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Abstract: Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have
been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the
ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts
(TiO2 or ZnO). The strong size and morphology dependence of metallic nanostructures to tune
their visible to near-infrared (vis-NIR) light harvesting capabilities has been combined with the
design of a wide variety of architectures for the semiconductor supports to promote the selective
activity of specific crystallographic facets. The search for efficient heterojunctions has been subjected
to numerous studies, especially those involving gold nanostructures and titania semiconductors.
In the present review, we paid special attention to the most recent advances in the design of
gold-semiconductor hetero-nanostructures including emerging metal oxides such as cerium oxide or
copper oxide (CeO2 or Cu2O) or metal chalcogenides such as copper sulfide or cadmium sulfides
(CuS or CdS). These alternative hybrid materials were thoroughly built in past years to target research
fields of strong impact, such as solar energy conversion, water splitting, environmental chemistry,
or nanomedicine. Herein, we evaluate the influence of tuning the morphologies of the plasmonic gold
nanostructures or the semiconductor interacting structures, and how these variations in geometry,
either individual or combined, have a significant influence on the final photocatalytic performance.

Keywords: plasmonics; photocatalysis; heterostructures; semiconductors; NIR; core-shell; Janus-like;
yolk-shell; nanorods; chalcogenides

1. Introduction

Since the first reported example of heterogeneous photocatalysis in 1911 applied to the degradation
of Prussian Blue by ZnO powder and illumination [1], the degree of sophistication and complexity
in photocatalyst design has experienced a huge development [2]. In heterogeneous photocatalysis,
the process is initiated by the interaction between incident photons and the catalyst. The photon
absorption by the catalyst (typically a semiconductor) leads to the promotion of valence band electrons
into the conduction band, thereby creating electron-hole pairs. Those carriers can induce the subsequent
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generation of free radicals (e.g., hydroxyl (OH), superoxide (O2
−)) to target specific chemical reactions.

As a requirement, the energy of the incident photon (hν) must be equal or higher than the energy
band gap (Eg) of the catalyst, meaning that the incident electromagnetic wavelength must be energetic
enough to overcome the barrier to excite an electron from the highest occupied energy levels to the
lowest unoccupied levels. Well-established semiconductor-based photocatalysts, such as TiO2 or
ZnO possess high Eg values (3.05 [3] and 3.3 [4] eV, respectively) and are constrained to the more
energetic ranges of the solar spectrum (i.e., UV window representing only up to 5% of the solar
radiation) for an effective photoactivation. Abundant efforts have been devoted in the past decades
to expand the photocatalytic response of heterogeneous semiconductor photocatalysts towards the
visible and infrared ranges in order to maximize the absorption of the solar spectrum [5–9]. One of
the most promising and explored strategies has consisted on the combination of semiconductor
structures with noble-metal based nanoparticles [10–12]. Recent reviews available in the literature
have deepened into the synergistic action of small metal nanoparticles decorating semiconductors and
on how the controlled architecture of the latter may have a strong influence on the final photocatalytic
outcome [13–20]. Another interesting aspect of metallic nanostructures correlates with their unique
optical response that can be modulated upon variations of their specific size and morphology [19–23].
At the interface between the metal surface and other medium (with different dielectric properties),
exist a phenomenon known as Localized Surface Plasmon (LSP) that consist on a coherent delocalized
electron oscillation leading to the generation of an electromagnetic field both outside and inside
the metal. An excitation with radiation of the right wavelength causes a resonance interaction and
subsequent collective oscillation of conduction electrons, in the case of metallic materials, due to the
restoring force between electrons and nuclei through Coulombic attraction (Figure 1). This phenomenon
is called Localized Surface Plasmon Resonance (LSPR), and for metals like Au, Ag, or Cu, the LSPR
may take place over a wide range of 400–1300 nm [24] as a function of their size and shape (Figure 1).
Thus, metallic nanoparticles emerge as perfect candidates as visible near infrared (NIR) light harvesters
to combine and improve the efficiency of semiconductor photocatalysts.

So far, TiO2 has been set as one of the most explored semiconductors to form hetero-nanostructures
in combination with metals to overcome its limited photo-response beyond UV window [25,26]
that can overcome its one of the most widely used semiconductors to carry out photocatalytic
reactions. Systematic evaluation of Au-TiO2 hybrid systems exploring the role and influence of shape,
specific configuration, heterojunction conformations, and so on, have been developed in the past
years. Numerous and varied architecture designs have been successfully reported including core-shell
(concentric and eccentric) [27,28], yolk-shell [29], Janus type structures [28], or even multi-component
heterostructures [30,31] and their performance successfully tested towards energy and environmental
applications [17,18,31–33]. The generation and assembly of these hetero-nanostructures offers multiple
advantages but the number of alternative candidates to TiO2 still remains as an open challenge.
The present review intends to overview the most recent advances described in the literature involving
the design of hybrid photocatalysts combining plasmonic Au nanoparticles and non-titania based
semiconductor coatings organized in a wide variety of nanoarchitectures (vide infra). Herein, we paid
special attention to plasmonic hybrids that involved the selection of anisotropic Au nanostructures
(mostly nanorods (AuNRs) and nanostars (AuNSs)) and a controlled growth of semiconductors
beyond the most typically studied (i.e., TiO2 [27,34,35] or ZnO [5,36,37]). This approach allows a
fine control of sizes for both metal and semiconductor, reduces the probability of recombination
of carriers, and maximizes an intimate contact to form efficient heterojunctions [38]. In contrast,
other methodologies lack sufficient control on the size and dispersion of metal nanoparticles or
the corresponding supports. Furthermore, many times these semiconductor nanoparticle supports
require additional tuning or post-treatments to ensure the exposure of preferential facets that do not
necessarily prevent numerous bulk recombination events due to their inherent polydispersity [13].
Hence, recent research innovative trends, such as cancer therapy, require more accurate control of the
photocatalysts dimension for proper internalization in cells and accurate reproducibility [39]. Therefore,
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we consider that the efforts made to improve the generation of novel plasmonic photocatalysts with a
controlled size and distribution in a core-shell (or analogous nanoarchitecture) and/or semiconductor
supports represents a very promising alternative to other metal-semiconductor configurations [13].
Herein, we have made special emphasis on highlighting the latest achievements with AuNRs or AuNSs
as plasmonic cores and different oxides (CeO2 and Cu2O) or chalcogenide semiconductors (CuS, CdS)
grown with core-shell, Janus, or dumbbell-like configurations. We have correlated the influence of the
different architectures with their final photocatalytic response.
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Figure 1. Morphology of the plasmonic nanostructure determines its Localized Surface Plasmon
Resonance (LSPR). (a) Isotropic Au nanoparticles (AuNPs) possess confined electrons alike in all
directions, resulting in a single LSPR band in the visible range; (b) the introduction of morphological
anisotropy allows LSPR with different absorption maxima. For the particular case of nanorods
(AuNR), the longitudinal induced anisotropy entails an LSPR at the near-infrared (NIR) window as the
confinement of electrons is different at the AuNR edges or sides.

2. Metal-Semiconductor Hetero-Nanostructures: Different Configurations and Light-Driven
Activation Mechanisms

A key feature of plasmonic photocatalysts is related with the photo-induced generation of highly
energetic electrons (hot electrons) generated via LSPR [40]. The distribution of these hot electrons
can be described by the Fermi equation using an elevated effective temperature [41]. After light
absorption, LSPR decay may occur either radiatively, through re-emitted photons, or non-radiatively,
for instance through transfer of hot electrons [42], generally through intraband excitations within the
conduction band [40,43] thereby causing electrons from occupied energy levels to be excited above the
Fermi energy. Hence, after coupling with metals, typical semiconductors used in photocatalysis can
capture these hot electrons and generate reactive species by using visible-NIR light. The formation
of metal-semiconductor heterojunctions allows hot electrons to be accepted into semiconductor
conduction band and carry on the photocatalytic process (Figure 2a). The energetic barrier formed
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at the metal-semiconductor interface is called Schottky barrier [44]. Hot electrons are injected into
semiconductor conduction band when their energy is superior to Schottky barrier energy (ESB) which
is lower than the bandgap of semiconductor (Eg) [45]. After the hot electron generation, holes are also
generated in the plasmonic structure as illustrated in Figure 2b. For this mechanism to occur there
must be a good interaction between the metal and the support, which make critical the synthesis step
of these hybrid materials.
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Figure 2. (a) Formation of Au-semiconductor heterostructures for the particular case of a core-shell
structure. Different wet chemistry approaches are available to create a wide range of morphologies;
(b) hot electron injection process. When a plasmonic structure as, in example, AuNR is irradiated
with light with an energy equal to its LSPR, electrons mainly coming from conduction band are
excited. If their energy overcomes the Schottky barrier energy (ESB), they can be injected into the
semiconductor conduction band to further perform the photocatalytic process; (c) mechanisms involved
in plasmonic-semiconductor heterostructures (adapted from [46]). Diverse physical processes may
take place between plasmonic nanostructure and semiconductor to promote valence band electrons to
conduction band energy levels.
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Nevertheless, several mechanisms could be involved independently or, most often, concurrently in
photocatalysis using hybrid plasmonic materials [46]. Depending on the interaction of the plasmonic
nanoparticle with the support and the electronic characteristic of the latter, plasmonic excitation
can improve the photocatalytic properties of materials in several ways: (i) increasing absorption
and scattering of light [47]; (ii) enhancing of the localized electric field [48]; (iii) hot charge carriers
generation and transfer [49], already mentioned; (iv) dipole induction on non-polar molecules [50];
(v) local heat generation [46,51], depicted in Figure 2c.

Since nature, size, shape, and crystalline structure of the nanoparticle determine the energy of
the LSPR [52] and in consequence the wavelength of the light used in photocatalysis, the control
of those cited parameters is fundamental for the synthesis of suitable hybrid materials [53–55].
Concretely, the introduction of anisotropy in plasmonic-semiconductor systems adds a superior level
of performance. Plasmonic Au cores exhibit a wide range of anisotropic nanostructures (nanoshells,
nanorods, hollow spheres, nanoprisms, triangles, cubes, nanostars, urchins, etc.) with different
LSPR [8,18,24,31,52,56] (Figure 3a). Typically, plasmon energy is concentrated on the sharpest edges of
the anisotropic plasmonic nanostructures of high curvature [57–59] where light harvesting will take
place more efficiently [60].
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Figure 3. (a) The morphology of Au nanostructure determines LSPR shift. Au nanospheres, prisms,
cages, urchin-like or rods exhibit different electron confinement, entailing different UV-vis. spectra;
(b) Plasmonic-semiconductor heterostructures with different architectures, including core-shell
(plasmonic nanoparticle as core and semiconductor as a surrounding shell), dumbbell (plasmonic
AuNR where the semiconductor is selectively deposited on tips), Janus (plasmonic nanoparticle and
semiconductor attached with both surfaces available for the substrates), and yolk-shell (plasmonic
nanoparticle inside a voided semiconductor structure).

As shown in Figure 3b, it is possible to differentiate between core-shell, dumbbell, Janus,
and yolk-shell configurations attending to the semiconductor distribution around the metallic cores [38]
with several implications in their photocatalytic activity. Structures with exposed surfaces of both the
metal and the semiconductors (i.e., dumbbell and Janus) exhibit a superior photocatalytic performance
due to the continuous exposure of the reactants with the generated charge carriers (e−/h+) [27,40,60–64].
Different anisotropic heterostructures have been prepared with SiO2 [65], Pt [66,67], Fe2O3 [68],
Cu2O [60], CeO2 [63], and TiO2 [27]. Yolk-shell structures (Figure 3b) are characterized by a hollow
shell and an inner plasmonic core with several benefits for the photocatalytic process: (i) the presence of
a hollow shell ensures higher specific surface area as it possesses an inner and external part. (ii) The small
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thickness of shells shortens charge diffusion distance, reducing possible bulk recombination processes,
and (iii) void space present allows reflection of light inside the hollow shell, causing light scattering,
and boosting the number of available photons [69].

3. Evaluation of Au-CeO2 Anisotropic Hetero-Nanoarchitectures

The combination of plasmonic Au nanostructures with cerium oxide as complex hybrid
architectures represents an interesting example of synergistic photocatalyst that maximizes the positive
properties of each individual counterpart beyond the most explored TiO2 or ZnO hybrids [70–72].
The redox properties of Ce endow this oxide with large capability to transport oxygen via
Ce(IV)-Ce(III) pair redox cycles within its framework [21]. As a result, an extensive number of
oxygen vacancies are present in ceria-based materials surface [73], favoring a continuous cycle
of catalytic reaction-regeneration in oxidation reactions [21,74–77]. Nevertheless, CeO2 exhibits
two major drawbacks for photocatalytic purposes: (i) CeO2 possesses a band gap of 3.2 eV
burdening its photocatalytic response to the ultraviolet region; (ii) CeO2 possesses low carrier
mobility, hindering its transport to surface after the electron-hole pair photogeneration to react with
the targeted substrates [78,79].

Regarding the generation of the plasmonic hybrid photocatalyst, (i) CeO2 as an n-type
semiconductor possesses high density of states in its conduction band, which confers a good
electron-accepting capability [40] and forms a heterojunction and Schottky barrier with Au to allow
a proper hot-electron injection [21,22] (Figure 4). Therefore, the synthesis and development of
Au-CeO2 photocatalysts to maximize the redox properties of ceria has boosted the research on
optimizing the interaction of these materials through an extended variety of imaginative configurations.
Thus far, CeO2 has been successfully deposited onto nanorods (both forming dumbbell [22] and
core-shell [21,22,80] structures), spheres [21,81], or hollow cages [82].
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Figure 4. Energy band structure of Au-CeO2 photocatalysts. (a) Energy band levels of Au and CeO2

respectively; CeO2 possess a relatively large band gap, needing from UV light to photo-generate charge
carriers; (b) energy band distribution upon the gold plasmon excitation to (c) inject hot electrons into
the conduction band of CeO2.
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In general, the synthesis of core-shell Au-CeO2 nanostructures has been typically reported via
hydrothermal treatment of a chelated Ce precursor [21,22,80–82]. Li et al. [21] reported the first
synthesis of Au-CeO2 nanostructures with core-shell configuration. One of the problems facing CeO2

selective deposition on Au nanostructures was the rapid condensation of Ce precursors to form CeO2.
By using ethylenediaminetetraacetic acid (EDTA) as chelating agent, fast hydrolysis of Ce (III) ions
could be prevented [83]. Thus, tuning Ce (III)/EDTA ratios allowed a fine control of CeO2 deposition
rates. Regarding the synthesis of dumbbell and Janus Au-CeO2 systems, two outstanding contributions
have been demonstrated in the recent literature by Pan et al. [63] and Jian et al. [22], respectively.
It was possible to control the selective growth of CeO2 on AuNR tips by controlling the amount of
cetyltrimethylammonium bromide (CTABr) adsorbed onto the Au surface, which acted as a blockade
of CeO2 nucleation.

The first reported examples of Au-CeO2 hybrids in photocatalysis were structurally analogous
to the conventional counterparts traditionally used in heterogeneous catalysis for CO oxidation
reactions. Kominaim et al. [84,85] reported the use of Au nanoparticles dispersed onto nanostructured
CeO2 supports to oxidize formic acid under visible light irradiation [84,85]. Nevertheless,
Au-CeO2 photocatalysts consisted in the random deposition of Au nanoparticles onto a relatively large
CeO2 support that prevented a deep understanding of the photocatalytic mechanism. As mentioned
before, Li et al. [21] reported the first core-shell configuration for Au-CeO2 nanoparticles. They tested
the use of both spheres and rod-shaped Au plasmonic cores. The Au@CeO2 catalysts exhibited
different LSPR absorption maxima at different wavelengths within the visible-NIR region (530, 591,
715 nm, respectively) [21]. These hybrid configurations were employed towards the photooxidation of
benzylic alcohol. The catalysts were subjected to calcination post-treatments to remove the excess of the
directing surfactant employed to grow the ceria shell (CTABr), which did not possess any influence in
the morphology/crystallinity of the sample. The influence of this calcination treatment was thoroughly
evaluated upon irradiation with two different excitation sources (Xe lamp (λ > 420 nm) and laser
(λ = 671 nm)). For Xe lamp, a systematic study of Au@CeO2, LSPR 530nm was performed. It was found
that the Au@CeO2 calcined sample exhibited the highest photocatalytic activity, suggesting that the
removal of CTABr enhanced the formation of Schottky barrier between Au and CeO2 and facilitated a
better charge carrier transfer in the catalyst. Upon laser irradiation, a similar trend was confirmed for
the uncalcined and calcined samples, respectively. Calcined Au@CeO2, LSPR 591nm showed the highest
photocatalytic activity. The authors attributed the enhanced response to the better match between the
LSPR absorption maximum of the calcined hybrid (redshifted after calcination to 680 nm) and the
incident laser wavelength at 671 nm.

As previously pointed out in Figure 2c (vide supra), not only the hot electron injection pathway can
supply electrons in the semiconductor conduction band. Interestingly, the generation of heat caused by
one of the decay mechanisms caused by LSPR [86] can also promote the excitation of electrons from the
valence band to the conduction band. As control experiments, Li et al. [21] studied the influence of the
temperature in the catalytic activity in the absence of light. They found a considerable catalytic activity
at the temperature that reached the system under illumination in darkness conditions, suggesting
that part of the photocatalytic activity was thermally induced. As a potential mechanism (Figure 5a),
the authors suggested a series of redox steps (vide infra): (i) electron injection into Ce(IV) conduction
band, which generated Ce(III) species; (ii) O2 adsorbed on previously generated Ce(III) sites forming
Ce(IV)-O-O· (iii) that radical can remove α-H of benzyl alcohol yielding Ce(IV)-O-OH; (iv) the radical
dehydrogenated benzylic alcohol combines with Ce(IV)-O-OH to produce the final benzaldehyde
product and H2O2, and simultaneously, an electron returning to the Au bands to ensure electron-hole
pair recombination.
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(adapted from [21]). Hot electrons generate Ce (III) species that can capture and activate O2 which
furtherly reacts with the substrate (benzylic alcohol). The generated Ce hydroperoxide (Ce-O-OH)
reacts with the radical intermediate, yielding the final aldehyde; (b) photocatalytic mechanism for
a dumbbell Au-CeO2 structure (adapted from [22]). The generation and consumption (and thus,
photocatalysis) of both hot electrons/holes is enhanced by promoting the accessibility of hole-acceptor
molecules to the metallic surface and thanks to the accommodating role of oxygen vacancies (OVs)
present in the ceria nanostructures. Core-shell architectures hinder this accessibility, accumulating hot
holes and slowing down the catalytic cycle.

Alternatively, Wang et al. [80] demonstrated that the plasmon-induced hot-electron injection
under NIR illumination in CeO2 coated AuNRs with Janus configuration accelerated photo Fenton-like
reactions using H2O2 as substrate. Again, the hot electron injection in Ce(IV) induced the formation of
Ce(III) that acted as active species in Fenton-like reactions [87] with the generation of highly reactive
·OH that subsequently facilitated the degradation of an organic model pollutant. As depicted in
Figure 5b, a heterostructure with plasmonic exposed faces possess important photocatalytic advantages.
Pan et al. [63] demonstrated that half-encapsulated AuNRs with CeO2 possessed better activity in
the catalytic reduction of 4-nitrophenol (4-NP) with NaBH4, in comparison with their core-shell
AuNR@CeO2 counterparts. Hot electrons were transferred from the plasmonic AuNR into CeO2,
generating holes on Au surface. BH4 can donate electrons to AuNR generating H species that further
convert 4-NP into 4-aminophenol. On the other hand, CeO2 is able to withdraw e− from AuNR that
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absorbs H+ from H2O yielding the same H active species [88]. This phenomenon could not occur in
the case of core-shell AuNR@CeO2 since Au facets remained unexposed to the liquid reaction media
and yielded a lower catalytic activity.

Following a similar methodology, Jia et al. [22] combined CeO2 with AuNRs forming a dumbbell
heterostructure (Figure 5b) and evaluated their photocatalytic performance in the N2 photofixation with
NIR irradiation. CeO2 rich surface in oxygen vacancies (OVs) (Ce(III) sites) chemisorbed N2 that could
be reduced to NH3 by injected plasmonic hot electrons, breaking triple bond N-N. Due to the exposure
of Au facets to the reaction media, as-generated hot holes could be consumed by a hole scavenger (in this
particular case, methanol) to close the photocatalytic cycle. Core-shell AuNR@CeO2 nanostructures
prevented the availability of hot holes and the accessibility of CH3OH to the active sites, which reflected
in a huge difference in the NH3 generation rate (114.3 vs. 18.44 µmol·h−1

·g−1) [22]. Thus, CeO2 emerges
as a promising photocatalytic material in combination with Au plasmonic nanostructures, being the
main highlights the regeneration of highly desired OVs due to hot electron transference from Au and
the photothermo-induced oxygen mobility [21]. The high oxygen mobility has shown to have influence
during the photothermo-catalytic process, as demonstrated by Li’s experiments with temperature
and in the absence of light [21,89]. CeO2 as n-type semiconductor [90] and as oxygen ion conductor
possess a unique charge separation effect: when a photon is absorbed, an electron is excited from the
valence band (orbital O2p) to an empty conduction band (orbital Ce4f), forming a Ce4+(e−)/O2− (h+)
pair. The as-generated electrons remain localized in Ce (IV) centers favoring the charge separation and
consequently, reducing the recombination phenomena (Figure 6) [90,91].
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Figure 6. Schematic CeO2 structure remarking the presence of OV and h+/e− separation.
Plasmon-photothermal induced local heating in CeO2 structure also enhances the oxygen ion mobility,
facilitating the migration of O2−(h+) species to the catalyst surface and, thus, enhancing the reaction
(adapted from [89]).

Cited reports confirm an effective synergistic effect in the photocatalysis between LSPR and
CeO2 and an enhancement of the photocatalysis with Janus-type heterostructures [22,80]. Hence,
synthetized Au-CeO2 nanostructures interact with visible and NIR light, remarking the promising
interest of these materials in environmental, biomedical applications and solar energy harvesting,
among others [69,91–98].
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4. Evaluation of Au-Cu2O/Au-CuS Anisotropic Heteronanostructures

Cuprous oxide has attracted much attention as a photocatalyst due to its remarkable features
as a semiconductor, and its extended variety of active roles in solar and energy applications of
paramount interests for the Sustainable Development Goals targeted by most of the worldwide
governments’ agendas. Copper (I) oxide materials have been widely used in the degradation of
organic compounds in solution and their photocatalytic activity has been studied against a large
number of potential pollutants, such as organic material [99,100], drugs [101] or nutrients [102].
In addition, studies are also emerging where copper (I) oxide is being used in the generation of
molecular hydrogen [32,103]. It is a highly abundant p-type semiconductor on earth with an energy
band gap (Eg) of ≈ 2.17 eV that has a low cost and good absorption capabilities in the visible range
when compared with other semiconductors [50,104]. However, some drawbacks have been also
consistently reported for this oxide such as: (i) rapid recombination of electron-hole pairs; (ii) limited
absorption of the semiconductor in the visible range; or (iii) natural tendency to form larger structures
or disproportionation (especially in liquid media). The combination with anisotropic plasmonic cores
to generate metal-semiconductor heterostructures represents an appealing alternative to overcome
these problems [56,105,106]. These hybrid nanostructures offer two remarkable features, the Schottky
barrier and the LSPR that improves the photocatalytic response by decreasing the carrier recombination
rates and expanding the absorption range to the visible.

The selective growth of copper oxide onto plasmonic Au cores has been a trendy topic widely
studied by multiple researchers in recent years [32,56,105–108]. However, the final morphology
and selective exposure of specific crystalline facets has also attracted great interest in the field of
photocatalysis in terms of both selectivity and reactivity [106,107,109]. The generation of core shell
Au-Cu2O hybrid structures with high precision has been reported in the recent literature [107,109,110].
Several parameters such as the nature of the reducing agents, the concentrations of reducing agent
or pH values have been systematically evaluated to modulate the morphology, shape, and length of
the oxide shells and favor the preferential exposure of selected crystal facets [32,109] (see Figure 7).
For instance, Kuo et al. [109] reported the controlled synthesis of different morphologies including
cubic structures, truncated cubes, cuboctahedra, or truncated octahedra to octahedra upon tuning
the variation of NH2OH. On the other hand, Kuo et al. [106] explored the influence of the different
morphologies of AuNPs coated Cu2O shell on the final photocatalytic performance towards the methyl
orange (MO) degradation. They showed how core-shell architectures improved MO degradation from
18 to 50 µmol·cm−2 in comparison with pristine Cu2O nanostructures and how the influence was higher
in the case of the cube-shaped counterparts. This was an example where the plasmonic core helped in
the transfer of carriers and promoted a better conductivity in a photo-electronic device. Yuan et al. [107]
also developed hybrid AuNRs-copper oxide nanoparticles where they explored variations on the type
of reducing agent to tune the preferential octahedral or cubo-octahedral morphologies (see Figure 7a).
Both structures were generated by Ostwald ripening process. Smaller crystals were dissolved and
redeposited onto larger crystals when different reductants were added. Hydrazine as stronger reductant
was reported to promote the copper species to their more stable morphology. They also tested their
photocatalytic activity towards the degradation of MO. It was observed how hybrid structures enhanced
more activity in comparison with analogous bare semiconductor counterparts. The Au internal core
performed in a dual way, LSPR promoted electron injection into the semiconductor and also acted
as a charge sinker to increase charge migration and separation. This was a representative example
on how the presence of the Au core considerably affects the activity of the system and how the
morphology of the external shell (corner-truncated octahedral vs. regular octahedral Cu2O) is also
highly relevant in the absorption and degradation of MO. The truncated octahedral core-shell led to
94% MO conversion from an original 10 mg·L−1 MO concentration in 80 min [107]. This influence was
also reported in Cu2O nanoparticles with different morphologies that also exhibited a much higher
photocatalytic activity in rhombohedral shaped structures due to the more selective MO absorption
over <110> faces for subsequent further oxidation [111] (see Figure 7a). Recent studies have also
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reported the use of hollow Au cores to build Au-Cu2O hybrids have also reported a successful tunability
of their optical properties depending on their final architecture (Janus vs. core-shell). They reported
an effective plasmon-induced energy transfer favored by the hollow Au nature that improved the
MO degradation rates [56]. Other recent report by Xu et al. [112] has established a strong influence
of the final heterostructure configuration on the capability to generate photocurrent. In this case,
the used solid gold seeds incubated with a ligand that shifted the core-shell configuration towards a
Janus-like structure.Catalysts 2020, 10, x FOR PEER REVIEW 11 of 27 
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Additional studies have also exploited the synergy of Au- Cu2O hybrid materials. For instance,
Yu et al. developed [32] a hot-dog-like hybrid configuration where they selectively deposited copper
oxide on the transverse part of large aspect ratio AuNRs, leaving the edges completely exposed [32].
It was possible to change the kind of Cu2O-AuNR architecture from core-shell to tips-exposed hot-dog
type structure by reducing the amount of copper precursor added to the synthesis. The preferential
epitaxial growth of Cu2O over the transversal part of AuNR promoted a first nucleation over these
sides, leaving the edges completely uncoated under low copper concentration conditions. In a
sequential manner, they even incorporated very thin TiO2 layers on top of the copper oxide and
established a critical evaluation of the photocatalytic activity for each hybrid configuration towards
hydrogen production. The charge separation efficiency was significantly higher for the hot-dog
configuration than for the bare Cu2O or the fully-covered core-shell counterparts. The hot-dog
configuration also exhibited an enhanced photocatalytic response almost 24-fold higher than the Cu2O
nanoparticles (80 µmol H2 g−1 h−1 vs. 3.4 µmol H2 g−1 h−1) and four times higher than the core-shell
configuration (19.3 µmol H2 g−1 h−1). The authors partially attributed the outperformance of the
hot-dog configuration to the generation of four hot-spots at the interface of the non-coated AuNR
and the semiconductor shells (see Figure 7b) of the hot-dog configuration. They concluded that this
interface was more efficient in the transport of carriers due to the direct interaction of holes with
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glucose (used as sacrifice agent) and to the more efficient generation of hot electrons to induce the
reduction step toward H2 generation (see Figure 7b) [32]. The results were even better in the case of
the ternary shell due to the more efficient p-n junction formed with the addition of a titania layer.

Even though ternary heterostructures are not the main focus of this review, it is worth mentioning
recent efforts to build Z-schemed TiO2-Au-Cu2O photoelectrodes [30] or the addition of a third
component of small Au NPs to the Au-Cu2O hybrids reported by Yu et al. [113]. They designed a
more complex core-shell AuNR@Cu2O (octahedral) architecture additionally decorated with AuNPs
(Figure 8). This ternary composite was able to increase the photocatalytic activity of the binary material
by incorporating AuNPs, improving the transfer and separation of displaced charges through the
semiconductor. Using higher wavelengths where Cu2O is not able to absorb, light would penetrate
through the structure reaching AuNR. Hot electrons could be generated via LSPR effect and injected
into the conduction band of the semiconductor. Hot electrons and holes generated in the conduction
band of Cu2O could be promoted from bulk Cu2O to the surface of the catalyst where the electrons are
mainly trapped by Au nanoparticles to form singlet oxygen radical from the O2 present on the surface.
Meanwhile, holes places mainly in the surface of Cu2O p-type semiconductor are used for the direct
MO degradation. An electron transfer “push–pull” synergetic effect was enhanced with the help of
both AuNR core and AuNPs on the surface of Cu2O.
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Figure 8. (a) Schematic mechanism for methyl orange (MO) photodegradation comparing the binary
(left) from the ternary core-shell configuration (right) containing a plasmonic AuNR core, an octahedral
Cu2O shell and an additional layer of small AuNPs for the ternary alternative (adapted from [113]);
(b) Selective Cu2O deposition on AuNSs (adapted from [60]).

Sang Woo Han and co-workers conducted a comprehensive and systematic study where they
developed hybrid plasmonic structures and explored how the variation of configuration affected
the photocatalytic performance for hydrogen production using methanol as hole scavenger [60].
They synthesized plasmonic gold nanostars (Au NSs) and partially deposited copper monoxide (Cu2O)
tuning the stabilizing agent (sodium dodecyl sulfate (SDS), (CTABr), or Polyvinylpyrrolidone (PVP)
(see Figure 8b). The Janus-like structures with <111> vertices completely covered by the semiconductor
were achieved by using PVP as a stabilizing agent. A complete core-shell type configuration was
achieved with the aid of sodium dodecyl sulfate (SDS) as a stabilizing agent and the structure with
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the exposed vertices was achieved by combining two surfactants, CTABr and SDS. The nature of
each stabilizing agent was crucial for the selective deposition of the semiconductor (Cu2O) onto
the plasmonic Au NSs. Another important parameter to consider is the curvature of the surface of
the plasmonic Au cores. In this systematic study, other Au seeds were used to prepare Janus-like
architectures. It was observed how more shaped seeds could satisfactorily enhance the proposed
architecture. However, it was not possible for less shaped seed structures using PVP as a stabilizing
agent. In contrast, samples with less sharp vertex led to the preferential formation of core-shell
type structures.

Yu et al. [60] also found that the use of PVP as a capping agent allowed a stronger interaction
with low curvature sites from the Au NSs apexes, thereby leading to a preferential nucleation and
growth of Cu2O tips at those positions (see Figure 8b). Homogeneous core-shell heterostructures
required the use of SDS instead of PVP. The random assembly and weaker protecting capability of
SDS enabled a complete overgrowth of Cu2O. In vertex-exposed Cu2O-Au NSs a binary mixture of
CTABr/SDS was used. The electrostatic interaction between both surfactants induced the generation
of more stable micelles in aqueous solution that preferentially absorbed in the high-curvature sites,
leaving the rest of Au nanostructure more accessible for Cu2O nucleation. To further analyze the
influence of the angle and the surfactants in the synthesis of anisotropic structures, AuNRs with
different aspect ratios and binary mixtures of two surfactants (CTAB and SDS) were also evaluated
by Yu and coworkers. They observed that the formation of Janus-type structures was preferentially
induced as the aspect ratio of the AuNRs increased [60]. The authors studied the photocatalytic
response of the different AuNSs-copper oxide configurations. A clear correlation between the efficiency
of conversion of solar energy and the topology could be established during the hydrogen generation
using methanol as sacrificing agent. Better conversions were achieved in partially covered structures
compared to fully covered structures. Furthermore, no catalytic response was observed in the absence
of the catalyst or in the presence of non-coated plasmonic cores. Furthermore, copper oxide of physical
mixtures of both Cu2O and AuNSs did not render any significant conversion, thereby reinforcing
the synergistic role of the plasmonic photocatalyst with a well-defined architecture (especially for
the Janus-type configurations).

The comparison of the photocatalytic activities among core shell-type structures with different
plasmonic structures (spheres and stars) in their core can be explained considering the excitation
capacity of both materials at different wavelengths. Using excitation wavelengths of 700/750 or 800 nm,
the sharp surfaces of AuNSs caused a much higher plasmonic excitation than their spherical counterpart.
Janus-like architectures present higher catalytic activity than Core-Shell structures. Not covered Au
highly increased the final photocatalytic activity of hybrid structure letting the oxidation reaction
of hole scavengers to occur for methanol, whereas core-shell architecture dramatically deprives the
accessibility of Au surface to hole scavengers.

It is shown how using identical AuNSs cores with a Cu2O overgrowth forming anisotropic
heterostructures, induced completely different photocatalytic outcomes. It was observed a strong
influence of Au-Cu2O plasmon energy transfer. Coated vertex Au nanostar enhanced higher plasmon
excitation in comparison to vertex exposed Au NSs configurations and leading the photocatalytic
activity of hybrid structures under those experimental conditions [60]. To better understand the
interaction mechanism between the plasmonic core and the outer semiconductor layer, the AuNSs
were completely coated with a thin insulating SiO2 layer prior to the subsequent deposition of copper
oxide. The hybrids with the SiO2 interlayer exhibited a considerable decrease in activity, pointing out
that the mechanism of action was carried out by plasmon-induced photocatalysis [60].

Au-Cu2O hybrid structures are being also currently explored for biomedical applications [114–117]
such as photodynamic therapy treatment of cancer cells. Xu et al. [118] performed in vitro studies
with AuCu-based materials, taking advantage of their ability to generate toxic reactive oxygen species
(ROS) and its highly efficient phototherapy. AuNRs were used to selectively deposit copper on one of
the sides of the Au structure using hexadecylamine as a protective ligand and sequentially making a
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coating with Au, which modified the structure inducing a galvanic replacement reaction and decreasing
the amount of copper in the sample.

Interestingly, there are additional copper-based heterostructures where the semiconductor
deposited over the plasmonic structure of Au is a Cu-based chalcogenide. These semiconductors
are not expensive and more stable p-type semiconductors with a well-defined LSPR in the visible
region. Furthermore, the amount of free charges in the material can be tuned upon modification of
experimental parameters. Generating non-stoichiometric copper deficient structures of CuS induces
the formation of transporters in the p-type semiconductor and exhibits subsequent properties such as
photothermal catalysis or photocatalysis through the generation of ROS [119]. This type of structure
can be made from previously formed copper oxides, giving rise to yolk shell-type structures where
the plasmonic core was enclosed in an external copper chalcogenide shell and this can move freely
within the voided structure [120]. To carry out the synthesis, it is typically necessary to obtain a copper
(I) oxide structure through the conventional protocol, growing copper oxide following an epitaxial
growth process. Later, the sample is sulfurized by introducing a sulfide precursor, such as Na2S in an
acidic medium, and it is allowed to evolve until the yolk-shell type structure is formed, maintaining the
crystalline faces of the original Cu2O structure. The catalytic ability of Au-CuS yolk shell structures to
form ROS has been used in cancer chemotherapeutic therapies. Zhang et al. used the photothermal
and photodynamic properties of this particular hybrid to perform a co-therapy using the resonance
energy transfer (RET) mechanism [116].

Wang et al. [121] synthetized hybrid core-shell Au-CuS nanostructures directly without the
need to use Cu2O as a sacrificial agent in the formation of the nanostructure and modified the final
properties of the photocatalyst through the non-stoichiometric growth of CuS at different amounts of
copper. They carried out a systematic study in which they evaluated the photocatalytic properties at
different wavelengths, ranging from UV to Infrared through the visible spectrum and determined the
influence of the different parts of the hybrid nanoparticle on the activity of the catalysts. The plasmonic
characteristics of the Au nucleus could be measured by changing its dimensions and modifying the
thickness of the CuS coating deposited around it. On the other hand, the plasmonic characteristics of
the copper sulfide shell could be modified by changing the concentration of free holes, which is closely
linked with the crystalline phase of copper sulfide and the Cu:S ratios found.

Nanostructured Au can act as a photosensitizer (see Figure 2), being able to generate more
electron-hole pairs in the semiconductor by means of RET mechanisms and thus improve the
photocatalytic activity in the visible spectrum. Moreover, charge recombination in the surface of the
semiconductor can be partially suppressed with the help of metals and charge migration through
the bulk of Cu2O could be enhance more easily in the presence of Au. The controlling deposition of
copper around Au nanostructure enables an overall downsize of the hybrid nanoparticles compared
with conventional Cu2O nanostructures. It also allows a more selective deposition of Cu2O. All these
encountered possibilities appearing with hybrid structures have a positive influence to enhance the
photocatalytic response of the hybrid.

5. Evaluation of Au-CdS Anisotropic Heteronanostructures

Other semiconductors commonly used in photocatalysis reactions are metal chalcogenides.
However, some of their most remarkable features, such as the absorption of light at certain wavelengths
or the separation of charges are far from optimal. For this reason, alternatives have been proposed
to improve the photocatalytic properties of these systems when we use a range of wavelengths that
encompasses the visible or infrared spectrum while achieving a better and more effective charge
separation. An interesting alternative that arises from the need to solve this problem is to create hybrid
metal-semiconductor nanostructures that allow the use of the visible-NIR spectrum thanks to the
metal’s plasmonic properties. Moreover, a wisely metal incorporation in semiconductor to form hybrid
structure also improve the charge separation and its photocatalytic activity. Metal chalcogenides have
been in the spotlight for the past years due to their versatility and potential number of applications in
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the energy field (i.e., photovoltaics, imaging). In addition, chalcogenides semiconductors have been
also studied for photocatalytic emerging applications in solar energy conversion and renewable energy
development [34,122–129].

Great interest has been devoted in recent years to the development of photocatalysts able to
exploit the sun’s energy to generate combustible, thus trying to reduce the amount of fossil fuels
used [130,131]. One of the most interesting alternatives is H2 generation as fuel using solar energy and
semiconductor-based photocatalysts are postulated as one of the most promising alternatives to achieve
this objective [132]. Some interesting features for solar-assisted photocatalysis in H2 generation could
be: [133] (i) It is necessary to find a semiconductor that has a narrow band gap and is highly efficient in
absorption light; (ii) the band edge has to be more negative than standard hydrogen reduction potential;
(iii) it should have good enough charge separation and migration to provide enough active sites.

There is a wide variety of photocatalysts but CdS is posited as a promising candidate for the
generation of hydrogen. It has an optimal band gap of 2.4 eV that allows it to have photocatalytic
activity under wavelengths of up to 500–600 nm in addition to a conduction band edge suitable for the
generation of H2 [134]. On the other hand, this semiconductor suffers from a rapid recombination of
charges that make it inefficient. As an alternative to improve the migration and separation of charges,
the generation of metal-semiconductor hybrids appears again as an alternative recently explored in the
field [61,133–137]. In this particular hybrid, the rich existing chemistry of quantum dots has boosted
the search for a wide variety of architectures searching the optimal coupling of energy levels necessary
to improve the photocatalytic outcome towards H2 production [34,136]. Developing anisotropic
structures such as dumbbell type bimetallic particles [135,136], Janus-type particles [62], or yolk-shell
structures [34,138] have reported considerable increases in the activity of the systems in comparison
with more conventional core-shell type structures. No considerable activity enhancements have been
shown in this latter configuration in comparison with the bare CdS semiconductor.

Zhao et al. [137], developed core-shell type hybrid structures and verified their efficiency in
photocatalytic reactions for the production of hydrogen. They were able to synthesize concentric
nanostructures where the plasmonic Au-core was completely covered by the semiconductor.
Alternatively, they were also able to generate eccentric structures where the core of Au was shifted,
having part of internal Au core exposed (see Figure 9a). For the synthesis of these nanostructures,
a two-step multistage was necessary in which, first, silver-coated Au structures were generated
in a core-shell configuration. Subsequently, the silver shell was sulfurized and a mixture of these
nanoparticles were allowed to evolve with the cadmium precursor and certain conditions to enhance
Au-CdS Janus-like/core shell-like nanoparticles. Zhao et al. reported [62] the need of eccentric
nanoparticles of silver sulfide with partial crystallinity for further evolve into the generation of
Janus-type structures. The catalytic studies showed that anisotropic materials with partially exposed
Au core possessed much higher photocatalytic activity than completely coated core-shell configurations.
A remarkable 730-fold enhancement in the H2 evolution rates was detected for the anisotropic dimer
(7.3 mmol H2 g−1h−1 vs. 0.9 µmol H2 g−1h−1, respectively). The authors claimed that increasing the
temperature was necessary to ensure the proper presence of a well-defined crystalline phase. This phase
was the niche that enabled a rational control of the anisotropy degree (see Figure 9a). In addition the
partial exposure of the plasmonic Au was also determinant to maximize the SPR effects [62].

The photocatalytic activity of these hybrid structures was proved to have a highly symmetry
dependence [137]. Janus-type particles were the most active, followed by analogous semiconductor
particles and ending with core-shell Au-CdS nanoparticles. Furthermore, the Janus hybrids with
the more pronounced anisotropy also exhibited the highest photoactivity using 300 W Xe lamp with
application of a 400 nm cut-off long pass filter for water splitting reaction. This was attributed to the
supporting role of Au acting as electron sink that could delay e/h+ recombination rates and perform
water reduction reaction. Upon excitation at wavelengths higher than 400 nm, a rapid electron transfer
occurs between the conduction layers of the semiconductor (CdS) towards the Au surface thereby
enabling a more efficient water reduction to generate hydrogen. However, the nanostructured bare



Catalysts 2020, 10, 1459 16 of 27

CdS or core-shell Au-CdS configurations prevent the separation of charges in such an efficient way and
in the case of core-shell particles, the electrons remain trapped in the core of the particle and precluding
the photocatalyst from an efficient hydrogen evolution reaction [137].

In an attempt to expand the photocatalytic response towards the less energetic NIR range
and enhance core anisotropy, Li et al. [139] explored the possibilities of plasmonic AuNRs as inner
plasmonic core. In this case, AuNRs were completely covered with silver to generate silver sulfide
in a second step that would end up giving rise to CdS under certain conditions. Wang et al. [140]
also developed more complex core shell-like nanostructures generating multilayered chalcogenide
shells containing different combinations of Bi2S3 and CdS (Figure 9b,c). These samples were tested
for dye photodegradation under visible region being the ternary combinations the most active in
comparison with the binary counterparts (Au-Bi2S3 or Au-CdS). The enhancement observed in the
ternary component was attributed to the transfer of electrons from the exposed semiconductor (CdS)
with a 2.4 eV band gap passing through the Bi2S3 semiconductor intermediate layer with a 1.32 eV
band gap until reaching the internal Au core. However, holes as positive charges, take longer to
move from the valence layer from one semiconductor to another, enabling charges separation and,
therefore, increasing photocatalytic activity. Moreover, hot electron injection from visible activated
dumbbell-like AuNR to semiconductor can considerably increase the photoactivity compared with
bare semiconductor or semiconductor coated conventional GNRs (see Figure 9b,c).

Catalysts 2020, 10, x FOR PEER REVIEW 16 of 27 

 

component was attributed to the transfer of electrons from the exposed semiconductor (CdS) with a 
2.4 eV band gap passing through the Bi2S3 semiconductor intermediate layer with a 1.32 eV band gap 
until reaching the internal Au core. However, holes as positive charges, take longer to move from the 
valence layer from one semiconductor to another, enabling charges separation and, therefore, 
increasing photocatalytic activity. Moreover, hot electron injection from visible activated dumbbell-
like AuNR to semiconductor can considerably increase the photoactivity compared with bare 
semiconductor or semiconductor coated conventional GNRs (see Figure 9b,c). 

 

Figure 9. (a) Concentric core-shell (I), eccentric core-shell (II), and Janus (III, IV) hybrid structures 
(adapted from [137]); (b) AuNR@Bi2S3 hybrid structure and its excitation mechanism under visible 
light irradiation; (c) AuNR@Bi2S3@CdS core-(double) shell hybrid structure. Excitation mechanism for 
a more efficient carrier migration and its considerable improvement when both semiconductors were 
coupled in a double shell structure (adapted from [140]). 

Xu et al. [136] developed different metal-CdS hybrid bimetallic structures and evaluated their 
photocatalytic activity to form benzaldehyde and H2. They synthesized three types of plasmonic 
heteronanostructures: CdS coated AuNRs, CdS coated-Pt coated AuNRs, and CdS coated-Pt tipped 
AuNRs and compared their photocatalytic activity. It was observed an increasing order of activity: 
Au@CdS < Au@Pt@CdS < Au-Pt@CdS (50 vs. 100 vs. 150 µmol H2 g−1 h−1, respectively). They also 
carried out controls with the CdS semiconductor and metallic nanoparticles, but the activity 
decreased considerably in both cases. In this study, the use of AuNRs improved the harvesting of 
visible-NIR light and induces a local electric field (Figure 2) that is capable of promoting the 
generation and separation of charges from the CdS semiconductor (Figure 10). The anisotropically 
deposited platinum at the edge of the nanorod acted as an electron sinker or electron reservoir 
enabling the electrons to be directed to the places where the reduction reaction of the protons takes 
place to obtain H2. In addition, the asymmetric separation of both metals served as a highway for an 
efficient transport of electrons that partially prevent electron-hole recombination (see Figure 10). This 
represents another good example of how smart designs and proper understanding of the carrier 
transport mechanisms facilitates an improved photo-response outperforming the simpler 
configurations. 

Figure 9. (a) Concentric core-shell (I), eccentric core-shell (II), and Janus (III, IV) hybrid structures
(adapted from [137]); (b) AuNR@Bi2S3 hybrid structure and its excitation mechanism under visible
light irradiation; (c) AuNR@Bi2S3@CdS core-(double) shell hybrid structure. Excitation mechanism for
a more efficient carrier migration and its considerable improvement when both semiconductors were
coupled in a double shell structure (adapted from [140]).

Xu et al. [136] developed different metal-CdS hybrid bimetallic structures and evaluated their
photocatalytic activity to form benzaldehyde and H2. They synthesized three types of plasmonic
heteronanostructures: CdS coated AuNRs, CdS coated-Pt coated AuNRs, and CdS coated-Pt tipped
AuNRs and compared their photocatalytic activity. It was observed an increasing order of activity:
Au@CdS < Au@Pt@CdS < Au-Pt@CdS (50 vs. 100 vs. 150 µmol H2 g−1 h−1, respectively). They also
carried out controls with the CdS semiconductor and metallic nanoparticles, but the activity decreased
considerably in both cases. In this study, the use of AuNRs improved the harvesting of visible-NIR
light and induces a local electric field (Figure 2) that is capable of promoting the generation and
separation of charges from the CdS semiconductor (Figure 10). The anisotropically deposited platinum
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at the edge of the nanorod acted as an electron sinker or electron reservoir enabling the electrons to be
directed to the places where the reduction reaction of the protons takes place to obtain H2. In addition,
the asymmetric separation of both metals served as a highway for an efficient transport of electrons that
partially prevent electron-hole recombination (see Figure 10). This represents another good example
of how smart designs and proper understanding of the carrier transport mechanisms facilitates an
improved photo-response outperforming the simpler configurations.

Catalysts 2020, 10, x FOR PEER REVIEW 17 of 27 

 

 
Figure 10. Schematic representation of the energy band multichannel in bimetallic@CdS 
heterostructures (adapted from [136]); semiconductor charge separation under visible light 
irradiation and its further electron migration through AuNRs to enhance tipped Pt reservoir; Induced 
both the resonance energy transfer (RET) and hot electron transfer processes and synergistically 
boosted the photocatalytic reaction (adapted from [136]). 

Wu et al. [135] explored an analogous combination of Au-Pt-CdS components structured in core-
shell (Au@CdS) or AuPt-CdS dumbbell like configurations with different coverage degree (see Figure 
11a). These hybrids were systematically tested in the photocatalytic hydrogen generation reaction 
under visible or NIR light irradiation [135]. The photocatalytic activities were compared when 
systems were faced with wavelengths belonging to the visible or the near infrared light and it was 
seen that the order in the activity depended not only on the type of structure used, but also on the 
wavelength used because of the mechanisms enhancement. When the catalysts were excited with 
wavelengths within the visible range, the order in the catalytic activity was as follows: Au-Pt-CdS >> 
Au@CdS > CdS >> Au-Pt. In contrast, when NIR illumination was used, the activity dropped 
significantly, and the order of the catalytic activity was: Au-Pt > Au-Pt@CdS > Au > Au@CdS. Still, 
the H2 evolution rates (in the micromolar range) were less remarkable than those reported for the 
heterodimers (vide supra). 

 

 

Figure 10. Schematic representation of the energy band multichannel in bimetallic@CdS heterostructures
(adapted from [136]); semiconductor charge separation under visible light irradiation and its further
electron migration through AuNRs to enhance tipped Pt reservoir; Induced both the resonance energy
transfer (RET) and hot electron transfer processes and synergistically boosted the photocatalytic reaction
(adapted from [136]).

Wu et al. [135] explored an analogous combination of Au-Pt-CdS components structured in
core-shell (Au@CdS) or AuPt-CdS dumbbell like configurations with different coverage degree
(see Figure 11a). These hybrids were systematically tested in the photocatalytic hydrogen generation
reaction under visible or NIR light irradiation [135]. The photocatalytic activities were compared
when systems were faced with wavelengths belonging to the visible or the near infrared light
and it was seen that the order in the activity depended not only on the type of structure used,
but also on the wavelength used because of the mechanisms enhancement. When the catalysts were
excited with wavelengths within the visible range, the order in the catalytic activity was as follows:
Au-Pt-CdS >> Au@CdS > CdS >> Au-Pt. In contrast, when NIR illumination was used, the activity
dropped significantly, and the order of the catalytic activity was: Au-Pt > Au-Pt@CdS > Au > Au@CdS.
Still, the H2 evolution rates (in the micromolar range) were less remarkable than those reported for the
heterodimers (vide supra).
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Figure 11. (a) Representation of Au-Pt@CdS (i), Au-Pt (ii), Au@CdS (iii) anisotropic hybrid
structures; (b) schematic representation of energy band multichannel of Au@CdS and Au-Pt@CdS
(adapted from [135]) and comparative excitation pathways: Au-assisted CdS charge separation and
Au-Pt hot electron transfer is enhanced in the anisotropic structure. Hot electron transfer or RET is not
easily achieved when Pt shell is deposited over AuNRs (adapted from [135]); (c) schematic representation
of photoactivation mechanisms in yolk-shell Au-CdS nanostructures (adapted from [138]).

Under sunlight illumination, CdS semiconductor deposited on the sides of Pt-Au bimetallic
nanoparticle induced both the RET and hot electron transfer processes and synergistically boosted
the photocatalytic H2 generation. However, when catalysts were activated by infrared light,
Au-Pt bimetallic structure became the most active architecture indicating that excited hot electrons
can further transfer to tipped Pt, but it is more complicated for electrons to enhance further migration
from AuNR to CdS semiconductor (see mechanisms in Figure 11b). It was also observed how the
catalytic activity of CdS coated metal tipped AuNRs (Au-Pt-CdS) was more active than its concentric
counterpart Au@Pt@Cds when nanocatalyst were activated with visible light. The transversal LSPR
induced electric field cannot reach the outside CdS semiconductor due to the presence of Pt NPs
between the inner Au core and the external CdS layer (see Figure 11b). Pt nanoparticles around AuNR
prevented the charge transfer between CdS and Au internal core. It has been observed how strategically
modulating the metallic core of the structure by incorporating anisotropy or integrating several metals
in a controlled way, the activity of the system was highly increased.

Likewise, yolk-shell structures have been recently reported as promising alternative hybrids with
enhanced photocatalytic outcome provided by the selective control of the shell properties [138,141].
Han et al. [138] developed yolk-shell structures containing a plasmonic AuNR. The photocatalytic
activity towards the generation of H2 was compared to analogous core-shell type architectures and
hollow CdS nanoparticles [138]. Using hole scavengers such as Na2S or Na2SO3 to avoid photocorrosion
of the CdS and exciting upon visible wavelengths, the yolk-shell structure generated a hydrogen
conversion over 27 (1.7 mmol H2 g−1h−1) or 12 (0.5 mmol H2 g−1h−1) times greater than the core-shell
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type and hollow semiconductor structures (0.02 mmol H2 g−1h−1). The authors also compared the
catalytic activity of the yolk-shell Au-CdS hybrid system with an analogous system containing an
insulating intermediate layer of silicon oxide Au@SiO2-CdS [138]. No significant differences were
observed when compared both photocatalysts under the same experimental conditions. For further
explanation, several mechanisms were proposed.

The thermal activity of the rod was tentatively considered as one of the possible causes of the
increase in activity, but the thermal evolution of the system for all photocatalysts was very similar.
Since higher activity was achieved by using Au-coated plasmonic structures covered with SiO2,
it was concluded that plasmon energy transfer or plasmon-induced RET (see Figure 10) was not the
mechanism by which these systems increased their activity. The researchers determined that the main
cause for this process was radiative relaxation of the SPR of the AuNRs, such as near-field enhancement
and resonant photon scattering (see Figures 2 and 11c). More recent studies have concurred in finding
higher activity for the yolk-shell type [34]. Yolk-shell type structures have the ability to generate a
very large surface-to-volume ratio, increasing the amount of surface exposed for photocatalysis and
decreasing the amount of bulk material to reduce charge recombination probabilities. In addition,
plasmonic Au is capable of generating better charge separation as well as potential light scattering of
the light inside the nanoparticle (see Figure 11c).

We have seen several examples of hybrid architectures, where not only the type of metal
incorporated (Au, Pt) was important, but its arrangement with respect to the CdS semiconductor
played a crucial role in enhancing the catalytic activity. Yolk-shell type structures provided a better
optical response thanks to the light scattering generated in the internal part of this void structure.
Dumbbell-like Au-Pt type bimetallic structures allow better migration and separation of charges,
solving one of the most important problems of this type of semiconductor. It is important to highlight
the development of CdS-based complex hybrid structures where a good design and configuration of
the constructed architecture allows us to considerably improve the activity of these systems when it is
compared with other less complex hybrid structures, such as bare CdS or core-shell architectures.

6. Conclusions

TiO2 and ZnO assembled with plasmonic metals are still the most explored and developed
heteronanostructures obtained using semiconductors. The search for novel alternatives that can
expand and take advantage of the full-solar irradiation spectra has stimulated the search for novel
alternatives that can provide additional features in terms of more efficient harvesting properties,
more effective carrier transport and enhanced selectivities towards specific end-products. In this regard,
the need to find newer and cleaner routes for energy production, the need to improve the efficiency of
decontamination of harmful pollutants and the willingness to promote the revalorization of wastes or
unwanted byproducts has boosted the research in the area of photocatalysis. Nowadays, the innovation
in the design of smart combination of metal-semiconductors continue to be a very promising alternative.
In this review, we presented some of the most promising and versatile alternative gold-semiconductor
heterostructures. The main results highlighted throughout this revision of the most recent literature
suggests an important morphology dependence in the final outcome and how less-conventional designs
beyond core-shell configurations may pave the way for important breakthroughs in forthcoming years.
Furthermore, the selection of anisotropic metals also represents an appealing strategy to maximize
the virtues of plasmon excitation. Finally, we would like to make emphasis on the need to establish
exquisite control and definition of these hetero-nanoarchitectures at the nanoscale level in order to
establish a clear progress in biomedical applications, where size control and reproducibility are key
for clinical translation.
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24. Liu, T.-M.; Conde, J.; Lipiński, T.; Bednarkiewicz, A.; Huang, C.-C. Revisiting the classification of
NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016, 8, e295. [CrossRef]

25. Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for
CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [CrossRef]

26. Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other
semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [CrossRef] [PubMed]

27. Wu, B.; Liu, D.; Mubeen, S.; Chuong, T.T.; Moskovits, M.; Stucky, G.D. Anisotropic growth of TiO2 onto
gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc.
2016, 138, 1114–1117. [CrossRef] [PubMed]

28. Seh, Z.W.; Liu, S.; Low, M.; Zhang, S.Y.; Liu, Z.; Mlayah, A.; Han, M.Y. Janus Au-TiO2 photocatalysts
with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation.
Adv. Mater. (Deerfield Beach Fla.) 2012, 24, 2310–2314. [CrossRef]

29. Sun, H.; He, Q.; Zeng, S.; She, P.; Zhang, X.; Li, J.; Liu, Z. Controllable growth of Au@TiO2
yolk–shell nanoparticles and their geometry parameter effects on photocatalytic activity. New J. Chem.
2017, 41, 7244–7252. [CrossRef]

30. Li, J.-M.; Tsao, C.-W.; Fang, M.-J.; Chen, C.-C.; Liu, C.-W.; Hsu, Y.-J. TiO2-Au-Cu2O photocathodes:
Au-mediated z-scheme charge transfer for efficient solar-driven photoelectrochemical reduction.
ACS Appl. Nano Mater. 2018, 1, 6843–6853. [CrossRef]

31. Han, C.; Qi, M.-Y.; Tang, Z.-R.; Gong, J.; Xu, Y.-J. Gold nanorods-based hybrids with tailored structures for
photoredox catalysis: Fundamental science, materials design and applications. Nano Today 2019, 27, 48–72.
[CrossRef]

32. Yu, X.; Liu, F.; Bi, J.; Wang, B.; Yang, S. Improving the plasmonic efficiency of the Au nanorod-semiconductor
photocatalysis toward water reduction by constructing a unique hot-dog nanostructure. Nano Energy
2017, 33, 469–475. [CrossRef]

33. Zhu, M.; Wang, Y.; Deng, Y.-H.; Peng, X.; Wang, X.; Yuan, H.; Yang, Z.-J.; Wang, Y.; Wang, H.
Strategic modulation of energy transfer in Au-TiO2-Pt nanodumbbells: Plasmon-enhanced hydrogen
evolution reaction. Nanoscale 2020, 12, 7035–7044. [CrossRef] [PubMed]

34. Wang, L.; Chong, J.; Fu, Y.; Li, R.; Liu, J.; Huang, M. A novel strategy for the design of Au@CdS yolk-shell
nanostructures and their photocatalytic properties. J. Alloys Compd. 2020, 834, 155051. [CrossRef]

35. Atta, S.; Pennington, A.M.; Celik, F.E.; Fabris, L. TiO2 on Gold Nanostars Enhances Photocatalytic Water
Reduction in the Near-Infrared Regime. Chem 2018, 4, 2140–2153. [CrossRef]

36. Sun, Y.; Sun, Y.; Zhang, T.; Chen, G.; Zhang, F.; Liu, D.; Cai, W.; Li, Y.; Yang, X.; Li, C. Complete Au@ZnO
core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.
Nanoscale 2016, 8, 10774–10782. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/adom.201700004
http://dx.doi.org/10.1016/j.cej.2020.124719
http://dx.doi.org/10.1039/C9NA00729F
http://dx.doi.org/10.1021/cr100449n
http://www.ncbi.nlm.nih.gov/pubmed/22204603
http://dx.doi.org/10.1021/acs.jpclett.5b00113
http://dx.doi.org/10.1021/nn502303h
http://dx.doi.org/10.1021/jacs.8b13062
http://www.ncbi.nlm.nih.gov/pubmed/30897901
http://dx.doi.org/10.1039/C9NA00548J
http://dx.doi.org/10.1038/am.2016.106
http://dx.doi.org/10.1016/j.jphotochemrev.2015.06.001
http://dx.doi.org/10.1002/anie.201207199
http://www.ncbi.nlm.nih.gov/pubmed/23765842
http://dx.doi.org/10.1021/jacs.5b11341
http://www.ncbi.nlm.nih.gov/pubmed/26807600
http://dx.doi.org/10.1002/adma.201104241
http://dx.doi.org/10.1039/C7NJ01491K
http://dx.doi.org/10.1021/acsanm.8b01678
http://dx.doi.org/10.1016/j.nantod.2019.05.001
http://dx.doi.org/10.1016/j.nanoen.2017.02.006
http://dx.doi.org/10.1039/D0NR00441C
http://www.ncbi.nlm.nih.gov/pubmed/32207505
http://dx.doi.org/10.1016/j.jallcom.2020.155051
http://dx.doi.org/10.1016/j.chempr.2018.06.004
http://dx.doi.org/10.1039/C6NR00933F
http://www.ncbi.nlm.nih.gov/pubmed/27160795


Catalysts 2020, 10, 1459 22 of 27

37. Shao, X.; Li, B.; Zhang, B.; Shao, L.; Wu, Y. Au@ZnO core–shell nanostructures with plasmon-induced
visible-light photocatalytic and photoelectrochemical properties. Inorg. Chem. Front. 2016, 3, 934–943.
[CrossRef]

38. Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced
applications. Adv. Mater. 2014, 26, 5274–5309. [CrossRef]

39. Zhou, N.; López-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light
harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv.
2015, 5, 29076–29097. [CrossRef]

40. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic
and photocatalytic devices. Nat. Photonics 2014, 8, 95–103. [CrossRef]

41. Semenov, A.D.; Gol tsman, G.N.; Sobolewski, R. Hot-electron effect in superconductors and its applications
for radiation sensors. Supercond. Sci. Technol. 2002, 15, R1–R16. [CrossRef]

42. Knight, M.W.; Wang, Y.; Urban, A.S.; Sobhani, A.; Zheng, B.Y.; Nordlander, P.; Halas, N.J.
Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.
[CrossRef] [PubMed]

43. White, T.P.; Catchpole, K.R. Plasmon-enhanced internal photoemission for photovoltaics:
Theoretical efficiency limits. Appl. Phys. Lett. 2012, 101, 073905. [CrossRef]

44. Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.
[CrossRef]

45. Knight, M.W.; Sobhani, H.; Nordlander, P.; Halas, N.J. Photodetection with active optical antennas. Science
2011, 332, 702. [CrossRef] [PubMed]

46. Zhang, N.; Han, C.; Fu, X.; Xu, Y.-J. Function-oriented engineering of metal-based nanohybrids for photoredox
catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832–1861. [CrossRef]

47. Kochuveedu, S.T.; Jang, Y.H.; Kim, D.H. A study on the mechanism for the interaction of light with noble
metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev.
2013, 42, 8467–8493. [CrossRef]

48. Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon resonant enhancement of photocatalytic water
splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116. [CrossRef]

49. Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous
TiO2. Chem. Commun. 2004, 1810–1811. [CrossRef]

50. Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic
activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc.
2012, 134, 15033–15041. [CrossRef]

51. Christopher, P.; Ingram, D.B.; Linic, S. Enhancing photochemical activity of semiconductor nanoparticles
with optically active Ag nanostructures: Photochemistry mediated by ag surface plasmons. J. Phys. Chem. C
2010, 114, 9173–9177. [CrossRef]

52. Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence
of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [CrossRef]

53. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z.L. Synthesis of tetrahexahedral platinum nanocrystals
with high-index facets and high electro-oxidation activity. Science 2007, 316, 732. [CrossRef] [PubMed]

54. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C. Growth of tetrahexahedral gold nanocrystals
with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351. [CrossRef] [PubMed]

55. Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J.C.; Yan, C.-H. Heteroepitaxial growth
of high-index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc.
2011, 133, 1106–1111. [CrossRef]

56. Lu, B.; Liu, A.; Wu, H.; Shen, Q.; Zhao, T.; Wang, J. Hollow Au–Cu2O core–shell nanoparticles with
geometry-dependent optical properties as efficient plasmonic photocatalysts under visible light. Langmuir
2016, 32, 3085–3094. [CrossRef]

57. Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Silver nanocrystals with concave surfaces and their
optical and surface-enhanced raman scattering properties. Angew. Chem. Int. Ed. 2011, 50, 12542–12546.
[CrossRef]

http://dx.doi.org/10.1039/C6QI00064A
http://dx.doi.org/10.1002/adma.201400203
http://dx.doi.org/10.1039/C5RA01819F
http://dx.doi.org/10.1038/nphoton.2013.238
http://dx.doi.org/10.1088/0953-2048/15/4/201
http://dx.doi.org/10.1021/nl400196z
http://www.ncbi.nlm.nih.gov/pubmed/23452192
http://dx.doi.org/10.1063/1.4746425
http://dx.doi.org/10.1063/1.4858400
http://dx.doi.org/10.1126/science.1203056
http://www.ncbi.nlm.nih.gov/pubmed/21551059
http://dx.doi.org/10.1016/j.chempr.2018.05.005
http://dx.doi.org/10.1039/c3cs60043b
http://dx.doi.org/10.1021/nl104005n
http://dx.doi.org/10.1039/b405061d
http://dx.doi.org/10.1021/ja305603t
http://dx.doi.org/10.1021/jp101633u
http://dx.doi.org/10.1021/jp026731y
http://dx.doi.org/10.1126/science.1140484
http://www.ncbi.nlm.nih.gov/pubmed/17478717
http://dx.doi.org/10.1021/ja907549n
http://www.ncbi.nlm.nih.gov/pubmed/19856912
http://dx.doi.org/10.1021/ja1095733
http://dx.doi.org/10.1021/acs.langmuir.6b00331
http://dx.doi.org/10.1002/anie.201105200


Catalysts 2020, 10, 1459 23 of 27

58. Yin, P.-G.; You, T.-T.; Tan, E.-Z.; Li, J.; Lang, X.-F.; Jiang, L.; Guo, L. Characterization of tetrahexahedral gold
nanocrystals: A combined study by surface-enhanced raman spectroscopy and computational simulations.
J. Phys. Chem. C 2011, 115, 18061–18069. [CrossRef]

59. Rodríguez-Lorenzo, L.; Álvarez-Puebla, R.A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.;
Liz-Marzán, L.M.; García de Abajo, F.J. Zeptomol detection through controlled ultrasensitive surface-enhanced
raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618. [CrossRef]

60. Hong, J.W.; Wi, D.H.; Lee, S.-U.; Han, S.W. Metal–semiconductor heteronanocrystals with desired
configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 2016, 138, 15766–15773. [CrossRef]

61. Simon, T.; Bouchonville, N.; Berr, M.J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.;
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