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Abstract: In the current research, a Cu2O-Au-TiO2 heterostructure was fabricated via a step-wise
photodeposition route to determine its possible application in the photocatalytic oxidation of
hazardous vapors. The results of electron microscopy and X-ray photoelectron spectroscopy confirm
the successful fabrication of the Cu2O-Au-TiO2 heterostructure. Strong absorption in the visible region,
along with a slight red-shift in the absorption edge, was observed in the UV–vis diffuse reflectance
spectrum of Cu2O-Au-TiO2 composite, which implies that the composite can generate a greater number
of photoexcited charges necessary for photocatalytic reaction. Toluene and α-pinene, as common gas
contaminants in the indoor atmosphere, were employed to assess the photooxidation efficiency of the
Cu2O-Au-TiO2 composite. Importantly, photocatalytic activity results indicate that the Cu2O-Au-TiO2

composite showed excellent photodegradation performance compared to pure TiO2 and Cu2O-TiO2

and Au-TiO2, where photocatalytic efficiency was approximately 92.9% and 99.9% for toluene and
α-pinene, respectively, under standard daylight illumination. The increased light-harvesting capacity
and boosted separation efficiency of electron-hole pairs were mainly accountable for improved
degradation performance of the Cu2O-Au-TiO2 composite. In addition, the degradation efficiencies
for toluene and α-pinene by the Cu2O-Au-TiO2 composite were also examined under three different
light sources: 0.32 W white, blue and violet LEDs. The findings of this work suggested a great promise
of effective photooxidation of gas pollutants by the Cu2O-Au-TiO2 composite.
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1. Introduction

Owing to dramatic urbanization and significant economic development, office staff move to
high-rise commercial buildings and residents migrate to newly constructed high-rise apartments [1,2].
Unfortunately, high concentrations of volatile organic compounds (VOCs) are found in the indoor
air of these houses, which are released primarily from household products such as furniture, paints,
decorations, glues, etc. [3]. VOCs, including these two pollutants, in indoor environments can cause
the sick building syndrome such as headache, dizziness, allergy, and eyes/nose irritation, which refers
to a fusion of various diseases [4,5]. Therefore, the concentration level of these indoor pollutants has to
be controlled to reduce the risk of health hazards to building residents.

Titanium dioxide (TiO2) is the most widely used material among the photocatalysts available,
due to its abundance, low cost, and the high physical and chemical stability [6,7]. Despite these benefits,
the photocatalytic performance of TiO2 is restricted by its large bandgap and rapid electron-hole
recombination. Among them, coupling with narrow bandgap material to create a composite based on
TiO2 has received great attention due to the merit in capturing a large portion of the solar spectrum
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and enhancing the efficiency of charge separation [8]. Cuprous oxide (Cu2O), a direct bandgap
semiconductor material, becomes the potential candidate to sensitize TiO2 because of some interesting
features, such as earth abundance, ecofriendly, and its suitable band structure with TiO2 [9,10].
Moreover, as a narrow bandgap (1.9–2.2 eV) semiconductor, Cu2O can extend the light absorption to
the visible range. Accordingly, some previous works have shown that the photocatalytic efficiency of
the Cu2O/TiO2 composite can be improved because of extended light absorption and charge transfer
between Cu2O and TiO2, which promotes the charge separation [11,12]. Aguirre et al. [13] reported that
during photocatalysts performance and the detection of photogenerated hydroxyl radicals in the
heterostructure at variance with the results obtained for pure Cu2O were taken as evidence that TiO2

protects Cu2O from undergoing photocorrosion. Moreover, Sun et al. [14] reported that Cu2O-doped
TiO2 nanotube arrays (Cu2O/TNAs) could greatly reduce the recombination of photogenerated holes
and electrons during ibuprofen degradation.

Nevertheless, Cu2O can be easily oxidized into CuO by means of photoexcited holes under
ambient environmental conditions, leading to the poor interface between TiO2 and Cu2O, which will
subsequently affect the photocatalytic performance of the Cu2O/TiO2 composite. In this regard,
noble metal embedded composites, i.e., semiconductor-metal-semiconductor hybrid systems,
have received a great deal of attention in photocatalytic application due to their effective charge
separation capacity and strong redox capabilities [15]. In addition, surface plasmon resonance (SPR)
effect of metal can also enhance the light absorption and scattering of incident light on the near-surface
of TiO2 composites. For instance, Sinatra et al. [16] recorded the photocatalytic production of H2

from water through Au/Cu2O-TiO2 system and studied the SPR effect of Au nanoparticles and
pn-junction at the Cu2O–TiO2. Recently, Li et al. [17] demonstrated the fabrication of TiO2-Au-Cu2O
as a Z-scheme heterostructure, which displayed greater photoelectrocatalytic activity for water and
CO2 reduction than binary TiO2-Cu2O catalyst. However, the photocatalytic degradation of pollutants
using Cu2O-Au-TiO2 has rarely been reported.

In this work, the Cu2O-Au-TiO2 composite was fabricated with enhanced degradation efficiency
for VOCs, including toluene and α-pinene. The phase structure of the prepared catalysts was identified
by X-ray diffraction studies, while optical properties were probed using photoluminescence (PL)
and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) measurements. The morphological studies
were examined through field-emission scanning electron microscopy (FE-SEM) as well as field-emission
transmission electron microscopy (FE-TEM) analyses. Moreover, the detailed chemical structure of
the Cu2O-Au-TiO2 composite was investigated by using an X-ray photoelectron spectroscopy (XPS).
The photocatalytic evaluation of the prepared samples was determined for the removal of VOCs
(toluene and α-pinene) under a standard 8 W daylight lamp. Furthermore, the effect of the light source
on the degradation of pollutant gas molecules over the Cu2O-Au-TiO2 composite was studied in
detail using three different light sources, including 0.32 W white, blue, and violet LEDs. For this aim,
the three critical features that the study should focus on are the proper characterization, the evaluation
of photocatalytic activity, and proposal of a meaningful mechanism [18,19].

2. Results and Discussion

2.1. Characteristics of the Prepared Photocatalysts

The phase structure of the fabricated samples was assessed by using their XRD patterns.
As presented in Figure 1, the bare TiO2 sample shows the main diffraction peaks at 2θ of 25.32◦, 37.85◦,
48.02◦, 53.89◦, 55.08◦, and 62.76◦ belongs to the reflections of (101), (004), (200), (105), (211), and (204),
respectively. These peaks are well-matched with the standard sample XRD pattern of anatase TiO2

(JCPDS # 21-1272). Along with these main peaks, the TiO2 consists of two additional low-intensity
peaks associated with the rutile and brookite phases, as shown in Figure 1. It is also observed from
the figure that the other fabricated Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2 samples exhibited the
XRD pattern similar to that of bare TiO2. The coexisted anatase and rutile phases could improve the
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separation efficient of photoexcited electrons and holes in terms of a mixed-phase heterojunction,
which is favorable to enhance the photocatalytic activity [17]. The possible reason for the absence
of Au and Cu2O XRD peaks is their low content and small particle size in Au-TiO2, Cu2O-TiO2,
and Cu2O-Au-TiO2 composites [20]. Nevertheless, the presence of Au and Cu2O in the Cu2O-Au-TiO2

composite can be easily ratified by XPS, UV–vis DRS, and TEM mappings, as discussed later.
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Figure 1. XRD patterns of the prepared pure TiO2, Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2.

The surface morphologies of the fabricated catalysts were unveiled by SEM micrographs. As shown
in Figure 2, all of the prepared TiO2, Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2 samples possessed
similar spherical-like morphology. The presence of Au and Cu2O in the Cu2O-Au-TiO2 composite
could be revealed by EDS results. Figure 3 shows that the prepared Au-TiO2 and Cu2O-TiO2 were
composed of Ti, O, and Au/Cu elements. Whereas the Cu2O-Au-TiO2 composite consists of Ti, O, Au,
and Cu elements, indicating that both Au and Cu2O could be impregnated into pure TiO2 to create the
Cu2O-Au-TiO2 composite.
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The detailed microstructure of the prepared Cu2O-Au-TiO2 composite can be identified by TEM
analysis. The presence of Au nanoparticles in the composite can be clearly seen in the TEM micrograph,
as shown in Figure 4. According to the FE-TEM results, the Cu2O-Au-TiO2 sample exhibited lattice
fringes of TiO2, Au, and Cu2O with d spacings of 0.35, 0.227, and 0.214 nm, respectively [6,21,22].
The close integration among the three components could also be seen in the FETEM image of the
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Cu2O-Au-TiO2 composite. Furthermore, the elemental mapping images of Cu2O-Au-TiO2 (Figure 5)
showed that Cu2O-Au-TiO2 consists of Ti, O, Au, and Cu, elements; the uniform distribution of these
elements certainly verified the successful integration of Cu, Cu2O, and TiO2 components during the
synthesis of the Cu2O-Au-TiO2 composite. These mapping studies were also unveiled the uniform
distribution of Ti and O in pure TiO2, and coexistence of Ti, O, and Cu or Cu elements in the Au-TiO2

and Cu2O-TiO2 samples.Catalysts 2020, 10, x FOR PEER REVIEW 5 of 15 
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Figure 5. Elemental mapping images of the prepared pure TiO2, Au-TiO2, Cu2O-TiO2,
and Cu2O-Au-TiO2.

To scrutinize the surface chemical composition and oxidation states of elements in the
Cu2O-Au-TiO2 composite, XPS analysis was performed. The full survey spectrum shown in
Figure 6a revealed that the composite comprised of Ti, O, Cu, and Au elements. The adventitious
peak that belonged to C 1s (Figure 6f) was possibly attributed to the XPS instrument atmosphere.
The high-resolution Ti 2p spectrum in Figure 6d displays two peaks at 464.5 and 458.6 eV indexed to
Ti 2p1/2 and Ti 2p3/2, respectively, verifying that Ti presents in its +4-oxidation state in the composite
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sample [23]. The O 1s profile (Figure 6e) shows the high intense peak at ca. 530.5 eV, which belongs to
the lattice oxygen moieties from Ti–O/Cu–O bonds [24]. The small shoulder peak next to the main peak
related to O–H units maybe originated from the water molecules adsorbed on the surface of the sample.
As can be seen in Figure 6b, the Cu 2p spectrum shows two peaks of a spin-orbit couple (Cu 2p3/2 and
Cu 2p1/2) located at the binding energies of 932.1 and 952.5 eV, which are consistent with the values
reported for Cu2O [16]. This result verifies that Cu in the composite sample exists in the form of Cu2O
rather than CuO or Cu. In addition, the XPS spectrum of Au 4f exhibited the typical peaks at 84.0 eV
and 87.6 eV (Figure 6c), validating the presence of Au0 in the Cu2O-Au-TiO2 catalyst [25]. The peak
intensities of Au in XPS pattern, as shown in Figure 6c, were relatively weak, which was attributed to
the low quantity of Au in the Cu2O-Au-TiO2 composite. Therefore, all of these outcomes confirm the
successful formation of Cu2O-Au-TiO2 composite catalyst.

1 
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Figure 6. XPS profiles of the prepared Cu2O-Au-TiO2. (a) survey spectra of Cu2O-Au-TiO2; (b) Cu
2p spectra; (c) Au 4f spectra; (d) Ti 2p spectra; (e) O 1s spectra; (f) C 1s spectra.

The photocatalytic efficiency of a catalyst depends fairly on its ability to absorb light because
the strong light response helps to produce more photogenerated charges [26]. As such, UV–vis DRS
studies were conducted over the fabricated photocatalysts, as shown in Figure 7. By applying the
following Equation (1), the bandgap energy (Eg) of the prepared catalysts can be easily estimated from
the UV–vis DRS curves.

Eg = 1240/λ, (1)

where λ is the wavelength (nm). The spectrum of the prepared bare TiO2 possessed an absorbance edge
at ca. 400 nm (3.1 eV), which agrees well with the inherent bandgap of TiO2 (3.2 eV) [27]. Even though the
absorbance pattern of the fabricated Cu2O-TiO2 was similar to that of bare TiO2, Cu2O-TiO2 illustrated a
relatively higher absorbance than bare TiO2 in the visible light region and a slight red-shift in the UV
light region. In the case of Cu2O-Au-TiO2, the light absorbance increased dramatically in the visible
range, and a slight red-shift was also noticed in the UV region. These red-shifts in the absorption edges
perhaps imply that heterogeneous conjunction created between the components of the Cu2O-TiO2 and
Cu2O-Au-TiO2 composites [15]. Interestingly, depositing Au nanoparticles onto TiO2 and Cu2O-TiO2

enhances their optical absorption over the wavelength range of 400–700 nm, which can be ascribed to the
typical surface plasmon resonance (SPR) absorption of Au nanoparticles [28]. A broad plasmon band
at around 530 nm observed in both Au-TiO2, and Cu2O-Au-TiO2 composites further confirm the SPR
effect of Au nanoparticles. It is worth mentioning that both Au-TiO2 and Cu2O-Au-TiO2 composites
exhibited greater light absorption than TiO2 and Cu2O-TiO2 in the range of 400–700 nm, which helps as
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direct evidence for the presence of Au in the composites. Therefore, the significantly improved optical
absorption of the fabricated Cu2O-Au-TiO2 composite will thus generate a greater number of photoexcited
charges necessary for photocatalytic oxidation of gaseous pollutants.
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and Cu2O-Au-TiO2 and (b) the specific wavelength of UV–vis DRS patterns of the prepared pure TiO2,
Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2.

The catalyst surface properties also have a significant influence on photocatalytic efficiency;
thus Brunauer–Emmett–Teller (BET)-specific surface area (SBET), mean pore size, and total pore volume
of the prepared samples were evaluated, and the results are summed up in Table 1. All of the prepared
samples displayed similar SBET values of 58.9–62.3 m2 g−1. Moreover, no major changes in the other
surface properties were also observed for all of the samples tested, suggesting that the addition of
Au and/or Cu2O did not substantially affect the surface properties of TiO2. Assuming all the catalyst
particles have similar spherical shapes and sizes, the mean particle size was estimated, applying the
following Equation (2) [29]:

D = 6000/(SBET × ρ), (2)

where D is the mean particle size and ρ is the true density (ρ for TiO2 is 4.2 g mL−1). As presented in
Table 1, the mean particle sizes of TiO2, Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2 were estimated to be
24.3 nm, 22.9 nm, 23.3 nm, and 23.2 nm, respectively. From the results, it could be concluded that the
surface properties of Cu2O-Au-TiO2 composite had no significant impact on its photocatalytic efficiency.

Table 1. Textural properties of the prepared pure TiO2, Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2.

Photocatalyst SBET
(m2 g−1)

Total Pore Volume
(cm3 g−1)

Particle Size
(nm)

Pore Size
(nm)

Pure TiO2 58.9 0.21 24.3 13.7
Au-TiO2 62.3 0.19 22.9 13.1

Cu2O-TiO2 61.2 0.22 23.3 13.9
Cu2O-Au-TiO2 61.5 0.21 23.2 13.1

2.2. Photocatalytic Performance

The photocatalytic activities of the fabricated samples were explored by probing the photocatalytic
degradation activities for toluene and α-pinene under standard daylight illumination. The adsorption
equilibrium between the model pollutants and the photocatalyst surface was achieved within 2 h of
the start of each adsorption process. Figure 8 represents the photocatalytic efficiencies of pure TiO2,
Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2 catalysts toward the degradation of toluene and α-pinene.
The decomposition of the model pollutants was almost completed within an initial 1 h over a 3-h
photodecomposition process, and then there was no significant change in the decomposition activities.
The photocatalytic activities of Au and/or Cu2O-coupled TiO2 catalysts toward the degradation of
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toluene and α-pinene were higher than those of pure TiO2, which were determined in the order of
Cu2O-Au-TiO2 > Cu2O-TiO2 > Au-TiO2 > pure TiO2. In particular, the prepared Cu2O-Au-TiO2

composite exhibited the best performance with the decomposition efficiencies of 92.9% and 99.9% for
toluene and α-pinene, respectively. It was found that the oxidation efficiencies over Cu2O-Au-TiO2

enhanced substantially in the case of toluene compared to α-pinene. Meanwhile, the average
degradation activities for toluene and α-pinene by pure TiO2 were 16.6% and 48.6%, respectively.
Besides, the corresponding degradation efficiencies of Au-TiO2, Cu2O-TiO2, and Cu2O-Au-TiO2 were
45.3%, 70.9%, and 92.9% for toluene and 91.9%, 98.8%, and 100% for α-pinene, respectively.
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In addition, the degradation efficiencies for toluene and α-pinene by the Cu2O-Au-TiO2 composite
under standard daylight lamp were compared with three other light sources: 0.32 W white, blue,
and violet LEDs, as shown in Figure 9. Light irradiation for the photodegradation process started after
achieving an adsorption equilibrium between Cu2O-Au-TiO2 and model pollutants in the dark for
2 h. Similar to the photodegradation activities discussed above, the photodecomposition efficiencies
increased during the first 1 h of the 3-h reaction, and there was no indication of any marked improvement
in the decomposition activities thereafter. Moreover, the decomposition activities for α-pinene were
assessed as relatively high in contrast to those for toluene. The average photodegradation activities for
toluene and α-pinene with the Cu2O-Au-TiO2 composite corresponding to the light sources were shown
to be 92.8% and 100% for standard 8 W daylight lamp, violet LED, 56.2% and 98.6% for violet LED,
8.6% and 32.7% for white LED, and 6.8% and 8.5% for blue LED, respectively, which are determined
by an order of standard 8 W daylight lamp > violet LED > white LED > blue LED. Nonetheless,
the photodegradation activities normalized to the given electric power were therefore calculated to be
0.11% and 0.13%/W for standard daylight lamp, 1.76% and 3.08%/W for violet LED, 0.26% and 1.02%/W
for white LED, and 0.21% and 0.26%/W for blue LED, respectively, in the order of violet LED > white
LED > blue LED > standard daylight lamp. The 0.32 W LEDs were therefore far more energy-efficient
light sources than the standard 8 W daylight lamp for toluene and α-pinene photodegradation with
the Cu2O-Au-TiO2 composite, even though under daylight illumination the photocatalytic efficiency
was shown to be higher.

In general, the enhanced photocatalytic efficiency of a catalyst is most likely due to three key
aspects: (1) light absorption capacity, (2) charge-carrier separation, and (3) photo-redox reactions [30,31].
In this study, it was found that the fabricated Cu2O-TiO2, Au-TiO2, and Cu2O-Au-TiO2 catalysts afford
a relatively higher absorbance than the bare TiO2 in the visible range and a slight red shift in the UV
region (Figure 7). Particularly, the absorbance of Au-TiO2 and Cu2O-Au-TiO2 composites increased
dramatically in the range of 400–700 nm owing to the SPR absorption of Au nanoparticles. This notably
increased light absorption in the 400–700 nm range could help to generate more photoexcited
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electron-hole pairs upon visible light. Further, the loaded metal nanoparticles could trap the electrons,
accelerate the charge transfer process, and impede the recombination of photoexcited charge carriers.
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PL emission spectral studies were used to assess the separation efficiency of photoexcited charges
in the fabricated samples as the PL emission intensity is proportional to the recombination of electrons
and holes [32,33]. As presented in Figure 10, all of the tested catalysts, including TiO2, Au-TiO2,
Cu2O-TiO2, and Cu2O-Au-TiO2 exhibit similar emission patterns but different PL intensities. Compared
to bare TiO2, Cu2O-TiO2 composite displays reduced PL emission intensity, suggesting the charge
transfer between Cu2O and TiO2, which results in decreased recombination of photoinduced charges.
Adding Au nanoparticles onto the TiO2 structure decreases the emission intensity, signifying that
the loaded metal nanoparticles would also facilitate the separation of photogenerated charges in the
Au-TiO2. The PL emission intensities of the fabricated catalysts were measured in the order of pure
TiO2 > Au-TiO2 > Cu2O-TiO2 > Cu2O-Au-TiO2, indicating that the Cu2O-Au-TiO2 showed the notably
quenched PL emission intensity among the tested catalysts. Therefore, the Cu2O-Au-TiO2 sample
exhibited the best photocatalytic performances in the decomposition of toluene and α-pinene, and the
activities for both model contaminants were determined in the order of Cu2O-Au-TiO2 > Cu2O-TiO2

> Au-TiO2 > pure TiO2 as shown in Figure 9. These PL results certainly verified that the greater
separation of charge carriers in Cu2O-Au-TiO2 is the primary reason for the extraordinary activity in
the elimination of pollutants.

According to the experimental results discussed in this study and earlier studies [17,34], a possible
mechanism for the photodegradation of toluene and α-pinene pollutants using Cu2O-Au-TiO2

composite was schematically illustrated in Figure 11 and described as follows. Upon light illumination
onto the Cu2O-Au-TiO2 composite system, both TiO2 and Cu2O were excited to produce electrons
and holes at the conduction band and the valance band, respectively. The excited electrons at the
conduction band of TiO2 would transfer to the valance band of Cu2O through Z-scheme mechanism
using Au nanoparticles as a mediator. This electron transfer process occurred at the Cu2O-Au-TiO2

interface resulting in an obstructed recombination of photoexcited charges. It is also worth noting
that Au nanoparticles deposited on the surface of TiO2 improve the light absorption because of its
intrinsic SPR property to produce a large number of photoexcited charges, as confirmed by UV–vis
DRS studies. Besides, the gathered electrons at the conduction band of Cu2O further participate in the
photoreduction process. Whereas the holes accumulated at the valance band of TiO2 participate in the
photooxidation process to eliminate the VOCs (toluene and α-pinene pollutants). This is because the
holes at the valance band of TiO2 are potential enough to produce highly reactive oxidative species,
hydroxyl radicles to covert the toxic pollutant molecules to CO2 and water molecules [15]. In addition,
the holes in the Cu2O valance band are paired with the TiO2 electrons by means of the Au mediator,
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leading in the absence of holes in the Cu2O valance band, which eventually resulting in high Cu2O
stability in the Cu2O-Au-TiO2 composite system.
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3. Materials and Methods

3.1. Preparation of Photocatalysts

Bare TiO2 was prepared by an ultrasonication followed by an annealing procedure used in our
previous study [35]. The Cu2O-Au-TiO2 photocatalyst was fabricated by a step-wise photodeposition
process described as follows: The prepared pure TiO2 powder (1.0 g) was suspended in 100 mL of
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deionized (DI) water with constant stirring at 400 rpm for 30 min. Of the Au precursor solution
10 mL prepared by dissolving 0.13 mmol of gold(III) chloride trihydrate (99.9%, HAuCl4·3H2O,
Sigma-Aldrich, St. Louis, MO, USA) to 25 mL of DI water was added to the above TiO2 suspension.
Then, the mixture was illuminated under a 300 W Hg lamp for 1 h. The resultant compound was
collected by centrifugation (5000 rpm for 15 min), followed by washing three times with DI water,
and drying overnight (12 h) in an electric oven at 80 ◦C. The product obtained was named as Au-TiO2.
The as-obtained Au-TiO2 (1.0 g) was dispersed in 100 mL of DI water by vigorous agitation at 400 rpm
for 30 min, and then 10 mL of Cu precursor solution prepared by dissolving 0.38 mmol of copper(II)
chloride (99%, CuCl2, Sigma-Aldrich, St. Louis, MO, USA) to 25 mL of DI water was added to the
Au-TiO2 suspension. The mixture was exposed to illumination with the 300 W Hg lamp for 1 h to
deposit Cu2O onto the Au-TiO2. Afterwards, the substance obtained in the mixture was isolated
through centrifugation (5000 rpm for 15 min), washed three times repeatedly with DI water and then
dried in an electric oven for 12 h. The final product was denoted as Cu2O-Au-TiO2. A Cu2O-TiO2

was also prepared via the same method by using the bare TiO2 as a substitute for the Au-TiO2.
The irradiation time for the preparation of the Cu2O-TiO2 was 5 h.

3.2. Characterization

A D/max-2500 diffractometer, Rigaku Corp., Tokyo, Japan with Cu Kα1 radiation in the range of
2theta = 20–80◦ was used to obtain the XRD patterns of the prepared photocatalysts. PL (SpectraPro
2150i, Acton Research, Lakewood Ranch, FL, USA) was obtained at a wavelength range of 400–550 nm
and UV–vis DRS were obtained for the dry pressed disk samples using a CARY 5G (Varian Inc.,
Palo Alto, CA, USA) in the wavelength range between 200 and 800 nm at a scanning rate of 120 nm/min
for understanding the optical properties of the catalysts. XPS analysis was performed on a Quantera
SXM, ULVAC-PHI, Inc. scanning XPS microscope with Al-Kα as an X-ray source, Chigasaki, Japan.
FE-TEM (Titan G2 ChemiSTEM (Cs probe), FEI Company, Hillsboro, OR, USA) at an operating voltage
of 200 kV was utilized to analyze the microstructures, and FE-SEM (S-4300, Hitachi, Japan) equipped
with energy-dispersive X-ray spectroscopy (EDS; EDX-350, Hitachi, Japan) was employed to study
morphological properties. Surface areas were determined by using an Autosorb-iQ and Quadrasorb SI,
Quantachrome Instruments, Boynton Beach, FL, USA at 77 K after degassing the materials at 150 ◦C
for 3 h under vacuum.

3.3. Evaluation of Photocatalytic Activity

The photocatalytic experiments toward the elimination of gaseous pollutants (α-pinene and
toluene) were carried out using a homemade reactor, which is shown in Figure 12. This reactor is
similar to the one employed in our previous study [36], and the main units of the reactor system and
their functions have been explained in detail. A Pyrex tube with a volume of 133 cm3 and an inner
diameter of 3.8 cm was served as a photoreactor, and an 8 W typical daylight lamp (λ = 400–700 nm)
was used as a light source. Other lamps, including 0.32 W blue, 0.32 W violet, and 0.32 W white LEDs
with wavelengths of 455, 400, and 450 nm, respectively, were also served as light sources to compare
the photocatalytic activities of the catalysts. The inner wall of the Pyrex reactor was coated with a
catalyst through a spinning process. To provide moisture at a specified relative humidity, high-purity
air was transmitted through the water bath. Moisture air was supplied perpendicularly into the reactor
to improve the mass transport of the incoming gas to the surface of the catalyst. The photocatalytic
reactor device could be defined as representative operating conditions of relative humidity (45% ± 5%),
gas flow rate (1.0 L min−1), and gaseous model pollutant inlet concentrations (0.1 ppm).

Before each experiment, the reactor was purged with high-purity air to eliminate any adsorbed
chemical impurities. Besides, the reactor was subjected to light illumination in the absence of a
catalyst to investigate the effect of light on the elimination of model contaminants. The adsorption
equilibrium between the volatile organic compounds and the sample was investigated by calculating
the concentrations of the compounds in input and output airflow. The light sources were activated
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after achieving the adsorption equilibrium to begin the actual photocatalytic experiments. During the
analysis, air samples were obtained using air drawn from the sampling ports into the stainless-steel
thermal desorption (TD) tube found in Tenax GC to concentrate the model pollutants. A GC–MS,
QP2020Ultra, Shimadzu, Kyoto, Japan, was applied to the quantitative study of the model pollutants.
A sampled compound was transmitted to GC–MS using an automatic thermal desorption unit
(TD-20, Shimadzu, Japan). The adsorbent tube was heated, and the chemical products were concentrated
on an inner trap. Finally, an inner trap for the transport of the chemical species to the analysis device
was thermally processed.
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4. Conclusions

In summary, Cu2O-Au-TiO2 was successfully fabricated by a facile route that includes
photodeposition. The results of XRD, XRS, and electron microscopy revealed the phase, structural,
and morphological aspects of the Cu2O-Au-TiO2 heterostructure. The UV–vis DRS studies displayed
the strong optical absorption characteristics of the Cu2O-Au-TiO2 composite. This effective optical
absorption of the composite has led to producing a higher number of photoexcited charges required
for photo-oxidation of pollutants. Compared to pure TiO2, Cu2O-TiO2, and Au-TiO2 catalysts,
the Cu2O-Au-TiO2 composite displayed improved efficiency in the photodegradation of toluene
and α-pinene. Moreover, the efficiencies of the Cu2O-Au-TiO2 composite for toluene and α-pinene
degradation were also tested under three different light sources: 0.32 W white, blue, and violet
LEDs. The results indicate that 0.32 W LEDs were much more energy-efficient light sources than
the standard 8 W daylight lamp for toluene and α-pinene photodegradation with the Cu2O-Au-TiO2

composite, even though under daylight illumination the photocatalytic efficiency was shown to be
higher. The enhancement in light-harvesting capacity and boosted separation efficiency in electron-hole
pairs accounted mainly for an improvement in Cu2O-Au-TiO2 degradation performance and stability.
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