

Supplementary Materials

A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione

Ming-Mao Gong ^{1,†}, Chia-Yen Dai ^{2,3,†}, Scott Severance ⁴, Chi-Ching Hwang ⁵, Bo-Kai Fang ¹, Heng-Bo Lin ¹, Chien-Hui Huang ¹, Chi-Wi Ong ⁶, Jeh-Jeng Wang ¹, Pei-Lun Lee ⁷ and Tzu-Pin Wang ^{1,8,*}

- ¹ Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; orange110129@gmail.com (M.-M.G.); fangken880705@gmail.com (B.-K.F.);
- gemini810537@gmail.com (H.-B.L.); jennyhuang4128@gmail.com (C.-H.H.); jjwang@kmu.edu.tw (J.-J.W.) ² School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- ² School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80/08, Taiwan; d820195@kmu.edu.tw
- ³ Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan; d820195@kmu.edu.tw
- ⁴ Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24515, USA; smseverance@liberty.edu
- ⁵ Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; cchwang@kmu.edu.tw
- ⁶ Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; cong@mail.nsysu.edu.tw
- 7 Chi Mei Hospital, Liouying, Tainan 73657, Taiwan; peilun57@yahoo.com.tw
- ⁸ Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- * Correspondence: tzupinw@kmu.edu.tw; Tel.: +886-7-312-1101 (ext. 2756); Fax: +886-7-312-5339
- * Authors contributed equally to this study.

Contents

1. Schemes S1 and S2	2
2. Figures S1-S7	3-7
3. Table S1	7
3. References	8
4. ¹ H and ¹³ C NMR, and HRMS Spectra of Compounds	

Schemes

Scheme S1. Synthesis of the key bicyclononyne derivatives (6). Syntheses of **2** - **5** were reported previously [1]. a: cystamine, Et₃N, MeOH/DCM, 50°C.

Scheme S2. Obliteration of the FRET effect in **11** and release of the EDANS fluorescence initiated by nucleophilic attack of **11** by thiolates (highlighted in pink in Scheme 1 and here). R¹-SH: thiol-containing reactants; R² and R³: H or thiolate groups. The disulfide group in **11** is highlighted in red. k_2 , the second-order rate constant for the SN2 nucleophilic substitution reaction of **11** with a thiolate.

Figures

Figure S1. The UV-Vis spectra for 50 μ M of the FRET probe **11** (-, the blue curve), EDANS (-, the red curve) and DABCYL (-, the green curve) in phosphate buffered saline (PBS).

Figure S2. Visualization of the EDANS fluorescence to explore the properties of the fluorescent emission from **11** in the presence of various reactants. Each vial contained 25 μ M of **11** in PBS in the presence or the absence of an indicated reactant (50 mM).

The reactions were carried out in the dark at rt for 1 h before the photograph was taken. Samples: 1, **11** in the absence of reactants; 2, **11** + 2-mercaptoethanol; 3, **11** + GSH; 4, **11** + L-cysteine; 5, **11** + 2-aminoethanethiol; 6, **11** + DTT; 7, **11** + L-methionine; 8, **11** + L-lysine; 9. **11** + glycine; 10, **11** + L-serine; 11, **11** + L-glutamate.

Figure S3. Pseudo-first-order reactions of **11** ($25 \,\mu$ M) with 50 mM of (**A**) DTT, (**B**) GSH, (**C**) L-cysteine, (**D**) 2-mercaptoethanol, (**E**) 2-aminoethanethiol, or (**F**) five non-thiol amino acids (L-methionine, L-lysine, L-serine, L-glutamate, and glycine) in PB. Progress of each reaction was monitored by measuring fluorescence emission at.

505 nm at specific time intervals. Data of normalized EDANS fluorescence (FL) intensity *vs* time were fitted to a single-exponential equation for first-order kinetics $F(t) = F_0 + F_{max}(1 - e^{-k_1 t})$ [F(*t*), EDANS fluorescence at a specific time point *t*] to afford the values of the first-order rate constant k_1 (GraphPad, La Jolla, CA, USA) illustrated in the graphs. In Panels S3A-S3E, the black lines represent original FL changes in the reaction time courses, and the red curves show the results calculated by the single-exponential equation. The normalized FL intensity data at 505 nm were acquired by subtracting a background FL₅₀₅ intensity of **11** from the original FL₅₀₅ intensity measurements.

Figure S4. Effects of metal ion (1 mM) on the pseudo-first-order reactions of **11** (25 μ M) with 50 mM DTT in PB. The k_1 values were determined by a method analogous to that as described above. The symbol * indicates that **11** had no detectable EDANS fluorescence change in presence of Ni(II) or Co(II); the EDANS fluorescence change was so insignificant so that the values of averaged k_1 and standard deviation could not be determined.

Figure S5. Kinetic analysis of the pseudo-first-order reactions of **11** (25 μ M) with 50 mM of one of the structure-modified GSH derivatives **12** and **13** in PB. The k_1 values were again determined by a method similar to that as described above. The symbol * indicates that the reaction of **11** with **12** had no detectable EDANS fluorescence and very low reactivity. Therefore, the values of averaged k_1 and standard deviation could not be determined for the reaction.

Figure S6. Presence of 50 μ M or 50 mM of GSH in the BChE-BTCh-**11** reaction did not affect release of the EDANS fluorescence. BChE activity was determined by measuring the EDANS fluorescence released from **11** (**A**) at the end of the reactions or (**B**) at the time-dependent increments measured by the spectrofluorometer. An enzymatic reaction consisted of BChE (182 U L⁻¹), BTCh (5 mM), **11** (25 μ M), and GSH [50 μ M in (**A**) or 50 mM in (**B**)], if present, in PB. The reactions were carried out at rt in (**A**) or 37°C in (**B**) for 90 min. The normalized FL intensity data at 505 nm were acquired by subtracting a background FL₅₀₅ intensity of **11** from the original FL₅₀₅ intensity readings. Each reaction was analyzed three times in order to acquire the averaged FL₅₀₅ values and standard deviation (the error

bar) in (**A**). In (**B**), the time-fluorescence curves and enzyme activities of the BChE-BTCh-**11** reaction were almost identical in the presence or absence of 50 mM GSH (the initial velocities v_i : 12.9 ± 2.0 min⁻¹ vs 12.2 ± 1.6 min⁻¹, respectively).

Figure S7. Tacrine inhibition on BChE catalysis analyzed by the fluorescence assay based on **11**. (A) Time-course kinetic analysis of tacrine inhibition on BChE (182.2 U L⁻¹) catalysis was performed in the presence of BTCh (250 μ M) in PB. Each BChE reaction contained 0, 50, 100 or 200 nM of tacrine.

Table

Table S1. Comparison on analytical performance of optical assays for BChE activity quantification.

Probe	Linear Range	LOD	Detection Mode	Reference
2,6-Dichloroindophenol Acetate	72–36600 U L ⁻¹	72 U L ⁻¹	Colorimetry	[2]
Gold Nanorod	0.042–8.4 mU L ⁻¹	0.018 mU L ⁻¹	Colorimetry	[3]
Resorufin Butyrate	0.3–60 U L ⁻¹	0.3 U L ⁻¹	Fluorometry	[4]
2-(2-(5,6-Dimethoxy- 1,3-dioxoisoindolin-2-yl) Acetoxy)- <i>N,N,N-</i> trimethylethan-1- ammonium lodide	1,000–10,000 U L ⁻¹	1,000 U L ⁻¹	Fluorometry	[5]
BChE-FP	N/A	N/A	Fluorometric	[6]
CdTe Quantum Dots	10-1000 U L ⁻¹	10 U L ⁻¹	Fluorometric	[7]
Carbon Quantum Dots	60.0–220.0 U L ⁻¹	2.7 U L ⁻¹	Fluorometric	[8]
CdTe Quantum Dots	4-400 U L ⁻¹	0.96 U L ⁻¹	Fluorometric	[9]
Prussian Blue	2,000-15,000 U L ⁻¹	800 U L ⁻¹	Colorimetry	[10]
Carbon Quantum Dots	100–5,000 U L ⁻¹	40 U L ⁻¹	Fluorometric	[11]
Gold Nanoclusters	5-100 ng mL ⁻¹	4 ng mL ⁻¹	Fluorometric	[12]
G-Quadruplex DNA	1-1,000 ng mL ⁻¹	0.15 ng mL ⁻¹	Fluorometric	[13]
2,3-Dicyano-1,4- phenylene Diacrylate	0.2-9 U L ⁻¹	0.06 U L ⁻¹	Fluorometric	[14]
MnO ₂ Nanosheets	10-500 U L ⁻¹	0.035 U L ⁻¹	Fluorometric	[15]
Compound 11	4.3-182.2 U L ⁻¹	4.3 U L ⁻¹	Fluorometric	This work

References

- Dommerholt, J., et al., Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells. *Angew. Chem., Int. Ed.*, **2010**. *49*, 9422-9425.
- 2. Pohanka, M. and L. Drtinova, Spectrophotometric methods based on 2,6-dichloroindophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma. *Talanta*, **2013**. *106*, 281-285.
- Lu, L. and Y. Xia, Enzymatic Reaction Modulated Gold Nanorod End-to-End Self-Assembly for Ultrahigh Sensitively Colorimetric Sensing of Cholinesterase and Organophosphate Pesticides in Human Blood. *Anal. Chem.*, 2015. 87, 8584-8591.
- 4. Guilbault, G.G. and D.N. Kramer, Resorufin Butyrate and Indoxyl Acetate as Fluorogenic Substrates for Cholinesterase. *Anal. Chem.*, **1965**. *37*, 120-123.
- 5. Kang, S., et al., A direct assay of butyrylcholinesterase activity using a fluorescent substrate. *Org. Biomol. Chem.*, **2016**. *14*, 8815-8820.
- 6. Yang, S.-H., et al., Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy. *Chem. Commun.*, **2017**. *53*, 3952-3955.
- 7. Chen, Z., et al., Quantum dots-based fluorescent probes for turn-on and turn-off sensing of butyrylcholinesterase. *Biosensors and Bioelectronics*, **2013**. *44*, 204-209.
- 8. Chen, G., et al., Redox-Controlled Fluorescent Nanoswitch Based on Reversible Disulfide and Its Application in Butyrylcholinesterase Activity Assay. *Anal. Chem.*, **2018**. *90*, 1643-1651.
- 9. Deng, W., et al., Enzymatic reaction modulated synthesis of quantum dots for visual detection of cholinesterase activity and inhibitor. *Sens. Actuators, B*, **2019**. 292, 180-186.
- 10. Bagheri, N., et al., A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. *Biosens. Bioelectron.*, **2019**. *134*, 97-102.
- Xu, X., et al., A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. *Biosens. Bioelectron.*, 2019. 131, 232-236.
- 12. Zhang, X.-P., et al., Gold Nanoclusters/Iron Oxyhydroxide Platform for Ultrasensitive Detection of Butyrylcholinesterase. *Anal. Chem.*, **2019**. *91*, 15866-15872.
- Yuan, X., et al., Enzymatic reaction modulation of G-quadruplex formation for the sensitive homogeneous fluorescence sensing of cholinesterase and organophosphate pesticides. *Anal. Methods*, 2019. 11, 980-988.
- 14. Chen, G., et al., Thiol–ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity. *Analyst*, **2019**. *144*, 559-566.
- Li, T., et al., Ultrasensitive detection of butyrylcholinesterase activity based on the inner filter effect of MnO2 nanosheets on sulfur nanodots. *Analyst*, 2020. 145, 5206-5212.

Spectra

Bruker Compass DataAnalysis 4.0

printed: 6/4/2018 3:01:48 PM

Bruker Compass DataAnalysis 4.0

printed: 6/4/2018 2:53:10 PM

rdb e⁻Conf N-Rule 10.5 even ok mSigma 10.7 Meas. m/z # Formula 362.09309 1 C 15 H 16 N 5 O 4 S err [mDa] -0.24 err [ppm] -0.67 Score m/z 100.00 362.09285

Bruker Compass DataAnalysis 4.0

printed: 8/4/2017 4:13:16 PM

 Meas. m/z
 # Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 941.32635
 1
 C 45 H 53 N 10 O 7 S 3
 100.00
 941.32663
 0.28
 0.30
 71.2
 24.5
 even
 ok

Bruker Compass DataAnalysis 4.0

printed: 6/7/2018 2:20:16 PM

CC I

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).