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Abstract: In this study, a detailed look at the electronic structure changes induced by photon
absorption and of the succeeding redox events of the oxidative and reductive quenching cycles of
ruthenium–carbene and ruthenium–pyridine photoredox catalysts is provided through an arsenal
of density functional theory-based techniques including electron density difference ∆ρ(r) maps,
spin-density distributions, and the non-covalent interaction analysis. We introduced an efficient
computational protocol to obtain accurate equilibrium structures and ground-state reduction potentials
for these types of complexes, substantiated via a direct comparison to empirical X-ray structures
and cyclic voltammetry measurements, respectively. Moreover, we demonstrated the utility of a
hitherto unexplored approach to compute excited-state redox potentials based on the Gibbs free
energy of the triplet metal-to-ligand charge transfer state (3MLCT). The analyzed ∆ρ(r) maps revealed
the characteristic features of, for example, metal- and ligand-centered reductions and oxidations in
both ground and excited states and MLCT processes, disclosing the active participation of carbene
ligands in the redox events of homoleptic systems. Beyond analyzing ligand–ligand non-covalent
interactions and redox-active behaviors of carbene and pyridine ligands side by side, the effect of
such groups on the kinetics of 3MLCT to 3MC transition was scrutinized.

Keywords: density functional theory; N-heterocyclic carbene; ruthenium complexes; photoredox
catalysis; ligand redox activity

1. Introduction

The development of advanced solutions and materials that enable the sustainable and eco-friendly
use of resources in technologically key chemical and/or energy transformations has a high priority
in the field of modern chemical science. Owing to the recent intensive efforts to design such
solutions, visible-light photoredox catalysts based on transition metal complexes have emerged as
promising materials. These species could facilitate valuable energy-demanding organic processes
by transforming the energy of sunlight into chemical energy [1]. Amongst the most studied and
best performing transition metal photoredox catalysts (TMPRCs) are the ruthenium–polypyridine
and iridium–phenylpyridine (ppy) derivatives, for example, [Ru(bpy)3]2+ (Figure 1a) and Ir(ppy)3,
respectively [2–4]. In attempts to leverage the abundant and freely available solar energy, new
developments in the design and application of these classical TMPRCs have come to light, for example,
the so-called cooperative catalysis, where a photoredox catalytic system is used in synergy with another
TM catalyst to facilitate chemical transformations [5–7]. Other widespread applications of the parent
TMPRC platforms and other closely related iridium and ruthenium derivatives include photovoltaic-like
dye-sensitized solar cells (DSSCs) [8,9], chemical sensing [10,11], photodynamic therapy [12,13], etc.
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All these applications arise from the capability of these transition metal complexes to undertake
light-driven charge separation through metal-to-ligand charge transfer (MLCT) processes [14,15].
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metal-centered valence d (t2g) electrons to a low-lying ligand-centered vacant π* orbital through a 
spin-allowed singlet–singlet transition [18]. This charge transfer excitation from the ground S0 to the 
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mostly centered at the ligand(s). This singlet state is short lived, as it undergoes a rapid intersystem 
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bivalent nature of the triplet 3MLCT state, the photoexcited complex is a strong reducing agent as 
well as a strong oxidizing agent at the same time which can manifest in either type of reactivity 
depending on the nature of the external substrate. The difference between the ground- and excited-
state redox properties of these systems is actually striking; for example, [Ru(bpy)3]2+ has a ground 
state reduction potential of −1.33 V (versus SCE) for the [Ru(bpy)3]2+ to [Ru(bpy)3]1+ transition; 
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Figure 1. (a) Oxidative (red) and reductive (blue) quenching cycle of classical photoredox catalysts and
formal metal-ligand oxidation state assignments for S0, T1, Dox, and Dred states; redox potentials are
given for the archetype [Ru(bpy)3]2+ system to the saturated calomel electrode (SCE) (b) Schematic
molecular orbital representation of the electronic structure changes upon photo-excitation and
(c) carbene-based photoredox catalyst [Ru(:CˆNˆC:)2]2+ developed by Jalón and co-workers [16]
for use in cooperative catalysis.

The basic photophysics of classical TMPRCs is well established and summarized in Figure 1a for
the archetypal [Ru(bpy)3]2+ (bpy = bipyridine) system [3,15,17,18]. These ruthenium(II) and iridium(III)
complexes are d6 species in their resting oxidation state forming thermodynamically stable, inert singlet
ground state (S0) octahedral complexes, where the six d electrons fill up the non-bonding t2g set [19,20].
Absorption of a photon in the visible or near UV region promotes one of these metal-centered valence
d (t2g) electrons to a low-lying ligand-centered vacant π* orbital through a spin-allowed singlet–singlet
transition [18]. This charge transfer excitation from the ground S0 to the S1 or S2 excited state eventuates
in a low-energy hole located at the metal and a high-energy electron mostly centered at the ligand(s).
This singlet state is short lived, as it undergoes a rapid intersystem crossing (ISC) giving rise to the
stable triplet 3MLCT state with an electronic structure very similar to that of the charge separated
singlet state [18]. This triplet 3MLCT is typically long-lived with a lifetime of hundreds of ns or even
microseconds [21], although it depends strongly on the nature of its ligands and whether the system
is hetero- or homoleptic, solvent, etc. [18]. This prolonged lifetime is the key feature of photoredox
catalysts that facilitates the interaction of the excited state species with external substrates through
intermolecular outer-sphere single–electron transfer processes [22]. Due to the bivalent nature of the
triplet 3MLCT state, the photoexcited complex is a strong reducing agent as well as a strong oxidizing
agent at the same time which can manifest in either type of reactivity depending on the nature of
the external substrate. The difference between the ground- and excited-state redox properties of
these systems is actually striking; for example, [Ru(bpy)3]2+ has a ground state reduction potential
of −1.33 V (versus SCE) for the [Ru(bpy)3]2+ to [Ru(bpy)3]1+ transition; however, upon absorbing
light at a λmax of 452 nm, the reduction potential of the corresponding excited state * [Ru(bpy)3]2+ to
[Ru(bpy)3]1+ process becomes 0.77 V (Figure 1b) [21]. According to the outlined overall mechanism,
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photoredox catalysts harvest solar energy which is transformed into a metal-centered low-energy
hole and a ligand-centered high-energy electron that can be transferred to external substrates through
outer-sphere electron transfer, i.e., to drive energy-demanding reactions [23–25].

As summarized in Figure 1a, the onset intermolecular interaction of the 3MLCT state determines
whether the reductive quenching process or the oxidative quenching is initiated. If an electron donor
transfers an electron (B + + e−) to the excited *[Ru(bpy)3]2+ species, the reduced [Ru(bpy)3]+, the Dred

state in general, is formed which is best characterized as a ruthenium(II) species with a formally
mono-reduced ligand (L−1). In the latter oxidation state, [Ru(bpy)3]+, the system is a strong reducing
agent that transfers its ligand-centered electron to any acceptor (A + e− −) at a potential of −1.33 V
in route to the resting ground state of the system, [Ru(bpy)3]2+ [18]. The oxidative quenching cycle,
on the other hand, is initiated when an electron is transferred from the 3MLCT state to an acceptor
(A + e− −) forming [Ru(bpy)3]3+, the Dox state in general, which is a powerful oxidant (E0 = 1.29 V)
while converting to the resting [Ru(bpy)3]2+ state [18]. To close the quenching cycles as well as to
utilize any of these redox steps in a catalytic fashion, sacrificial reducing or oxidizing agents need to be
used as electron sources (B) or sinks (A), respectively. Tertiary amines are the most common class of
reductive quenchers, whereas typical oxidizing agents include viologens, polyhalomethanes, dinitro-
and dicyanobenzenes and aryldiazonium salts [26–28].

Grasping the essence of the mechanism of these systems one can intuitively conclude that the
unique feature of photoredox catalysis is not the ability to facilitate any specific reaction but rather
its capability to turn inactive substrates into reactive radical intermediates through high-energy
intermolecular outer-sphere electron transfer. Consequently, the most typical application of TMPRCs
includes the generation of, among many others, electrophilic α-carbonyl radicals [29], trifluoromethyl
radicals [30], arene radical cations, iminium ions, and enone radical anions [31], of which these
intermediates have been used to drive other types of transformations including atom transfer radical
additions [32], arene C−H functionalizations [25,33,34], and amine α-functionalizations to [2 + 2]
cycloadditions [35,36]. Cooperative catalysis, in which another transition metal co-catalyst is sensitized
through electron transfer and its catalytic cycle is supported by the photoredox catalyst has been
recently added to the arsenal of applications [37–40]. The latter tandem approach holds great promise
in opening new horizons for the application of photoredox catalysts using sunlight as an energy source
in already established catalytic transformations.

Tailoring the redox energetics of the quenching cycles is crucial for the targeted and efficient use of
photoredox catalysis. Pioneering experimental studies have revealed the direct dependence of reduction
potentials in the various ground and excited state steps on metal, the ligand framework, and substitution
patterns [41–43]. For example, functionalization of a given ligand frame with electron-withdrawing
and/or electron-donating groups results in a significant variation of approximately 1.5 V in the
reduction potential of ligand-centered redox events, independently of the nature of the central
metal [44]. Concomitant to experimental investigations, computational studies are also playing an
important role in the understanding, design, and fine-tuning of photoredox catalysts [45,46]. In a
recent landmark study, Demissie, Ruud, and Hansen [47] established a computational approach based
on ground-state and time-dependent density functional theory (DFT and TD-DFT, respectively) and
implicit solvation for computing ground- and excited-state redox potentials of ruthenium and iridium
complexes with the goal to advance the development of systems with improved redox properties to be
used in electron transfer reactions of organic or organometallic chemistry.

Carbenes are considered amongst the most potential candidates for new ligand platforms or
building blocks in photoredox catalysis, especially to effectively modulate the redox energetics and to
increase the lifetime of the 3MLCT state [48–50]. The unique reactivity and advantageous electronic
features of heterocyclic carbenes, which can be controlled to a large extent through wingtip groups,
constituting heteroatoms and backbone functionalization as outlined in Figure 2a, have already been
utilized in many fields of chemistry as evidenced by the increased number of publications on the
applications of carbenes in the last two decades [50,51]. Beyond the valuable intrinsic properties, another
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key feature of heterocyclic carbenes is their superior capacity to bind practically to any metal including
W [52], Pd [53], Ir [54], Ru [55–57], Au [58], Co, Ni, and Cu [59], Fe [60,61], etc., in low-, medium-,
and high-oxidation states to generate stable transition metal–carbene complexes. In spite of the
handful articles on the synthesis and photo- and electrochemical characterization of carbene-containing
ruthenium(II) complexes, which are indeed potential candidates for photoredox catalysis, nevertheless,
to the best of our knowledge, only the very recent study by Torres et al. [16] demonstrated applied
photoredox chemistry with Ru–carbene systems. Namely, complex [Ru(:CˆNˆC:)2]2+ (Figure 1c)
and its derivatives with two tridentate ligands, each containing two substituted Arduengo carbene
groups (NHC (N-heterocyclic carbene) in Figure 2b), worked effectively as photosensitizers via the
corresponding oxidative quenching cycle for the [Co(bpy)3] Cl2 co-catalyst for the generation of H2

from water. These ruthenium–carbene complexes were found to have long lifetimes of approximately
1.5–1.7 µs and to have an exceptional reducing power in the excited state through the ligand-centered
oxidation. Actually, the 3MLCT state of the photoredox catalyst is not quenched by the triethanolamine
sacrificial reductant but by the cobalt catalyst in these tandem systems. This behavior was devoted to
the high reducing power of the triplet-excited state of these Ru–carbene complexes.
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Mostly, two types of N-heterocyclic carbenes, Arduengo’s imidazole-based carbene (NHC,
Figure 2b) and the mesoionic triazolylidene ring (MIC (mesoionic carbene), Figure 2b), have so
far been integrated into bi- or tridentate ligand scaffolds in the quest for a new generation of
ruthenium photoredox catalysts. For the definitions of these sub-groups and for the multidimensional
classifications of carbenes in general, we direct the reader’s attention to the recent reviews cited
herein [48,50]. In analogy to the bipyridine (bpy, neutral)/2-phenylpyridine (ppy, mono-anion) pair of
ligands (Figure 2c) which dominate the field of classical ruthenium and iridium photoredox catalysis,
the majority of the studied bidentate carbene ligands can be grouped into the pyridine–carbene
(py-NHC and py-MIC, neutral) and phenyl–carbene (ph-NHC and ph-MIC, mono-anion) platforms
displayed in Figure 2c. The MIC group is tethered to the phenyl or pyridine ring in these ligands
either through its carbon or nitrogen adjacent to the carbene center. Benzo-fused NHC derivatives
and substitutions at the carbene/pyridine/phenyl fragment at various positions represent the main
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dimensions of the chemical space for these ligands which were explored experimentally primarily
within the heteroleptic [Ru(bpy)2L]+z (L is bidentate carbene-containing ligand) complex framework
(e.g., Figure 3b). Nevertheless, a few examples of the homoleptic derivatives have also been reported
together with their photophysical and electrochemical characterization [16,62]. The main driving
concepts of using carbene-based fragments are (i) to strengthen the metal–ligand interactions in order
to destabilize the 3MC state with respect to the 3MLCT and ground states with which the excited state
lifetime potentially increases and (ii) to manipulate the metal- and ligand-centered redox energetics (e.g.,
through strong σ-donation) which increases the electron density at the metal center. These concepts
were put into practice, for example, by Schubert and coworkers [55] in promising ruthenium(II)
photosensitizers containing two tridentate cyclometalated mesoionic carbene ligands derived from a
1,2,3-triazole scaffold and by Soellner et al. [57] and Schleicher and coworkers [56] who demonstrated,
amongst others, the superior electron-donating nature of cyclometalated-carbene ligands (ph-NHC
and ph-MIC) over the pyridine-MIC combinations in heteroleptic bipyridine ruthenium(II) complexes.Catalysts 2020, 10, x FOR PEER REVIEW 6 of 24 
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Figure 3. Homoleptic (a and 11) and heteroleptic (b and 12) pyridine– and carbene–ruthenium
complexes based on bidentate (a and b) and tridentate (c) ligands investigated in this study; 1:
[Ru(bpy)3]2+, 2: [Ru(py-NHC)3]2+, 3: [Ru(py-aNHC)3]2+, 4: [Ru(py-MIC)3]2+, 5: [Ru(bpy)2(ppy)]1+,
6: [Ru(bpy)2(phBr-NHC)]1+, 7: [Ru(bpy)2(phOMe-MICMe)]1+, 8: [Ru(bpy)2(phCN-MICMe]1+

9: [Ru(bpy)2(py-f NHCCH2Ph)]2+, 10: [Ru(bpy)2(py-f NHCMe)]2+, 11: [Ru(dqp)2]2+ 1 and 2:
[Ru(tpy)(CˆNˆC)]2+.

2. Results and Discussion

Twelve structurally related octahedral ruthenium photoredox catalysts, shown in Figure 3, have
been systematically investigated in this computational study. The three distinct groups investigated
included four homoleptic pyridine/carbene complexes with bpy, py-NHC, py-aNHC (prefix a denotes
“abnormal” [63]), and py-MIC ligands (Figure 3a); six heteroleptic systems with two bpy and one
carbene-containing ligand (Figure 3b); and two of the investigated systems, 11 and 12, displayed
tridentate polypyridine/carbene ligands bound in facial and meridional fashions, respectively. To
analyze the electronic structure changes and redox energetics along the photoredox quenching cycles
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of these systems, presented above universally for [Ru(bpy)3]2+ through Figure 1, we computed the
four stationary points determining the cycles, including the ground state species, S0, the triplet 3MLCT
state, T1, the reduced (doublet) state, Dred, and the oxidized (doublet) state, Dox, of all the complexes
displayed in Figure 3. To ensure consistency along and easy navigation within the various species with
different overall charge, spin state, etc., we systematically used the formal oxidation state assignments
of the different states throughout the manuscript. Namely, the S0 ground state can be best described
with a formal d6-L0 electron configuration (the metal has six d electrons, RuII, whereas the ligands
are in their most stable oxidation state), the 3MLCT state is formally d5-L−1, whereas the oxidized
and reduced states, both being doublet owing to the unpaired electron, are formally d5-L0 the d6-L−1,
respectively. In addition to scrutinizing the wavefunction of these states and their changes upon
reduction/oxidation via DFT calculations, we computed the solution-state Gibbs free energies, Gsol, of
these states allowing the evaluation of the excited- and ground-state reduction potentials, which were
compared to the available experimental values and discussed in the context of the chemical nature of
the ligands.

In the presence of solid-state structures and experimental redox potentials for several of the
studied photoredox catalysts, the computational protocol established for equilibrium structures and
for solution-state Gibbs free energies can be directly substantiated. In accordance with the findings
of recent DFT reports [47], our optimization procedure was based on the PBE functional coupled to
a triple-ζ basis set with relativistic core potential for Ru allowing the simulation of the equilibrium
structures of ruthenium photoredox catalysts with high accuracy at a relatively low computational cost.
Other factors, especially grid quality and dispersion correction, also contribute, to a non-negligible
extent, to the accuracy of the computed geometries, whereas, according to our experience with the
investigated systems, the resolution-of-identity approximation significantly reduces the computational
cost without inducing a notable error in the structural metrics. All these details of our computational
method are detailed in the methodology section. In Table 1, structural metrics that characterize the
first coordination sphere and overall geometry are collected for a representative set of systems in their
corresponding singlet ground state, S0. Besides the computed bond distances and angles defined in
Figure 3, the benchmark values for these structural parameters extracted from available empirical
XRD structures are also reported in brackets in Table 1. The numbering of contact atoms is shown in
Figure 3.

An excellent overall agreement existed between the experimental and computed metal–ligand
bond lengths for all three types of complexes investigated independently from the nature of the ligand
or its binding mode to the metal. Calculated ruthenium–nitrogen distances varied between 2.03 Å (in
5) and 2.14 Å (in 5) and were typically within 0.01 Å to measured values, when direct comparison was
possible. The latter deviation was also characteristic for both types of ruthenium–carbon interactions,
namely, Ru–carbene and Ru–phenyl, with the exception of the Ru–Ccarbene bond of [Ru(bpy)2(ppy)]1+

(5), for which the largest divergence from the X-ray metric (approximately 0.03 Å) was documented.
Also, the overall arrangement around the metal characterized by the selected intra-ligand (X1–Ru–X2)
and inter-ligand (N3–Ru–X4 and N3–Ru–X6) were modeled realistically given the excellent agreement
(typically within 1◦) between the experimental and computed angles, independently from the nature of
the contact atom, charge of the ligand, the overall charge of the complex, and whether the system was
heteroleptic or homoleptic. Only in three cases, [Ru(bpy)2(ppy)]1+ (5), and [Ru(bpy)2(phBr-NHC)]1+

(6), and [Ru(bpy)2(py-f NHCMe)]1+ (10), did one of the investigated angles deviate approximately
3◦ from the XRD which can be still considered realistic given that the packing effects and counter
ions present in the crystal can interfere with the structure of the complex to such an extent to induce
such a distortion. This overall and general agreement between the experimental and computed
structural parameters implies that the equilibrium structures of the investigated photoredox catalysts
were simulated truthfully, substantiating the method of calculation for molecular geometries and the
subsequent analysis of structural metrics.
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Table 1. Calculated and X-ray (in brackets) structural information of the first coordination sphere of
selected photoredox catalysts in their corresponding singlet ground state. Bonds are listed in Å and
angles are in ◦.

Bond (Å) 1 2 3 4 5 6 7 8 10

Ru–N/C

X1 2.058
(2.055) 2.162 2.181 2.186 2.078

(2.075)
2.060

(2.060)
2.061

(2.062)
2.057

(2.054)
2.075

(2.070)

X2 2.058
(2.051) 1.972 1.983 1.980 2.029

(2.00)
2.014

(2.021)
2.038

(2.038)
2.032

(2.032)
1.990

(1.974)

N3 2.059
(2.058) 2.161 2.182 2.187 2.056

(2.040)
2.053

(2.064)
2.048

(2.053)
2.049

(2.053)
2.058

(2.068)

X4 2.058
(2.056) 1.972 1.983 1.980 2.034

(2.056)
2.121

(2.116)
2.112

(2.106)
2.110

(2.105)
2.059

(2.066)

N5 2.058
(2.051) 2.162 2.181 2.186 2.137

(2.139)
2.095

(2.095)
2.087

(2.095)
2.091

(2.096)
2.124

(2.119)

X6 2.059
(2.048) 1.972 1.983 1.980 2.031

(2.086)
2.040

(2.055)
2.035

(2.053)
2.0416
(2.055)

2.065
(2.061)

X1–Ru–X2 α
78.7

(78.6) 77.1 77.5 77.6 79.6
(79.6)

78.5
(79.1)

79.3
(79.6)

79.2
(79.8)

78.1
(77.9)

N3–Ru–X4 β
78.7

(78.4) 94.7 93.6 93.7 77.4
(77.8)

95.2
(98.8)

94.7
(93.3)

95.5
(95.9)

96.9
(93.6)

N3–Ru–X6 γ
173.5

(172.3) 169.2 170.2 170.0 174.1
(171.8)

173.3
(172.3)

174.2
(174.8)

173.4
(172.4)

172.1
(172.6)

X1 = N (compounds 1–5 and 10), X1 = C (compounds 6–8), X2 = N (compound 1), X2 = C (compounds 2–8 and 10),
X4 = X6 = N (compounds 1, 5–8, and 10), X4 = X6 = C (compounds 2–4). Experimental values were taken from the
following references 1 [64], 5 [65], 6 [56], 7–8 [57], and 10 [66].

Due to the superior σ-donor nature of carbon over nitrogen and its concomitant strong trans
influence, the metal–nitrogen distances trans to metal–carbon interactions elongated by as much as
0.1 Å with respect to trans-N–Ru–N arrangements. For example, the average Ru–N distance changed
from 2.059 Å in the homoleptic [Ru(bpy)3]2+ to 2.124 Å trans to the Ru–carbene(f NHCMe) interaction
in 10 (prefix f denotes benzo-fused carbenes). The latter Ru–C bond of 1.990 Å was also amongst
the shortest metal–ligand bonds recorded in this study. In general, Ru–Ccarbene distances (Ru–X2 in
Table 1, compounds 2–4, 6–10, and 12) were somewhat smaller than Ru–Cphenyl ones (Ru–X1 in Table 1,
compounds 6–8), and these Ru–C bonds were notably shorter than typical R–Npyridine bonds. The
most extreme distortions appeared in the homoleptic pyridine–NHC and pyridine–MIC complexes,
2, 3 and 4, where the Ru–Ccarbene distances shortened to 1.97–1.98 Å, while the Ru-Npyridine bonds
elongated up to 2.187 Å, clearly reflecting the superior electron donor property of carbene ligands. In
addition, the confined tethering of the NHC/MIC and pyridine groups in these chelating ligands led to
a non-negligible divergence from the ideal octahedral binding, which can be witnessed in the deviation
of the inter-ligand and intra-ligand angles (α, β, and γ) from their model values of 90◦, 90◦, and 180◦,
respectively. Another general observation that can be concluded from Table 1 is that NHC carbenes
form slightly shorter bonds than MIC carbenes under similar circumstances. For example, going from
2 (NHC) to 3 and 4 (MICs) the Ru–Ccarbene distances elongated by about 0.01 Å, whereas the difference
was approximately 0.02 Å in the heteroleptic (bis)bipyridine derivatives, e.g., going from 6 (NHC) to
7 (MICMe) and 8 (MICMe) (Ru–X2 distances in Table 1). These results imply that the NHC carbenes
were stronger σ-donors than the MIC groups in these ruthenium(II) complexes. This notion can also be
witnessed in the Ru–Npyridine distances trans to the carbene ligands, being longer if it was trans to
NHC than to MIC. Benzo-fused NHC carbenes (f NHCs), such as in complex 9 and 10, appeared as
even superior σ-donors, resulting in Ru–Ccarbene bonds in the order of 1.99 Å and further elongated
Ru–Npyridine bonds trans to it.

Experimental ground- and excited-state reduction potentials have been reported for nine out of
the twelve considered photoredox catalysts, which are listed in Table 2 in brackets, given together with
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the computed values for all species. It is apparent from the definition of absolute half-cell potential,
Equation (1) (methodology section), that the solution-state Gibbs free energy change during reduction
or oxidation has to be computed accurately in order to reproduce half-cell potentials and, subsequently,
reduction potentials to a given reference system (SCE in this study). The general experience with the
PBE functional is that it is not suitable for the computation of accurate relative energies when the
electron number is not constant and, accordingly, one needs to use a different, preferably higher-rung
DFT functional for the realistic simulation of redox events. In line with the conclusions of other
studies [67], we repeatedly showed that the meta-GGA hybrid TPPSh functional with adequate
dispersion correction captures the main features of the reduction and oxidation of transition metal
complexes in terms of electronic structure and energy changes allowing the computation of accurate
redox potentials [68,69].

Table 2. Computed ground- and excited-state reduction potentials for all investigated species in volts,
referenced to the saturated calomel electrode (SCE), given together with the corresponding experimental
values when available. Transitions that take place formally at the metal and at the ligand are denoted
as d5/d6 and L0/L−1, respectively, whereas excited-state redox events are indicated by *.

E0 V versus SCE

Ground State Excited State

d5/d6 L0/L−1 L0/L−1,* d5/d6 *

1 1.29 (1.29) −1.27 (−1.33) −0.73 (−0.81) 0.74 (0.77)
2 1.12 −1.96 −1.35 0.52
3 0.14 −2.23 −1.73 −0.36
4 0.68 −1.68 −1.17 0.18
5 0.34 (0.37) −1.61 (−1.70) −1.23 (−1.36) −0.04 (0.03)
6 0.34 (0.42) −1.61 (−1.66) −1.13 (−1.17) −0.15 (−0.06)
7 0.21 (0.34) −1.72 (−1.67) −1.23 (−1.21) −0.28 (−0.12)
8 0.37 (0.44) −1.66 (−1.65) −1.15 (−1.16) −0.14 (−0.05)
9 1.29 (1.30) −1.24 (−1.37) −0.66 (−0.70) 0.71 (0.63)
10 1.26 (1.28) −1.26 (−1.36) −0.72 (−0.75) 0.71 (0.66)
11 0.94 (1.09) −1.22 (−1.34) −0.70 (−0.68) 0.42 (0.43)
12 1.21 (1.11) −0.90 (−1.08) −0.29 (−0.60) 0.60 (0.64)

The success of the combination of TPSSh and SMD solvation method in modeling solution-state
redox energetics can also be witnessed in the close match between the computed and measured
ground-state reduction potentials in Table 2. For all three kinds of complexes and for both types
of reductions (i.e., metal-centered (d5/d6) and ligand-centered (L0/L−1)) investigated, the reduction
potentials were computed within 0.15 V to the experimental values. As a matter of fact, the deviation
from the measured reduction potentials was frequently less than 0.1 V. This is an encouraging
performance from DFT and implicit solvation, especially if one takes into account the chemical space
covered. Both heteroleptic or homoleptic complexes were investigated with the overall charge varying
from +3 (e.g., [Ru(bpy)3]3+ in the Dox state) to 0 (e.g., [Ru(bpy)2(ph-NHC/MIC)]0 systems (6–8) in the
Dred state); the chemical nature of ligands change significantly along the pyridine/phenyl/carbene
series which can be bidentate or tridentate, substituted or non-substituted, etc. These findings suggest
that accurate, efficient, and robust computational protocols can be established for the ground-state
redox energetics of photoredox catalysts using DFT and implicit solvation.

It is worth noting that we have not followed the in silico protocol that was established recently
by Demissie, Ruud, and Hansen [47] for computing the excited state redox potentials of photoredox
catalysts. The latter study takes advantage of the fact that the reduction and oxidation quenching
pathways are thermodynamic cycles with the energy of the absorbed photon being equal to the
energy that is liberated in the two subsequent redox steps of each quenching cycle. Consequently, by
computing the excitation energy, for example, by TD-DFT and using ground-state reduction potentials,
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the excited state redox potentials can be determined using the following formulas, where E00 represents
vertical S0→ S1 excitation energy.

E0∗
red = E0

red + E00

E0∗
ox = E0

ox − E00

The low rung B3LYP-D3 functional was found to be appropriate to reproduce the excited-state
reduction potentials of classical ruthenium and iridium photoredox catalysts. In contrast to this
approach, our computational protocol avoids the use of TD-DFT for excited-state reduction potentials
and, instead, utilizes the definition equation of half-cell potentials, Equation (1), where the ∆Gsol

values of excited state redox events are determined with respect to the triplet MLCT state. In other
words, by directly computing the solution-state Gibbs free energy of the 3MLCT state using the same
method as was established for ground-state energetics, the ∆Gsol value of the excited-state oxidation
and reduction processes can be easily determined using the Gsol values of Dox and Dred, respectively.
The corresponding excited-state reduction potentials are also given in Table 2 for the L0/L−1,* and
d6/d5,* transitions revealing that this approach offers simulated values that agree reasonably well
(within 0.2 V) to experimental reduction potentials. Then again, this observation is generic, remaining
true for both excited-state metal- and ligand-centered oxidations/reductions independently from the
nature of the ligands, their binding mode, overall charge of the complex, etc. Only in one instance
was there an unacceptable mismatch (−0.31 V) between theory and experiment; in complex 12 with a
multi-functionalized terpyridine and a tridentate carbene containing CˆNˆC ligand, the excited-state
ligand-centered oxidation was predicted to be at a notably more positive potential (−0.29 V) than
experimentally determined (−0.60 V).

It is worth looking into some of the telltale chemical trends revealed by the reduction potentials
collected in Table 1. Most importantly, seven of the studied systems (i.e., 1, 5, 6, 7, 8, 9, and 10) can
be clearly grouped into two sub-classes with very similar redox properties. Namely, 1, 9, and 10
had reduction potentials of about 1.3 V for the Ru(III)/Ru(II) transition, −1.25 V for the ground-state
ligand-centered reduction, and approximately −0.7 V and 0.7 V for the excited-state L/L−1* and
Ru(III)/Ru(II)* events, respectively. On the other hand, 5, 6, 7, and 8 underwent metal-based d6/d5

oxidation at about 0.2–0.35 V and ligand-centered reduction at −1.6 to −1.7 V in the ground state,
and the excited-state reduction potentials of these complexes were also rather similar in spite of the
difference of the constituting ligand frames. From a side-by-side comparison of the structures of
these two groups, however, one can easily deduce that there was only one main structural feature
that remained unchanged within a group but changed along the two groups which was the pyridine
versus phenyl group in the carbene-containing ligands. Namely, all these complexes shared the same
(bpy)2RuL platform; however, L was py-py (i.e., bpy), py-f NHCCH2Ph, and py-f NHCMe in 1, 9, and 10,
respectively, and it was ph-py (i.e., ppy), phBr-NHC, phOMe-MICMe, and phCN-MICMe in 5, 6, 7, and 8,
respectively. These data imply that the most critical factor that determines the redox energetics in
these photoredox catalysts is whether the ligand is phenyl or pyridine based. The observed trend
that phenyl-containing complexes undergo easier metal-centered oxidation and their ligand-centered
reduction is energetically more challenging than pyridine-based complexes agrees with the intuitive
chemical notion that the carbanion contact atom of phenyl is a superior electron donor to pyridine’s
nitrogen leading to, for example, the stabilization of the metal center at higher oxidation states [55,70,71].
The independence of the reduction potentials of metal-centered processes on the nature of the carbene
fragment implies that even if these carbenes are excellent σ-donors, their stabilization effect in the
different metal oxidation states is apparently counteracted by the weakened Ru–N bonds trans to these
Ru–Ccarbene interactions. On the other hand, the finding that the energetics of ligand-centered redox
events does not depend on the nature of L, the carbene-containing ligand, suggests that the latter does
not participate in the formally ligand-based reductions/oxidations of these (bpy)2RuL-type complexes.
This notion is unambiguously confirmed by subsequent analyses.
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In contrast to the former heteroleptic systems, the nature of the carbene ligands directly and
unmistakably manifests in the redox properties of homoleptic systems, 1, 2, 3, and 4 (Table 2). For
instance, the sharp decrease of the Ru(III)/Ru(II) reduction potential from 1.29 V [Ru(bpy)3]2+ (1) to 1.12
V, 0.68 V and 0.14 V in the parent [Ru(py-NHC)3]2+ (2), [Ru(py-MIC)3]2+ (4), and [Ru(py-aNHC)3]2+ (3)
systems, respectively, can be attributed to the increasing σ-donor properties of the carbene fragments
leading to the extra stabilization of the Ru(III) over Ru(II). The same trend was observed for the
excited-state metal-centered redox event of these complexes. The shift of 0.5 V when going from 3 to 4
is especially telltale for how the change of one atom in the ligand frame (N to CH in this case) can
affect the electronic properties of carbene groups and ligands. The very negative reduction potential
of ligand-centered events (e.g., −1.96 V in 2 with NHC groups and −2.23 V in 3 with aNHC groups)
indicates that these types of carbene ligands cannot efficiently stabilize additional electrons in their
π-system, i.e., these groups have poor redox activity. This property also manifests in the excited-state
reactivity, offering a significantly large thermodynamic driving force to extrude the ligand-centered
electron in the 3MLCT state. This insight might help rationalizing the recent observation by Jalón and
co-workers [16] that the homoleptic ruthenium–carbene complex A directly reacts with the co-catalysts
through the oxidative quenching cycle instead of reacting with an electron donor (the sacrificial agent)
first through the reductive quenching cycle. Finally, the results obtained for complexes 11 and 12 reveal
that there was an additional significant prospective in controlling the redox energetics through other
factors, like using more extended tridentate ligands and their different binding modes (e.g., meridional
versus facial) to the metal. In 12, for example, it was interesting to see that the two NHC wingtip groups
had the same effect on the Ru(III)/Ru(II) transition that was discussed for the [Ru(py-NHC)3]2+ system
(2), while the tpy ligand of 12 offered stable states with ligand-centered radicals (i.e., ligand-centered
reductions shifted towards more positive potentials with respect to bpy). As discussed below, the latter
behavior can be attributed solely to the tpy ligand as the CˆNˆC carbene ligand does not participate in
the ligand-centered redox events.

To gain detailed insight into the electronic structure changes during the reduction and oxidation
steps of the quenching cycles and to further conceptualize some of the observed trends in the
redox energetics, we analyzed the electron density difference maps, ∆ρ(r), corresponding to the five
fundamental steps of the quenching cycles, such as S0→

3MLCT, 3MLCT→ Dred, Dred
→ S0, 3MLCT

→ Dox and Dox
→ S0. While electron density difference distributions have been utilized extensively

to analyze electronic transitions upon photoexcitation and to distinguish MLCT, MC, and LLCT
transitions, etc., its use to characterize the nature and detailed features of transitions that include
outer-sphere electron transfer events was pioneered by us [68,69]. For a single electron reduction, for
example, the density difference distribution ∆ρ(r) is evaluated as the electron density of the reduced
state minus the electron density of the oxidized state which, if plotted in 3D together with the molecular
frame, reveals the sites, functional groups, and atoms where charge accumulates or depletes upon
the reduction process. The analysis has to be carried out at a constant geometry in practice, which
is an acceptable approximation in the case of the studied systems as the molecular geometry only
distorts marginally upon the reduction and oxidation of these species. Namely, as the metal-centered
reduction or oxidation event involves a formally non-bonding t2g d-orbital; the geometry barely
changes during the redox event, and such a notion can be clearly observed in Table 3 which lists
the metal–ligand distances in the four states involved in the quenching cycles for three structurally
different representative systems: 1, 10, and 12. In complex 6, for example, Ru–Npyridine bond distances
have a maximum variation of 0.03 Å through the four states, and this change is also characteristic for
the metal–carbanion distances, whereas Ru–Ccarbene distances vary even less upon photoexcitation
and redox events. An additional interesting finding revealed in Table 3 was the shorter Ru–Ccarbene

bonds (Ru–X2) in the Dred state with Ru(II) than in Dox where the carbene binds to a Ru(III) center.
Furthermore, as the redox active orbital of the ligand is delocalized, the ligand-centered L0/L−1

transitions induced only slight deformations in the ligand frame upon reduction, which we clearly
demonstrated in our earlier studies on redox non-innocent and redox active ligands with similar
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features than the ligands investigated in this study [68,69]. These results support the notion that density
difference distributions determined at the equilibrium structure of either the oxidized or reduced
state characterize realistically the electronic structure changes of the corresponding redox event in the
investigated photoredox platforms.

Table 3. Average Ru–Npyridine, Ru–Cphenyl, and Ru–Ccarbene distances (in Å) in the four stationary
points (S0, T1, Dox, Dred) of the oxidative and reductive photoredox cycles for [Ru(bpy)3]2+ (1),
[Ru(bpy)2(py-f NHCMe)]2+ (10), and [Ru(tpy)(CˆNˆC)]2+ (12).

Bond (Å)
[Ru(bpy)3]2+ [Ru(bpy)2(py-fNHCMe)]2+ [Ru(tpy)(CˆNˆC)]2+

S0 T1 Dox Dred S0 T1 Dox Dred S0 T1 Dox Dred

Ru–X1 2.058 2.058 2.070 2.050 2.075 2.083 2.078 2.066 2.090 2.114 2.110 2.055

Ru–X2 2.058 2.058 2.070 2.050 1.990 1.999 1.987 1.965 2.059 2.057 2.065 2.050

Ru–N3 2.058 2.059 2.070 2.050 2.058 2.049 2.066 2.051 2.063 2.075 2.075 2.061

Ru–N4 2.058 2.059 2.070 2.050 2.059 2.052 2.073 2.055 1.952 1.966 1.968 1.978

Ru–X5 2.058 2.059 2.070 2.050 2.124 2.126 2.145 2.121 2.059 2.064 2.066 2.049

Ru–N6 2.058 2.059 2.070 2.050 2.065 2.061 2.082 2.059 2.061 2.074 2.081 2.060

X1 is N. X2 is carbene carbon. X5 is N in [Ru(bpy)3]2+ and [Ru(bpy)2(py-f NHCMe)]2+ but an MIC-type carbon in
[Ru(tpy)(CˆNˆC)]2+.

Figure 4 shows the electron density difference distribution, ∆ρ(r), for the photoexcitation
process and subsequent redox events of the reductive quenching cycle for three representative
photoredox catalysts, such as the homoleptic [Ru(bpy)3]2+ (1), heteroleptic [Ru(bpy)2(py-f NHCMe)]2+

(10), and [Ru(tpy)(CˆNˆC)]2+ (12), with the tridentate terpyridine and CˆNˆC MIC-containing ligands.
The analogous ∆ρ(r) maps of the oxidative quenching cycle are given in the Supplementary Materials
(Figure S1). The ∆ρ(r) maps of the S0

3MLCT (T1) processes (left, Figure 4) offer intuitive insights into
the electronic changes induced by photon absorption and subsequent intersystem crossing (ISC) in
these systems, revealing characteristic metal-to-ligand charge transfers in accordance with the MLCT
nature of the triplet excited state. The depletion of electron density (red sites) at the metal and the
accumulation of density (yellow regions) mostly at the ligand is a general feature in all the three
systems when going from the S0 state to the 3MLCT state.

Nevertheless, other relevant details can be deduced from the close inspection of the plots. For
example, when accumulated on the bipyridine ligand(s) (e.g., in [Ru(bpy)3]2+) the electron density is
not delocalized to the backbone of the ligand(s) to the extent as perhaps expected on the delocalized
nature of its LUMO. Instead, it remains “localized” at the N–C–C–N contact functionality of the ligand.
This pattern of density accumulation was also observed for redox non-innocent benzoquinonediimine
ligands upon reduction and was rationalized based on a superior electrostatic stabilization when the
accumulated negative charge at the ligand remains in the proximity of the formally +3 metal, in contrast
to being delocalized to the backbone of the ligand [68,69]. This density accumulation pattern at the
ligand can be also observed for 10 and 12.

Probably the most spectacular insight revealed by this analysis is the disclosure of the localization
of the transferred charge to bipyridine and terpyridine ligand(s) in heteroleptic carbene complexes.
Namely, going from [Ru(bpy)3]2+ to [Ru(bpy)2(py-f NHCMe)]2+ (10) and [Ru(tpy)(CˆNˆC)]2+ (12),
the charge transferred from the metal to the ligand which was delocalized uniformly amongst the three
bpy ligands in [Ru(bpy)3]2+, becoming localized to the two bpy ligands in [Ru(bpy)2(py-f NHCMe)]2+

and to the tpy ligand in [Ru(tpy)(CˆNˆC)]2+ (12). Accordingly, the involvement of the carbene-containing
ligand into the photoexcitation was negligible. Of course, pyridine and carbenes differ in their electron
affinities giving rise to this behavior of non-equivalent charge distribution in heteroleptic systems.
Nevertheless, the sharp contrast between the contribution of carbenes and bpy to hosting the transferred
charge was remarkable as revealed by Figure 4. In homoleptic carbene complexes with three identical
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ligands (e.g., in 2, 3, and 4) similarly to [Ru(bpy)3]2+, the transferred charge was delocalized throughout
all ligands.Catalysts 2020, 10, x FOR PEER REVIEW 12 of 24 
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Figure 4. Electron density difference distributions, ∆ρ(r), corresponding to the S0 → T1 transition (left,
inducing a formal d6L0

→ d5L−1 electronic structure change) the first excited-state reduction step of the
reductive quenching cycle (middle, T1 → Dred transition, inducing a formal d5L–1

→ d6L−1 electronic
structure change) and second ground-state oxidation step of the reductive quenching cycle (right, Dred

→ S0 transition, inducing a formal d6L−1
→ d6L0 electronic structure change) for 1, 10, and 12. Note

that the ∆ρ(r) map of the latter process is given for the reduction direction (S0 → Dred) for the sake
of consistency.

Admittedly, besides the yellow (accumulation) lobes at the ligands, which clearly exhibit the
features of π-symmetry redox active orbitals, some loss of electron density can also be witnessed at the
ligand as implied by the red regions in certain cases. These red sites correspond to σ-symmetry with
respect to the ligand frame (e.g., in [Ru(bpy)3]2+), and they imply an enhanced σ-donation from the
ligand to the metal when it formally changed from Ru(II) to Ru(III). This increased donation was also
reflected by the directional accumulation (yellow) at the metal.
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The ∆ρ(r) maps corresponding to the two redox steps of the reductive quenching cycle, 3MLCT to
Dred and Dred to S0, are also given in Figure 4 for the three selected photoredox catalysts. These analyses
were carried out at the equilibrium structure of the S0 state of the complexes, and the approximation
did not alter the conceptual insight offered by the analysis of the ∆ρ(r) maps.

The established photophysics and subsequent chemical processes imply a formal d5/d6 metal-based
reduction for the first (excited state) step of the reductive quenching cycle whereas a conventional
ligand-centered oxidation was expected for the Dred

→ S0 transition corresponding to the second step
of this pathway. Indeed, Figure 4 clearly reveals a massive accumulation of electron density around
the metal in each complex, aligning well with the consensus assignment of an excited-state d5/d6

transition. The electron density change maps corresponding to the second step also unambiguously
demonstrated ligand-centered redox events in all systems with a minor or negligible contribution from
the metal. Then again, the marginal contribution of carbene ligands, with respect to that of bipyridine
and terpyridine to these ligand-centered redox events, can be clearly witnessed and which can be
rationalized based on the superior redox activity and electron affinity of pyridine to carbenes. These
insights also clarify the observation that the redox energetics of formal ligand-centered processes does
not depend on the nature of the carbene ligands in heteroleptic systems.

Another intuitive way to monitor the electronic structure changes of open-shell species is using
spin-density distributions (ρs(r) = ρα(r)−ρβ(r)) [72–74] and their changes upon a chemical process.
Table 4 gives the atom(Ru)- and fragment(ligand)-condensed spin density values in the 3MLCT, Dox,
and Dred states for six representative systems and in the 3MC state of homoleptic complexes 1–4. The
corresponding spin density values in the S0 state are zero by definition. This quantitative analysis
has been carried out at the corresponding equilibrium geometry of each investigated state and, thus,
it is not affected by the fixed geometry constraint applied in the EDD analysis. Spin density values of
0.7–1.0 at the ruthenium center, observed in 3MLCT and Dox states, reveal a formal unpaired α electron
at the metal, which indicates a d5 configuration, i.e., a Ru(III) oxidation state. The deviation from the
nominal value of 1.0 was due to the π-donation from the ligand to the metal in the β subspace (one of
the π-symmetry t2g orbitals is half-vacant) and to a minor extent to the π-back-donation from the metal
to the ligand in the α subspace. The latter effect was plausibly negligible in the complexes investigated,
as Ru(III) is a weak back-donor. Accordingly, the Ru-condensed values imply formal Ru(III) centers in
the triplet 3MLCT and doublet Dox states, whereas the d6 Ru(II) oxidation state was prevalent in the
reduced Dred state, in accordance with the consensus formal assignments of these states. Similarly,
ligand/fragment-condensed values close to 1 imply a formally one-electron reduced ligand or fragment,
whereas fractional values describe the delocalization of the unpaired electron to other groups/metal.

The variation of the condensed spin-density values amongst the different states support explicitly
the notions deduced above through the analysis of the density difference maps. For instance, going
from 3MLCT to Dred the spin-density at Ru decreases from ~0.7 in 3MLCT to ~0.0 in Dred, implying
a fairly localized metal-centered d5/d6 transition. In contrast, the spin density distribution around
the metal remains rather intact upon 3MLCT to Dox transition, while the mono-radical character of
the ligand (spin-density value of 1–1.2) disappears, revealing a pure ligand-based oxidation. As also
demonstrated above, the low spin density values (<0.1) at the carbene fragments in all three oxidation
states unambiguously demonstrate that these ligands do not participate actively in the photoexcitation
and subsequent redox events in heteroleptic systems (e.g., in 8 and 10, Table 4). In these cases, all
ligand-based changes are confined to the bipyridine ligands. In contrast, carbene ligands (py-NHC,
py-aNHC and py-MIC) act as redox-active ligands in the MLCT and ligand-centered redox events
of homoleptic catalysts 2, 3, and 4. As one can see in Table 4, there is more spin density confined to
the carbene groups (0.67 in 3 and 0.76 in 4) of these chelating ligands than to the pyridine fragment
showing that the unpaired “extra” electron is significantly delocalized to the carbene fragment. Some
of the contribution to this spin density at the carbene, however, originates from the π-donation from
the carbene to the d5-metal in the β subspace, which lowers the condensed spin-density value at the
metal (0.68 in 3 and 0.73 in 4) and increases the spin density at the ligand. The spin densities of 0.19 and
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0.16 at the carbene in the Dox state (formally d5-L0) of 3 and 4, respectively, give a first-hand measure
to the extent of this π-donation from the carbene to the d5 metal. Finally, we provided the condensed
spin density values in the 3MC state for some of these species, as we used this property to monitor
electronic structure changes along the 3MLCT to 3MC transition which is discussed in the followings.

Table 4. Fragment/atom condensed spin density populations at the metal and at the ligand, separated
into the constituting fragments, in the 3MLCT, Dox, and Dred states of homoleptic complexes 1–4 and
heteroleptic systems 8 and 10, determined using the Löwdin method.

Complex Frag 3MLCT Dox Dred 3MC

1 [Ru(bpy)3]2+ Ru 0.827 0.853 −0.028 1.668∑
py 1.172 0.145 1.009 0.331

2 [Ru(py-NHC)3]2+

Ru 0.657 0.652 −0.029 1.204∑
py 0.814 0.277 0.270 0.321∑

NHC 0.527 0.070 0.072 0.474

3 [Ru(py-aNHC)3]2+

Ru 0.679 0.715 −0.019 1.236∑
py 0.648 0.094 0.523 0.347∑

MIC 0.672 0.189 0.496 0.416

4 [Ru(py-MIC)3]2+

Ru 0.727 0.762 −0.012 1.281∑
py 0.512 0.080 0.447 0.299∑

MIC 0.759 0.156 0.565 0.419

8 [Ru(bpy)2(phCN-MICMe]1+

Ru 0.824 0.758 −0.007∑
py 1.038 0.033 0.962

R-Ph 0.032 0.171 0.018

R-MIC 0.104 0.036 0.026

10 [Ru(bpy)2(py-f NHCMe)]2+

Ru 0.753 0.633 −0.011∑
py 1.116 0.055 0.992

R-py 0.025 0.006 0.010

R-NHC 0.105 0.014 0.008

Beyond the above described photophysics and redox properties, another critical property of
efficient photoredox catalysts is the long lifetime (~µs) of the 3MLCT state of these complexes, which
allows these species to engage in intermolecular collisions and reactions in the excited state [75].
Both radiative and non-radiative processes contribute to the decay of the 3MLCT state, and these
processes, together with the lifetime, depend significantly on other external factors, for example, on the
solvent [18,76,77]. It has been demonstrated, for instance, that 80% of triplet MLCT excited-state
*[Ru(bpy)3]2+ returns to the ground state through the 3MC state following a very efficient non-radiative
pathway [78]. Accordingly, if the transition from the 3MLCT to the 3MC state is fast (i.e., a small
activation barrier separates these states), the overall deactivation proceeds at high rates [79–82]. In
regard to the 3MLCT to 3MC transition, one has to realize that the t2g d orbital set cannot host another
α electron in the 3MC state and one of the eg* d orbital, typically the dz

2, is necessarily populated by an
electron in this state. The formally metal-based dz

2 is anti-bonding along the axial M–L interactions in
an octahedral field, and its population results in a repulsion along the M–L bond and, concomitantly, to a
characteristic elongation of the axial bonds [14]. Accordingly, the geometry around the metal is quite
different in the 3MC and 3MLCT states which means, from a computational viewpoint, that these two
triplet states appear as well-defined local minima on the triplet PES and the corresponding connecting
transition state also has acute features that characterize the elongation of the axial bonds [83,84]. These
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notions can be clearly recognized in Figure 5 showing the structure of 3MLCT, 3TS, and 3MC states of
homoleptic systems 1, 2, and 3, calculated at the PBE/Def2-TZVP(−f) level of theory, given together
with their gas phase and solution-state (in acetonitrile) relative energies to 3MLCT.
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As hypothesized based on the formal electronic structure of the 3MC state, the structure of this
state was indeed significantly distorted along the axial axis for all three systems shown in Figure 5. For
example, both axial Ru–Npyridine bonds elongated by about 0.4 Å in the case of [Ru(bpy)3]2+ during
the 3MLCT to 3MC transition (Figure 5). In this analysis, we scrutinized only homoleptic systems with
three identical N–Ru–N or N–Ru–Ccarbene axes to limit the conformational possibilities of the 3MC
and 3TS states to only one and be able to reveal the conceptual differences triggered by Ru–Npyridine

versus Ru–Ccarbene bonds in the 3MLCT to 3MC transition. Side-by-side comparison of the 3MC states
of 1, 2, and 3, for instance, revealed profound differences between the systems with trans N–Ru–N
and N–Ru–Ccarbene interactions in contrast to the symmetric elongation of the N–Ru bonds along the
N–Ru–N axis in 1; the Ru–Ccarbene interactions in 2 and 3 remained practically intact upon the 3MLCT
to 3MC transition, and all the chemical changes (reduction of the metal center in an intermediate-spin
fashion) accumulated along the Ru–N bond trans to the carbene. The latter bond elongated by about
0.9 Å and 1.1 Å in the 3MC state of 2 and 3, respectively. The corresponding electronic structure
deformation can be rationalized by a strong hybridization of the dz

2 orbital with the 5pz(Ru) atomic
orbital and it also gains a “−x2” character in 2 and 3 which is also reflected by the spatial distribution
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of the quasi-restricted orbital (QRO) representing the half-filled d-orbital (HOMO in all three cases)
along the z-axis (Figure 5).

The transition states corresponding to the 3MLCT to 3MC transition of the systems also exhibited
these structural feature differences. Namely, a symmetric stretching of N–Ru–N was revealed in 3TS of
1, whereas an asymmetric, Ru–N-centered bond breaking along the N–Ru–Ccarbene axis was taking
place in the 3TS transition state of 2 and 3. In addition, while the transition state of complex 1 can be
termed as late due to the axial Ru–N distances being close to the values in the “product” 3MC state,
the breaking Ru–N bond had distances of 2.6 Å and 2.7 Å in 2 and 3, respectively, indicating a mid-TS
in these carbene ligand-containing systems. These conceptual differences between the 3MC states and
corresponding transition states may be well explained by the strong σ-donor nature of the carbene
groups. As discussed above for the geometries of the S0 states, superior σ-donor carbenes form strong
(and short) Ru–Ccarbene bonds which are energetically disadvantageous to break or weaken and which
lead to stable 3MC states in which these Ru–Ccarbene bonds remain short, strong, and stabilizing. At
the same time, the “extra” electron that the metal accepts from the ligand through the 3MLCT to 3MC
transition gets accumulated along the Ru· · ·N internuclear axis trans to the carbene (facilitated by
pzdz

2 hybridization and extension to a perpendicular axis (x)), without any delocalization towards the
Ru–Ccarbene site. The notion that carbene ligands stabilize the 3MC state over 3MLCT in comparison to
polypyridine ligands through the same electronic effect can be indeed seen in the calculated relative
stabilities (Figure 5). Accordingly, the solution-state (gas phase) relative energy of 3MC state to 3MLCT
decreased from 7.8 (12.2) kcal mol−1 in 1 to −0.2 (1.6) kcal mol−1 in 2 and to 6.9 and 9.0 kcal mol−1

in system 3. The relative transition state energies exhibited an analogous trend, i.e., the activation
barrier was lowered going from the pyridine–ruthenium system 1 to the carbene complexes 2 and
3. This finding might sound somewhat counterintuitive at first, as the general concept is that strong
Ru–Ccarbene bonds resist bond breaking/stretching, which leads to higher activation barriers and longer
triplet state lifetimes. Apparently, Ru–Ccarbene bonds indeed resist bond stretching, nevertheless,
it is easier to break the Ru–Npyridine bond trans to carbenes as in N–Ru–N type axes, which might
manifest in a facile non-radiate decay through the 3MLCT to 3MC path. The particularly low activation
barrier of 2.57 kcal mol−1 in the case of complex 2 might account for the observation of Chung and
co-workers [62] that complex “is nonemissive in acetonitrile at room temperature”.

In 2010, an innovative technique, the non-covalent interaction (NCI) index, based on the correlation
of the electron density and the reduced density gradient at any given point of space was introduced
by Yang and co-workers [85] to identify and characterize weak chemical interactions [85,86]. This
method has been already successfully used for distinguishing hydrogen bonds, halogen bonds, π–π
stacking, van der Waals interactions, steric repulsions, and other types of weak interactions in various
systems [87,88]. Despite its great success in describing weak interactions in complex environments,
to our best knowledge, no study on putative non-covalent interactions in photoredox catalysts has
been carried out with this technique so far.

As the presence of inter-ligand weak interactions has been postulated in these systems, we were
especially interested in the new insights that the NCI method may provide in the studied complexes.
Plotting the low-gradient/low-density region points for the S0 state in real space with respect to the
molecular frame of the complexes indeed reveals certain weak ligand-ligand interactions, from which
representative examples are shown in Figure 6. Complex 6 and 10 demonstrate that alpha Cα–H
bonds of bpy are oriented ideally to develop weak C–H· · ·Ccarbene, C–H· · ·Cphenyl and C–H· · ·Npyridine

interactions with the donor atoms of the other ligands, which can be witnessed in the localized
green “plates” between the interacting regions. In both of these complexes, the wingtip group of the
carbene fragments also engages in dispersion-like alkyl· · ·pyridine (in 6) and aryl· · ·pyridine π–π
stacking (in 10) interactions implied by the extended green surfaces between these sites. Complex 11
exemplifies that massive π–π stacking can also emerge among the extended aromatic fragments of
ligands, in which instances these weak interactions gain a non-negligible secondary role in determining
the molecular structure. This notion was clearly supported by DFT calculations carried out with and
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without dispersion correction for 11, giving equilibrium structures with notable differences, dispersion
corrected DFT structures being truthful to the X-ray geometry [77]. The extent of such inter-ligand
weak interactions also depend profoundly on their binding mode to the metal as revealed by the
significant differences between 11 and [Ru(tpy)(pmi)]2+; the meridional arrangement in the latter
detrimentally limited the ligands in developing π–π interactions through their backbone chains or
groups, and only the wingtip groups were oriented preferably to interact with the other ligand(s) in the
system. In contrast to [Ru(tpy)(pmi)]2+, the facial binding in 11 directly facilitated the through-space
interaction of the extended aromatic backbone groups of the two ligands as can be clearly seen in
Figure 6.

According to these findings offered by the NCI method, indeed many types of weak intra-ligand
interactions emerge in classical and carbene-based photoredox catalysts which might even play a
secondary role in determining the ultimate geometry of the complex. Our general experience with
these kinds of weak interactions, however, is that they do not change notably along the photoredox
quenching cycles as the overall geometry of the involved four states, S0, 3MLCT, Dox and Dred, is
very similar as discussed above for Table 3. Hence, their contribution to the redox energetics is
negligible, i.e., the contribution of weak interactions to the stability cancels out when calculating ∆Gsol

values for the different redox events. Their effect on the quenching dynamics, vibrations, radiative,
and non-radiative decay processes of the 3MLCT state and concomitantly on the lifetime of the 3MLCT
state is plausibly not negligible; however, it is admittedly hard to judge from this simple NCI analysis
and needs further investigation.
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Figure 6. NCI isosurfaces (s = 0.4 a.u.) of complexes 6, 10, 11, and [Ru(tpy)(pmi)]2+ in their respective S0 state.
Color coding of NCI surfaces: blue—attraction, green—van der Waals interaction (very weak attraction);
and red—repulsion. The pmi ligand is 1,1′-[2,6-pyridinediylbis(methylene)]bis[3-methylimidazolium] in
[Ru(tpy)(pmi)]2+.
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3. Materials and Methods

Density functional theory was implemented in ORCA (version 4.0.1.2, Max-Planck-Institute for
Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany, 2017) was utilized for all calculations
in this study [89]. Geometry optimizations were carried out using the non-truncated models of the
investigated transition metal complexes and the gradient-corrected PBE [90,91] functional together
with the Def2-TZVP(-f) [92] basis set at a grid set denoted as Grid4. The Def2-ECP [93] effective core
potential for Ru was built in the basis set by default which also aimed to account for the relativistic
effects at the ruthenium center. In addition, the resolution of identity (RI) approximation was applied
to accelerate geometry optimizations [94]. Dispersion was considered through Grimme’s D3 [95]
method in combination with the Becke–Johnson damping scheme [95] at short distances (D3BJ) in all
calculations including the geometry optimizations. Analytical vibrational frequency calculations were
carried out at the same level of theory as for the optimizations (PBE/Def2-TZVP(-f), Grid4) to validate
that the optimized structures corresponding to minima or transition states of the potential energy
surface (PES). Also, thermodynamic corrections to the electronic energy were obtained within the
ideal gas-rigid rotor–harmonic oscillator approximation at T = 273.15 K. The energy of the examined
structures was re-evaluated and their wavefunctions were refined through single points calculations at
the TPSSh/Def2-TZVP level of theory without approximating the integrals with RI or RIJCOSX and
maintaining D3BJ and Grid4 grid.

Solvation energy was computed using the SMD [96] implicit solvation model as implemented
in ORCA at the gas-phase equilibrium structures at the TPSSh-D3/Def2-TZVP level of theory, using
the same parameters of the single point calculations. We utilized the solvent accessible surface (SAS)
method to create the cavity surface around the molecules, whereas the atomic radii of the default
method were adjusted to the following values: H (1.150 Å), C (1.900 Å), N (1.600 Å), Ru (1.481 Å).
Acetonitrile was used as solvent with a radius of 2.19 Å.

We followed the established procedure for computing redox potentials as detailed by Roy et al. [97]
and Baik and Friesner [98]. By definition, the standard absolute half-cell potential (E0) was evaluated as:

E0(A/A−) =
−∆Gsol 0(A/A−)

nF
(1)

For the general reduction process:
A + e− → A− (2)

where ∆Gsol is the solution-state Gibbs free energy of species A– minus that of A; n is the number of
moles of electrons transferred (n = 1), and F is the Faraday constant. ∆Gsol 0 was evaluated through the
Born–Haber thermodynamic cycle [99] using gas phase equilibrium structures and thermodynamic
corrections computed at the gas phase equilibrium structures. Gas-phase Gibbs free energy values
were corrected by solvation energies to obtain solution-state Gibbs free energies of the individual
species. We used the standard calomel electrode (SCE) as reference to calculate reduction potentials
from the computed half-cell potentials as:

E0 = E0(A/A−) − E0(SCE) (3)

We used the value of 4.429 V for SCE established and verified recently by Demissie, Ruud,
and Hansen [47]. For the electron density difference analysis, we used the wavefunctions obtained at
the TPSSh/Def2-TZVP level of theory and Grid4 grid and computed at the equilibrium structure of the
ground S0 state. Standard cube files of electron densities with grid dimensions of 80 × 80 × 80 for each
electronic state were generated with the orca_plot script, whereas the Multiwfn 3.7 [100] package was
used to create the density differences for the d6L−1–d5L−1, d6L−1–d6L0, and d5L−1–d6L0 processes as
shown in Figure 4. The ∆ρ(r) maps were visualized using VMD 1.9.1 [101].
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Non-covalent interaction (NCI) surfaces, introduced by Yang and Contreras-García [85,86], were
calculated using PBE/Def2-TZVP (-f) densities and the Multiwfn (version 3.7) program (with all
other computational details identical to that used for generating EDD maps). The NCI method was
centered at the relationship of the reduced density gradient, s, and the electron density, ρ; in the
case of any type of weak interaction present in the system, a characteristic signal emerges at the
low-density/low-gradient values. The sign of the second component of the Laplacian along the three
principal axes of maximal variation was used to decide whether a weak interaction is attractive or
repulsive in line with common practice.

4. Conclusions

In conclusion, in this computational study, we systematically investigated the photoredox
properties of twelve ruthenium–carbene and –polypyridine transition metal complexes using density
functional theory. Through a direct comparison to experimental data, we demonstrated an efficient
method based on the combination of the PBE functional with Grimme’s D3 method and a balanced
triple-ζ basis set that provided realistic molecular structures of these photoredox catalysts. We
also validated a computational protocol based on the TPPSh functional and a re-parameterized
SMD solvation model for solution-state Gibbs energies allowing the simulations of the ground-state
redox energetics of metal- and ligand-centered electron transfer events within 0.15 V. The results
also revealed that the relative Gibbs free energy of the 3MLCT state can be realistically computed
using standard ground-state DFT without the necessity for time-dependent techniques, allowing
the accurate calculation of the excited state redox potentials of these systems. Analysis of the
obtained reduction potential values revealed that NHC and MIC carbenes have similar effects on the
reduction potentials of Ru(III)/Ru(II) transitions as pyridine, while the pyridine/phenyl exchange has a
significant effect on the redox energetics of ligand-centered events. In heteroleptic (bpy)2Ru(II)L-type
systems, the carbene-containing L ligand did not participate in the ligand-centered redox events
and, accordingly, did not influence the corresponding reduction potentials. In contrast, the modest
redox-active nature of carbenes manifested in negative reduction potentials in the ligand-centered
redox events of homoleptic complexes.

We also thoroughly analyzed the electron density difference distributions and atom/fragment
condensed spin density values corresponding to the S0 to 3MLCT electronic transition and the
redox events of the reductive quenching cycle of representative systems. Amongst other details,
the characteristic nature of MLCT transition, metal-centered reduction, and ligand-centered oxidation
can be clearly witnessed in these ∆ρ(r) maps. The localization of the ligand-centered redox events
to bipyridine and terpyridine was revealed for the heteroleptic (bpy)2Ru(II)L-type systems. The
analysis of the 3MLCT to 3MC transitions also exposed characteristic differences between carbene and
pyridine groups; in contrast to Ru–N, the strong Ru–Ccarbene bonds did not elongate from 3MLCT
to 3MC transitions. The latter interactions, however, induced an easier Ru–N stretching in trans
positions which eventually led to a more stable 3MC state and lowered activation barriers in homoleptic
carbene complexes. Finally, NCI analysis showed specific weak intra-ligand interactions, including
π–π stacking and C–H· · · arbene ones.
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