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Abstract: Patterning an oil-based ink on a solid surface based on a wettability difference is of significant
importance for the application of offset printing. Herein, we describe a large-area patterning of
oil-based ink on a self-organized TiO2 nanotubular layer based on a photocatalytic wettability
conversion. The TiO2 nanotubular layer was fabricated by electrochemical anodization, which
demonstrated a superhydrophobic wettability after modification with a self-assembled molecular
layer. Subsequently, area-selective ultraviolet (UV) irradiation through a pre-designed pattern of
water-based UV-resistant ink formed by an ink-jet technique was used to form a wettability difference.
After removing the water-based ink, an oil-based ink was capable of depositing selectively on the
superhydrophobic area to form the same pattern as the pre-designed pattern of water-based ink.
This large-area patterning of an oil-based ink based on the photocatalytic wettability conversion is
potentially applicable in offset printing.
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1. Introduction

The creation of a wettability difference on a solid surface has attracted significant attention for
practical applications [1–23]. One of the applications is to use the wettability difference to pattern
an oil-based ink on a solid surface for offset printing [21–23]. Titanium oxide (TiO2) is one of the
most important materials for fabricating a wettability difference [15–23]. A rough TiO2 surface, which
typically exhibits superhydrophilicity [24–26], can be converted to be superhydrophobic through
the modification of self-assembled molecular layers (SAMs) with a low surface free energy [27,28].
The photocatalysis of TiO2 under ultraviolet (UV) irradiation is capable of decomposing the SAMs,
which achieves a photocatalytic wettability conversion of the TiO2 surface from superhydrophobicity
to superhydrophilicity [15–22,27,28]. Therefore, area-selective UV irradiation through a photomask on
a SAMs-modified superhydrophobic TiO2 surface can be used to fabricate a wettability difference.

The patterning of oil-based inks on a TiO2 surface with a wettability difference exhibited a
promising potentiality for offset printing [21–23]. Compared with the conventional wettability
difference between hydrophobicity and hydrophilicity on an aluminum plate based on a photosensitive
polymer coating for offset printing [22,29], the wettability difference on the TiO2 surface demonstrated
several advantages, such as the reusability, environmental friendship and a large wettability contrast.
Nishimoto et al. described the patterning of oil-based inks on a TiO2-coated aluminum plate with a
wettability difference between superhydrophobicity and superhydrophilicity for offset printing [21].
Nakata et al. prepared the patterns of oil-based inks on a rough TiO2 substrate by annealing etched Ti
metal in a concentrated sulfuric acid for use as a printing plate in offset printing [22]. However, for
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the future application of offset printing, the fabrication of a large-area pattern of oil-based inks on a
superhydrophobic TiO2 film, specifically attached to the substrate with a robust surface wettability
and a low environmental cost, is very necessary.

The self-organized TiO2 nanotubular layer on Ti metal can be fabricated by a facile electrochemical
anodization technique in a fluoride-contained electrolyte [30–33]. The anodization strategy is
time-saving without the use of a concentrated acid, which is a versatile technique to form a
TiO2 nanotubular layer on any Ti metal independent of its geometry and size [34,35]. After being
modified with SAMs with a low surface free energy, the TiO2 nanotubular layer demonstrated a
superhydrophobic wettability [15,36–39]. Moreover, a TiO2 nanotubular layer generally demonstrates a
higher photocatalytic activity when compared with a TiO2 nanoparticular film [40], which is favorable for
the photocatalytic wettability conversion. Herein, we reported the fabrication of a wettability difference
on a large area TiO2 nanotubular layer by selectively decomposing the self-assembled molecular
layers under ultraviolet irradiation, using a pre-designed pattern of water-based UV-resistant ink as a
photomask. After removing the water-based ink, the oil-based ink was able to deposit selectively on
the superhydrophobic area to form the same pattern as the pre-designed pattern of water-based ink.

2. Results and Discussion

The process for the large-area patterning of oil-based ink on a TiO2 nanotubular layer is summarized
in Scheme 1. A large-area TiO2 nanotubular layer with a crystallization of anatase phase was first formed
on Ti metal by electrochemical anodization (Step 1). After modification with octadecyltrimethoxysilane
(ODS) self-assembled molecular layers (SAMs), a superhydrophobic surface was obtained (Step 2).
Then, a pre-designed pattern of water-based ink was formed on the superhydrophobic surface by
an ink-jet technique, which functioned as a UV-resistant photomask (Step 3). Under UV irradiation,
the ODS SAMs that were not covered by the water-based ink were photocatalytically decomposed,
which converted the surface to be superhydrophilic (Step 4). The surface that was covered by the
water-based ink remained to be superhydrophobic. After the water-based ink pattern was removed by
water washing (Step 5), an oil-based ink was deposited selectively on the superhydrophobic area (Step
6), which developed a corresponding pattern the same as the pre-designed pattern of water-based ink.

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 9 

 

a rough TiO2 substrate by annealing etched Ti metal in a concentrated sulfuric acid for use as a 
printing plate in offset printing [22]. However, for the future application of offset printing, the 
fabrication of a large-area pattern of oil-based inks on a superhydrophobic TiO2 film, specifically 
attached to the substrate with a robust surface wettability and a low environmental cost, is very 
necessary. 

The self-organized TiO2 nanotubular layer on Ti metal can be fabricated by a facile 
electrochemical anodization technique in a fluoride-contained electrolyte [30–33]. The anodization 
strategy is time-saving without the use of a concentrated acid, which is a versatile technique to form 
a TiO2 nanotubular layer on any Ti metal independent of its geometry and size [34,35]. After being 
modified with SAMs with a low surface free energy, the TiO2 nanotubular layer demonstrated a 
superhydrophobic wettability [15,36–39]. Moreover, a TiO2 nanotubular layer generally 
demonstrates a higher photocatalytic activity when compared with a TiO2 nanoparticular film [40], 
which is favorable for the photocatalytic wettability conversion. Herein, we reported the fabrication 
of a wettability difference on a large area TiO2 nanotubular layer by selectively decomposing the 
self-assembled molecular layers under ultraviolet irradiation, using a pre-designed pattern of 
water-based UV-resistant ink as a photomask. After removing the water-based ink, the oil-based ink 
was able to deposit selectively on the superhydrophobic area to form the same pattern as the 
pre-designed pattern of water-based ink. 

2. Results and Discussion 

The process for the large-area patterning of oil-based ink on a TiO2 nanotubular layer is 
summarized in Scheme 1. A large-area TiO2 nanotubular layer with a crystallization of anatase 
phase was first formed on Ti metal by electrochemical anodization (Step 1). After modification with 
octadecyltrimethoxysilane (ODS) self-assembled molecular layers (SAMs), a superhydrophobic 
surface was obtained (Step 2). Then, a pre-designed pattern of water-based ink was formed on the 
superhydrophobic surface by an ink-jet technique, which functioned as a UV-resistant photomask 
(Step 3). Under UV irradiation, the ODS SAMs that were not covered by the water-based ink were 
photocatalytically decomposed, which converted the surface to be superhydrophilic (Step 4). The 
surface that was covered by the water-based ink remained to be superhydrophobic. After the 
water-based ink pattern was removed by water washing (Step 5), an oil-based ink was deposited 
selectively on the superhydrophobic area (Step 6), which developed a corresponding pattern the 
same as the pre-designed pattern of water-based ink. 

 
Scheme 1. The schematic process for the patterning of oil-based ink on a TiO2 nanotubular layer. 
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Scheme 1. The schematic process for the patterning of oil-based ink on a TiO2 nanotubular layer.
Firstly, a TiO2 nanotubular layer was formed on Ti metal by anodization (Step 1). A superhydrophobic
surface was obtained by modified octadecyltrimethoxysilane (ODS) self-assembled molecular layers
(Step 2). Then, a pre-designed pattern of water-based ink was formed on the superhydrophobic surface
by an ink-jet technique (Step 3). After UV irradiation (Step 4) and a subsequent water washing (Step 5),
a wettability difference was formed on the surface. Finally, an oil-based ink was deposited selectively
on the superhydrophobic area (Step 6), which developed a corresponding pattern the same as the
pre-designed pattern of water-based ink. The diagram was not drawn to scale.
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The electrochemical anodization is a versatile technique to form a TiO2 nanotubular layer on
any Ti metal independent of its geometry and size. Compared with the conventional dip-coating and
thermal calcination technique, electrochemical anodization can be used facilely to prepare a large-area
and uniform TiO2 layer specifically attached to Ti metal because electrochemical anodization occurs
at a solid-liquid interface using Ti metal as the precursor of TiO2. Figure 1A shows a representative
photograph of a large-area TiO2 nanotubular layer (around 10 × 10 cm) prepared by anodizing a
Ti sheet in a 0.5% HF solution, followed by calcination under ambient air. An oxide surface with a
uniform visible color was obtained. The SEM images (Figure 1B,C) indicate that the oxide surface
showed a clear nanotubular configuration with a tube internal diameter of ~87 nm, a wall thickness
of ~18 nm and a tube length of ~228 nm. The nanotubular morphology significantly increased the
occupied fraction of air pockets on the entire surface, which was considered to be of prime importance
to achieve a superhydrophobic surface. The XRD investigation identified the anatase phase existed in
the TiO2 nanotubular layer, as evidenced by the diffraction peak of anatase (101) crystal face at 2θ =

25.0◦ (Figure 1D).
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Figure 1. (A) A photograph of a large-area TiO2 nanotubular layer, which demonstrated a uniform
surface visible color. (B,C) Top-viewed (B) and cross-sectional (C) SEM images of the TiO2 nanotubular
layer. (D) The XRD investigation identified the anatase phase of the TiO2 nanotubular layer.

The TiO2 nanotubular layer was further analyzed by atomic force microscope (AFM) measurement.
As shown in Figure 2A, the AFM image also revealed the porous surface of a TiO2 nanotubular layer.
The Root Mean Square (RMS) roughness was determined to be ~10.3 nm based on a scanning range of
1.0 × 1.0 µm. Figure 2B shows the static water contact angle (CA) of the as-prepared TiO2 nanotubular
layer, which demonstrated superhydrophilicity because of the high roughness resulting from the
porous surface [41]. After being modified with ODS SAMs, the TiO2 nanotubular layer showed a
superhydrophobic state with a static water CA of ~156◦ (Figure 2C). The relation between the apparent
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water CA (θ′) of a composite surface with two phases of solid and gas, and the water CA (θ) of a
smooth surface with one phase of solid, can be described by the Cassier equation as follows [42–44]:

cosθ′ = f1 cosθ− f2 (1)

Herein, f 1 is the fraction of the solid/water interface and f 2 is the fraction of the gas/water interface,
respectively, with a prerequisite of f 1 + f 2 = 1. Based on this equation, the large fraction (f 2) of the
gas/water interface in the TiO2 nanotubular layer contributed to this large water CA.
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Figure 2. (A) The atomic force microscope (AFM) morphology of a TiO2 nanotubular layer. (B) The
static water contact angle (CA) of an as-prepared TiO2 nanotubular layer, which demonstrated a
superhydrophilicity. (C) After being modified with ODS self-assembled molecular layers (SAMs),
the TiO2 nanotubular layer showed a superhydrophobic state. (D) The static water CAs of six
samples containing ODS-modified large-area TiO2 nanotubular layers were prepared in one HF
electrolyte successively.

The reusability of the HF electrolyte during the electrochemical anodization is important from the
standpoint of reducing the environmental cost in a practical process. We fabricated six samples with
a size of around 10 × 10 cm containing a TiO2 nanotubular layer in one HF electrolyte successively.
As shown in Figure 2D, after modification with ODS SAMs, all of the samples demonstrated an
almost constant static water CA of ~160◦, which indicated that electrochemical anodization could be
used for the large-area fabrication of a TiO2 nanotubular layer for a superhydrophobic surface in a
practical process.

It has been well-known that the photocatalysis of TiO2 under UV irradiation can decompose
the ODS SAMs, which converts the superhydrophobic ODS-modified TiO2 nanotubular layer to be
superhydrophilic. Figure 3 depicts the evolution of the static water CAs of the ODS SAMs-modified
TiO2 nanotubular layer under UV irradiation. A series of water CAs were obtained between ~156◦ and
~0◦, which was dependent on the time of UV irradiation. After UV irradiation for enough time, the
superhydrophobic TiO2 nanotubular layer with a CA of ~156◦ could be converted to be superhydrophilic
with a CA of ~0◦, indicating that almost all the long-chain alkyls of ODS were decomposed by TiO2
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photocatalysis and removed from the surface of TiO2 nanotubes. Two possible pathways are proposed
for the photocatalytic oxidation of ODS molecules on the surface of TiO2 nanotubes [45–47]. Firstly,
the photo-generated holes in TiO2 nanotubes can oxidize the long-chain alkyls in ODS molecules
directly. Secondly, the trap of photogenerated electrons and holes by the oxygen and H2O in the
surroundings under UV irradiation generates some active oxygen species, such as hydroxyl radicals
(OH•), superoxide anions (O2

-•) and hydrogen peroxide (H2O2), which also contributes to the oxidation
of the long-chain alkyls in ODS molecules. Based on this special characteristic of UV-induced wettability
conversion, area-selective UV irradiation through a pre-designed photomask on the superhydrophobic
TiO2 nanotubular layer can be used to fabricate the wettability difference between superhydrophobicity
and superhydrophilicity.
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The pre-designed pattern of water-based ink on the superhydrophobic TiO2 surface formed by
an ink-jet technique was a highly effective photomask to fabricate the wettability difference between
superhydrophobicity and superhydrophilicity [21,22]. This water-based ink has a low surface free
energy, which therefore can spread over the superhydrophobic TiO2 surface. Moreover, the water-based
ink is able to absorb UV light, which can function as a UV-resistant film [22]. As shown in Figure 4A, a
pre-designed pattern of water-based ink with a resolution of 133 lpi (lines per inch) was formed on the
surface of a superhydrophobic TiO2 nanotubular layer by an ink-jet technique, which functioned as a
photomask. The pre-designed pattern included some numbers, lines and areas. The morphologies of
the lines with and without ink were imaged with an optical microscope (Figure 4B). A clear boundary
between the TiO2 nanotubular substrate and ink was observed, indicating that the TiO2 nanotubular
layer could be used as a substrate for the large-area patterning of water-based ink. Subsequently,
the surface with a pre-designed pattern was illuminated by UV light. The ODS SAMs that were not
covered by the water-based ink were photocatalytically decomposed, which converted the surface
to be superhydrophilic, as shown in Figure 3. On the contrary, the surface that was covered by the
water-based ink remained to be superhydrophobic because of the highly effective absorption of UV
light. As a result, a wettability difference between superhydrophobicity and superhydrophilicity was
formed on the TiO2 nanotubular layer after UV irradiation.
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Figure 4. (A) A pre-designed pattern of water-based ink was formed on the surface of a
superhydrophobic TiO2 nanotubular layer by an ink-jet technique, which functioned as a UV-resistant
photomask. (B,C) The morphologies of the line with (B) and without (C) ink imaged with an optical
microscope. A clear boundary between the TiO2 nanotubular substrate and ink was observed. (D) The
patterning of the oil-based ink after the TiO2 nanotubular layer with a pre-designed pattern of
water-based ink was illuminated by UV light and subsequently washed by water.

In order to check the preliminary application of the wettability difference on the TiO2 nanotubular
layer as a printing plate for the offset printing, the water-based ink patterns were removed by water
washing. Subsequently, an oil-based ink was deposited on the same surface by a hand roller. As shown
in Figure 4C, the oil-based ink was able to selectively deposit on the superhydrophobic area, which
developed a corresponding pattern the same as the pre-designed pattern of water-based ink. This result
indicated clearly that the large-area TiO2 nanotubular layer derived from electrochemical anodization
could be applied as a substrate for the patterning of oil-based ink.

3. Materials and Methods

3.1. Fabrication of a Large-Area Superhydrophobic TiO2 Nanotubular Layer

A large-area TiO2 nanotubular layer on Ti metal was prepared following our previous method
with a slight change [33,40]. Briefly, a large-area Ti foil, with a size of around 10 × 10 cm (Nilaco), was
anodized in 3 L of a 0.5 wt% HF solution (Wako Chemicals) under stirring. The counter electrode was a
Pt-sputtered stainless steel electrode with a size of around 10 × 10 cm. The voltage was provided by a
custom-built direct-current (DC) power supply. The as-prepared TiO2 nanotubular layer was annealed
at 500 ◦C under ambient air for 3 h to induce anatase crystallization.

Octadecyltrimethoxysilane (ODS, TCI, C21H46O3Si) molecules were deposited on the surface of
a TiO2 nanotubular layer by a vapor reaction in a N2 atmosphere at 120 ◦C for 3 h [48]. The static
water contact angles (CAs) were measured with a contact angle meter (Kyowa CA-X, Saitama, Japan).
The evolution of water CAs under UV irradiation was performed with a 2 mW/cm2 mercury-xenon lamp.

3.2. Fabrication of a Pre-Designed Pattern and the Patterning of Oil-Based Ink

The pre-designed pattern on the TiO2 nanotubular layer for use as a UV-resistant photomask
was fabricated by an ink-jet technique using a water-based ink [21,22]. The water-based ink was
prepared by mixing a commercial dye (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan, Direct Blue
86, 3 wt%) and pigment (BASF Japan Ltd., Tokyo, Japan, UVINUL3050, 2 wt%) into a mixed solvent of
triethanolamine, diethylene glycol and deionized water (1:3:25, w/w/w). The water-based ink was
effective in absorbing UV light, which functioned as a UV-resistant photomask. The TiO2 nanotubular
layer with a pre-designed pattern was irradiated with a 7 mW/cm2 UV light (Philips-TUV75W) for
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30 min. Then, the water-based ink patterns were removed by water washing. Finally, the oil-based ink
(TOYO Ink) was then deposited on the surface of the TiO2 nanotubular layer by a hand roller.

3.3. Characterizations

The morphologies of the TiO2 nanotubular layer were studied using an FEI Quanta FEG 250
environmental scanning electron microscope (Hillsboro, OR, USA) (SEM) and a Bruker Dimension
Icon atomic force microscope (Santa Barbara, CA, USA) (AFM). X-ray diffraction (XRD) patterns were
measured on a Shimadzu XRD-6000 X-ray diffraction meter (Kyoto, Japan).

4. Conclusions

In summary, a large-area patterning of oil-based ink was achieved on a superhydrophobic TiO2

nanotubular layer based on a UV-induced photocatalytic wettability conversion. The pre-designed
pattern of water-based UV-resistant ink on a superhydrophobic TiO2 nanotubular layer formed by an
ink-jet technique was used as a photomask to selectively decompose the self-assembled molecular
layers under UV irradiation. After removing the water-based ink patterns, the oil-based ink was
selectively deposited on the superhydrophobic areas, which developed the corresponding pattern the
same as the pre-designed pattern of water-based ink. This large-area patterning of an oil-based ink on
a TiO2 nanotubular layer could be potentially applied for offset printing.
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