence of a sterically demanding phenol, a facile protonation
process of the enolate is expected affording the desired products. Higher concentration of CO2 and
water is also beneficial to render acidic reaction conditions, therefore minimizing oligomerization
and polymerization reactions (Scheme 2C). We presume that the carboxylated product (2a-CO2) is
responsible for the successful cyanation reactions under our optimized reaction conditions despite the
substrate dependency.
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Scheme 2. (A) Dimerization of chalcone (1a) to cyclopentanone 8 and the single crystal X-ray structure
of dimer 8 (B) large scale cyanation reactions with dry ice and a proton donor. (C) a plausible reaction
mechanism with CO2 and without CO2 (oligomerization and other side products formation reactions).

2.3. Functionalization of Cyanated Chalcones

We further demonstrated the utility of the CO2-mediated conjugate cyanation reaction by
functionalizing the β-cyanoketone product 2a. The racemic cyanated product was prepared in a larger
scale reaction based on the above-mentioned studies (Scheme 2B,C) and then subjected to various
types of organic transformation as illustrated in Figure 1. Reduction of the ketone functional group
was performed with NaBH4 in methanol to give selectively β-nitrile alcohol albeit low isolate yield of
the product presumably due to the high acidity of the α-proton. Nevertheless, this reduction reaction
shows an interesting synthetic route toward functionalized alcohols with a nitrile group untouched.
We also performed transformation of nitrile group to tetrazole in the presence of ZnCl2 promoter,
smoothly affording the desired product in 39% yield [25]. For hydrolysis, we found out that with
the choice of a strong Brønsted acid directed to different hydrolysis products, amide product 4a was
obtained in good yield (71%) in concentrated sulfuric acid at room temperature. On the other hand,
carboxylic acid product 5a was obtained under reflux conditions with concentrated HCl under CO2

atmosphere to prevent a potential decarboxylation reaction.
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Figure 1. Functionalization of cyanation product 2a via hydrolysis, tetrazole formation, reduction and
amide bond formation reactions.

3. Discussion

The use of CO2 for organic synthesis is appealing for many reasons [26] (1) as a cheap and
non-innocent inert gas, (2) often accelerate and control reactions, (3) enabling chemistry with insoluble
metal cyanide reagents in organic solvents. However, it is important to note that the employment
of CO2 can complicate the outcome of reactions due to undesired binding of nucleophiles therefore
reducing the reactivity. Based on our investigation and previous studies [15,27,28], we presumed that
the positive effects of CO2 in catalyzing chemical reactions can be general, particularly in reactions
involving reversible steps. In the current investigation with chalcones, the reaction is highly controlled
by thermodynamics that allowed us to access various products in high yield. The importance of
CO2, however, cannot be neglected due to the severe side products’ formation in the absence of CO2.
This phenomenon—a cleaner reaction mixture under CO2—has been sporadically revealed in synthetic
chemistry [29,30]. Further investigation will pave the way to understand the true capacity of CO2 in
organic synthesis, potentially providing new ways of mitigating anthropogenic CO2 via CO2 capture
and sequestration in a catalytic manner.

4. Materials and Methods

All the chemicals, unless stated otherwise were purchased from commercial suppliers in the
highest purity and used without further purification. Solvents used were HPLC (high performance
liquid chromatography) grade either as it is or dried on molecular sieves (4 Å) prior to use. The water
concentrations of all the solvents used in the present study were measured on a Karl Fischer titrator
(831 KF Coulometer). Analytical thin layer chromatography was done on Merck DC-Alufolien SIO2 60
F254 0.2 mm thick pre-coated TLC plates. Column chromatography was performed using SiO2(SI 1721,
60 Å, 40–63 µm). 1H NMR and 13C NMR spectra were recorded with 500 MHz Ultrashield Plus 500
spectrometer and 126 MHz on a Bruker instrument. All chemical shifts (d) are given in ppm using
the solvent residual peak as reference. X-ray crystallography was performed by the crystallography
service of the Department of Chemistry, University of Copenhagen, Denmark on a Bruker/Nonius
Kappa CCD 4-circle diffractometer.

5. Conclusions

In conclusion, we have demonstrated a facile cyanation reaction of chalcone electrophiles under
atmospheric CO2 pressure at ambient reaction temperature. This is a unique system considering the
reversibility of the reaction and competition reaction pathways. We ascribed the observed selectivity
to the active role of non-inert gas CO2, which can interact with substrates (cyanide and chalcones),
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intermediates, transition states and products. Further applications of CO2-mediated organic synthesis
are underway in our laboratory to expand the concept to various organic transformation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/12/1481/s1,
Synthetic procedures for substrates, reaction conditions and 1H and 13C NMR spectra.
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