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Figures S1a,b and S2a,b show the C1s spectra. The peak around 284 eV is attributed to sp2 carbon 
mainly related to ND surface [1,2], while the ~286 eV peak is typical of carbon (sp3) expected in 
diamond samples [2]. There is a small peak at ~288 eV (Figures S1b and S2b) attributed to C-O bonds 
[3]. Finally, another small peak can be found at ~292 eV (Figures S1b and S2b), which is often 
attributed to C-F bonds eV [4], thus due to the anchored complexes. 

Figures S1c and S2c show three peaks in the N1s spectra. The first peak at ~399 eV is attributed 
to pyridinic-N groups, while the peak at ~400 eV is ascribed to pyrrolic-N groups [38]. The third peak 
at ~403 eV can be related to nitrogen trapped in the nanodiamond lattice [2] or N oxides [3]. The 
presence of nitrogen in NDs may be explained by the incorporation during the detonation synthesis 
[5]. The contribution from the anchored complex is not visible.  

Figures S1d and S2d show that the O1s spectra can be deconvoluted to double-bonded oxygen 
(C=O), single-bonded oxygen in alcohol (OH), ether and/or epoxy groups C-O (1) and single-bonded 
oxygen (C-O) for carboxyl and ester groups (2), located at ~530 eV, ~531 eV and ~533 eV, respectively. 
The presence of double-bonded oxygen is expected in ND functionalized samples, due to oxygen 
containing carboxylic acid groups formed following acid treatments often used in the preparation of 
the pristine ND and the further treatment for surface functionalization, including amination [2]. 

Figures S1e and S2e show the presence of a single peak for F1s, at ~688 eV, characteristic of 
organic fluorine, confirming the presence of F in the samples [4]. 

Figure S1f shows two peaks of Cu 2p1/2 (~953 eV) and Cu 2p3/2 (~933 eV), in addition to a shake-
up satellite peak at 943 eV, which are typical for Cu2+ species [6], thus confirming the formation of the 
Cu(II)-based complex. It is worth noting that the C1s spectrum is much larger than that of the other 
elements, especially Cu 2p, which is in line with the amounts found for each element (Table 1).  
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Figure S1. XPS results of hybrid sample ND@βNH-TPPpCF3-Cu(II): C1s (a,b), N1s (c), O1s (d), F1s 
(e), Cu 2p (f). 
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Figure S2. XPS results of hybrid sample ND@βNH-TPPpCF3: C1s (a,b), N1s (c), O1s (d), F1s (e). 
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Figure S3. Survey XPS spectra of ND@βNH-TPPpCF3-Cu(II) (a) and ND@βNH-TPPpCF3 (b). 

In all thermograms, one endothermic peak at 50 °C-150 °C was observed, which can be attributed 
to the weight loss caused by adsorbed water/solvents. In the ND@NH2 thermogram (Figure S3a), an 
additional 3.5% weight loss was observed, attributed to decomposition of the 2-aminoethyl-
acetamide groups linked to the surface of the ND (0.64% of NH2, corresponding to 0.39 mmol/g). In 
the thermograms related to ND@βNH-TPPpCF3-Cu(II) and ND@βNH-TPPpCF3 (Figure S3b and S3c, 
respectively), exothermic peaks between 200 °C and 780 °C were observed, arising from 
decomposition of nitro-porphyrins 1 or 2, resulting in weight losses of 9.1% and 9.8%, respectively. 
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Figure S4. TG-DSC curves of: a) ND@NH2; b) ND@βNH-TPPpCF3-Cu(II); c) ND@βNH-TPPpCF3; 
weight loss (solid line); heat flow (dashed line). 
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A cytotoxic and genotoxic evaluation of ND@NH2 and ND@βNH-TPPpCF3 using Allium cepa as 
plant model was carried out (Figure S5). The phytotoxic effects were investigated by monitoring 
germination (GI) and root elongation (REI) indexes (Figures S4a,b). The cytotoxic potential was 
evaluated by mitotic index (MI) while the genotoxic effects were determined by analyzing 
micronucleus (MNI) and nuclear abnormality (NAI) indexes (Figures S4c–e). Allium cepa seeds (30 
seeds per sample) were exposed to three concentrations (10, 50, and 100 mg/L) of amine-
functionalized nanodiamond (ND@NH2) and nanodiamond porphyrin-functionalized on its surface 
(ND@βNH-TPPpCF3). A control group was also investigated in which seeds were submitted to H2O. 
Results demonstrated that both ND@NH2 and ND@βNH-TPPpCF3 were not phytotoxic, nor 
cytotoxic, even when tested at a high concentration (100 mg/L) as no statistical differences in GI, REI, 
and MI were observed when compared to the control group. In addition, the data also revealed that 
ND@NH2 and ND@βNH-TPPpCF3 presented a very low genotoxic potential as no significant 
changes on MNI were observed while a small increase of NAI was determined. 
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Figure S5. Effect of the ND@NH2, ND@βNH-TPPpCF3 and H2O (control group) on (a) the 
germination index (GI); (b) the root elongation index (REI); (c) the mitotic index; (d) the micronucleus 
index; (e) nuclear abnormality index. 
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