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Abstract: MTBE (methyl tert-butyl ether) represents a rising threat to the environment, especially
drinking water, and its effective removal (with all by-products) is necessary. Even a very low
concentration of MTBE makes the water undrinkable; therefore, an effective treatment has to be
developed. This work is focused on MTBE photocatalytic oxidation in presence of various TiO2

photocatalysts with different phase composition prepared by different methods. It was confirmed
the phase composition of TiO2 had the most significant influence on the photocatalytic degradation
of MTBE. The rutile phase more easily reduces adsorbed oxygen by photogenerated electrons to
superoxide radical, supporting separation of charge carriers. The presence and concentrations of
by-products have to be taken into account as well. The conversion of total organic carbon (TOC)
was used for the comparison, 40% of TOC was removed after 1 h of irradiation in presence of
TiO2–ISOP–C/800 photocatalyst composed of anatase and rutile phase.
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1. Introduction

Environmental protection, especially water and air, is representing a serious challenge for current
science. Transportation belongs among the pollution sources which negatively influence both air and
water environment. The air pollution from transportation is well discussed, and there are various
restrictions to decrease exhaust emissions as much as possible. However, the water pollution connected
to transportation is not so apparent, especially to public knowledge. For example, methyl tert-butyl
ether (MTBE), a gasoline additive, is a chemical compound used for increasing oxygen content in
gasoline [1].

MTBE as fuel additive was used in 1979 for the first time. It was used to replace lead and as
an octane enhancer [2]. The production of MTBE has increased ever since. The total consumption
of MTBE reached 22.4 Mt annually in 2016, and this number is expected to increase to 26.5 Mt in
2021 [3]. Considering very high production levels of MTBE, it is expected to find this compound in the
environment. Since the MTBE is rather easily dissolved in water, it is water sources where MTBE can
be found. The problem is when drinking water is contaminated because even very low concentrations
of MTBE can make drinking water undrinkable due to its offensive taste and odor. Since MTBE in
drinking water has attracted attention quite recently, its harmful effects on human health after digestion
are unclear [2]. However, higher concentrations of MTBE were reported to depress the nervous system,
be genotoxic, irritate skin and eyes [1]. Water containing very low amount of MTBE, around 20 ppb
and more, already smell like turpentine.
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There are several ways how MTBE gets into the environment. Main sources of MTBE are accidental
fuel leakages during transportation of storage containers and car accidents, but also unburned gasoline
spilled from boats directly to surface waters [1]. As a result, MTBE is the second most commonly
detected volatile organic compound in surface waters.

Currently, there are several methods for removing MTBE from water, for example, various
adsorptions, air stripping, biodegradation, electrochemical oxidation, and advanced oxidation processes.
All these methods are described and discussed in a review paper focused on technologies for removal
of MTBE [1]. Advanced oxidation processes, especially photocatalysis proved to be a very promising
method. It is the vision of very low costs for operating the technology that makes it so interesting.
Photocatalysis found its way into basically all research fields during the last decade, and removal
of MTBE is no exception. The photocatalytic decomposition of MTBE was studied using various
semiconductor catalysts, which were modified or immobilized on the support, the catalysts were
mostly based on TiO2 [4–8] or ZnO [9–11].

This work is investigating the photocatalytic degradation of methyl tert-butyl ether in presence of
various TiO2 photocatalysts with different phase composition prepared by different methods.

2. Results and Discussion

The texture properties of TiO2 photocatalysts prepared by various methods were evaluated using
nitrogen physisorption (Table 1). The shape of the nitrogen adsorption/desorption isotherms of most
of the photocatalysts can be categorized as IV type isotherms according the IUPAC classification [12],
basically corresponding to the mesoporous materials. Based on the similarities of the shapes of isotherms,
the TiO2 photocatalysts may be divided to two groups of mesoporous materials; the first one includes
TiO2 photocatalysts prepared from titanium (IV) isopropoxide (TiO2–ISOP–C/400, TiO2–ISOP–PFC),
the second one includes TiO2 photocatalyst prepared from titanyl sulphate (TiO2–TYS–C/450).
TiO2–ISOP–C/800 was not included in any of these two groups, since it is a nonporous material
showing very low specific surface area (measured by Kr physisorption). The TiO2–ISOP–C/400
and TiO2–ISOP–PFC hysteresis loops were identified as the H2 type belonging to mesoporous
adsorbents where the porous structure is complex and is not well-defined. It is evident the ISOP–based
TiO2 photocatalysts possess similarly smaller mesopores (pore width < 15 nm) (Figure 1b). However,
TiO2–ISOP–PFC shows significantly higher specific surface area and pore volume than TiO2–ISOP–C/400
(Table 1), which may be attributed to the fact that TiO2 nanocrystallites are less aggregated due to
crystallization in pressurized fluids than under thermal treatment, and this different processing
also results in different crystallinity of TiO2–ISOP–PFC (i.e., bicrystalline anatase–brookite mixture).
The TiO2–TYS–C/450 hysteresis loop may be classified as the H3 type associated with aggregates of
smaller TiO2 nanocrystallites of broad crystallite size-distribution. Its porous structure comprises some
macropores (Figure 1b). Concerning the effect of preparation parameters on TiO2 textural properties,
it is evident that the crystallization of ISOP–based TiO2 in pressurized hot water and methanol led
to lowered aggregation/sintration of TiO2 crystallites reflected to enhanced specific surface area and
well-developed porous structure of TiO2 compared, e.g., to TiO2–ISOP–C/400.

Table 1. Textural properties of investigated TiO2 photocatalysts.

Photocatalyst Labeling
Physisorption UV–Vis

SBET (m2 g−1) Vne (cm3
liq g−1) Band Gap Energy (eV)

TiO2–TYS–C/450 137 0.226 3.18
TiO2–ISOP–C/400 80 0.120 3.04
TiO2–ISOP–PFC 171 0.265 3.11

TiO2–ISOP–C/800 0.99 —- 2.90
TiO2–P25 44 0.208 3.22
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Figure 1. Adsorption/desorption isotherms (a) and evaluated pore-size distributions (b) of investigated
TiO2 photocatalysts.

In order to evaluate the influence of preparation method of TiO2 on phase composition, the XRD
analysis has been conducted (Figure 2). It is clear the preparation method of TiO2 significantly
influences its phase composition (Table 2). The processing with pressurized hot fluids leads to a
formation of bicrystalline phase anatase–brookite, and the calcination results in anatase phase or
combination of anatase and rutile, depending on the calcination temperature.

Figure 2. XRD patterns of investigated TiO2 photocatalysts.

Optical properties were evaluated by UV–vis DRS technique, and the results are shown in Figure 3.
The evaluation of band gaps of each photocatalyst was done from Tauc plots after the recalculation of
reflectance according to the Kubelka–Munk function (Table 1). The indirect band gaps were evaluated
for TiO2 photocatalysts, therefore, the (K-M·hν) function has to be to power 1

2 in order to obtain band
gap energy. It is clear the preparation method significantly influences the band gap energy of resulting
photocatalyst via its phase composition. The lowest band gap energy was 2.90 eV for TiO2–ISOP–C/800,
which contained the highest amount of rutile phase. The largest band gap energy was obtained for the
commercial TiO2–P25 (Evonik).
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Table 2. Structural properties of investigated photocatalysts.

Photocatalyst Labeling Phase Composition (wt.%) Crystallite-Size (nm) Facets (hkl)

TiO2–TYS–C/450 Anatase 7.6 (101) (200)
TiO2–ISOP–C/400 Anatase 10.3 (101) (200)

TiO2–ISOP–PFC 79% Anatase 6.5 (101) (200)
21% Brookite 5.2 (211)

TiO2–ISOP–C/800 75% Anatase 112 (110) (101) (200)
25% Rutile 356 (101) (200)

TiO2–P25 85% Anatase 24 (110) (101) (200)
15% Rutile 43 (101) (200)

Figure 3. Tauc plots of investigated TiO2 photocatalysts.

Photocatalysts TiO2–TYS–C/450 and TiO2–ISOP–C/400 were prepared by different methods, which
leads to different SBET and crystallite-size of anatase (Tables 1 and 2), but their morphology is almost
the same (Figure 4). Nevertheless, both photocatalysts contained anatase phase only, and their
photocatalytic activity toward removal of organic carbon was comparable. On the other hand,
the presence of brookite phase beside anatase led to an increase of TOC removal. The increase in
photocatalytic activity can be explained by formation of heterojunction between anatase and brookite
phase, as was mentioned earlier [13,14]. TEM image confirmed clusters of very fine particles, which is the
benefit of processing by pressurized hot fluids (Figure 4c) [15]. On the other hand, the larger crystallites
and through that lower specific surface area was observed at TiO2–P25 photocatalyst (Figure 4d).

The photocatalytic degradation of MTBE is presented in form of its decreasing concentration over
time (Figure 5). MTBE belongs among the volatile organic compounds with a boiling temperature
55.2 ◦C, therefore time for creating equilibrium between gas and liquid phase is necessary. This is
clearly evident from the blank test where the concentration of MTBE decreased during the first 75 min
and then stayed more or less constant. Therefore, the 75 min time period was chosen to be sufficient for
creating the equilibrium. On the other hand, when pure photolysis was conducted (no photocatalyst
present) a significant decrease in MTBE concentration was detected, even after this 75 min dark time.
It is clear that the strong UV irradiation itself decomposes the MTBE molecule. The highest decrease of
MTBE concentration was observed in the presence of biphasic photocatalysts containing rutile phase
(TiO2–ISOP–C/800 and TiO2–P25).
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Figure 4. TEM images of (a) TiO2–ISOP–C/400; (b) TiO2–TYS–C/450; (c) TiO2–ISOP–PFC; (d) TiO2–P25.

Figure 5. The dependence of MTBE (methyl tert-butyl ether) concentration on time over TiO2 photocatalysts.



Catalysts 2020, 10, 35 6 of 12

The degradation of organic compounds from the waste water is always a tricky one. Since the
organic molecule can be oxidized in multiple ways, various by-products, sometimes even more
dangerous than the original one, can be produced. There are several by-products reported during
the photocatalytic degradation of MTBE, such as formic acid [16], acetaldehyde [16], acetone [17],
tert-butyl alcohol [16–18], 2-methyl-1-propen [17], tert-butyl formate [17], 2-methyl propanoic acid [17],
and CO2 [16,17]. The by-products’ production depends on experimental setup and can be different for
various research groups.

For the above reasons, it is necessary to monitor not only the decrease of MTBE concentration, but
also to analyze the formation of intermediates. Altogether, four different by-products were detected in
our case. The presence of each by-product was confirmed by GC/MS and exact concentration in various
time was determined the same way as MTBE concentration (SPME method coupled with GC/FID).
Figure 6 shows the correlation between the concentration of each by-product and MTBE conversion for
individual measurements after 60 min of irradiation. There were four different by-products recognized;
acetone (AC), 2-methylprop-1-ene (MP), methyl acetate (MA), and tert-butyl formate (TBF). Only
2-methylprop-1-ene was detected in case of blank test, which suggests it is already present in the stock
solution of MTBE. The detected by-products were also reported by other groups [17,19]. Since no
change in pH was detected during the reaction, we can presume no acidic products, such as formic
acid, acetic acid, or propanoic acid, were generated. The main by-product was tert-butyl formate.
However, the concentration and ratios of by-products’ concentrations varied for each photocatalyst,
pointing toward the importance in photocatalyst preparation.

Figure 6. Correlation between by-products’ concentrations and MTBE conversion for each photocatalyst,
photolysis, and blank measurement after 60 min of irradiation (254 nm).

The formation of by-products in the presence of various photocatalysts is different, which is also
evident from Figure 6. In order to compare the photocatalytic activity of each photocatalyst, the amount
of total organic carbon (TOC) was calculated and depicted in Figure 7. All prepared photocatalysts
performed higher efficiency in TOC removal in comparison with TiO2–P25. From this point of view,
the comparison of two anatase–rutile photocatalysts, i.e., TiO2–ISOP–C/800 and TiO2–P25, was very
interesting. Even though the removal of MTBE is slightly lower in presence of TiO2–ISOP–C/800
compared to TiO2–P25, its photocatalytic activity is higher if we take into account removal of total
organic carbon (Figure 7). It suggests that the TiO2–ISOP–C/800 photocatalyst is more selective toward
complete mineralization to CO2 instead of partial oxidation to organic by-products.
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Figure 7. Conversion of total organic carbon (TOC) in presence of each photocatalyst and photolysis
after 60 min of irradiation (254 nm).

The photocatalytic activity of photocatalysts depends on many factors such as phase composition,
crystallite size, specific surface area, band gap energy, and so on. However, the specific reaction has to
be also taken into an account. Prieto-Mahaney et al. [20] studied the correlation between structural
and physical properties and photocatalytic activities for five different reactions and 35 TiO2 samples.
They studied six properties, specific surface area, density of lattice defects, primary and secondary
particle size, and existence of anatase and rutile phases, to obtain intrinsic dependence of photocatalytic
activities on the properties. The role of these properties was significantly depended on the type of
photocatalytic reaction. Due to the fact that they did not study photocatalytic decomposition of MTBE,
it is not possible compare these results with results obtained in this work. In case of MTBE oxidation,
the specific surface area and the crystallite size did not play an important role. The photocatalyst
with the highest photoactivity (TiO2–ISOP–C/800) has the lowest specific surface area and the largest
crystallite size. On the basis of the obtained results, we can say that the phase composition was the
decisive parameter in the studied reaction. Titanium dioxide has different structures in anatase, rutile,
and brookite phase. These differences strongly influence their physicochemical properties.

Our results also confirmed the importance of phase composition of TiO2. Usually, the presence
of two phases leads to a better photocatalytic activity due to the heterojunction between these two
phases, which can promote the separation of photogenerated electrons and holes [21]. After absorption
of photon, photogenerated electrons can migrate from phase with the higher conduction band (CB)
to the phase with lower CB. At the same time, the holes from the phase with a lower valence band
(VB) migrate to the phase with a higher VB. For this reason, electrons are separated on one phase of
TiO2 and holes on another one, and both, electrons and holes, can be more efficiently utilized for redox
reactions [21,22].

Even though, Figure 6 shows a very slight increase in MTBE conversion in presence of
photocatalysts composed solely of anatase or anatase/brookite phase compared to photolysis and
photocatalysts containing anatase/rutile proved significantly higher photocatalytic activity toward
MTBE oxidation (TiO2–P25 and TiO2–ISOP–C/800 removed 95% and 80% of MTBE, respectively),
the TOC degradation is the more important factor, which must be considered (Figure 7). Why is
the TOC degradation so significant? While TBF can be relatively rapidly degraded as the reaction
proceeds, the AC and MA are not only persistent toward radical oxidation, but also a possible oxidation
product of TBF [23,24] Due to this reason, the TiO2–ISOP–C/800 photocatalyst may be considered
as the most suitable photocatalyst for degradation of MTBE (Figure 7). This photocatalyst proved
not only high conversion of MTBE, but especially the highest conversion of total organic carbon
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(the smallest amount of by-products). The TiO2–P25 showed a very high activity toward removal
of MTBE, however, only partial oxidation of organic pollutants was accomplished (Figure 7). In the
presence of TiO2–ISOP–C/800 photocatalyst, the smallest amount of AC (1.64 mg L−1) and MA (0.95 mg
L−1) was formed in comparison with TiO2–P25 (8.77 mg L−1 of AC and 2.93 mg L−1 of MA). Additionally,
another of the bi-phasic photocatalysts (TiO2–ISOP–PFC), which contained anatase and brookite phase,
exhibited good selectivity to the total mineralization. In the presence of TiO2–ISOP–PFC, 2.58 mg
L−1 of AC and 1.44 mg L−1 of MA were formed. One of the reasons to explain lower photocatalytic
activity of TiO2–P25 toward TOC removal could be a smaller portion of rutile phase in comparison
with TiO2–ISOP–C/800 photocatalyst.

In addition to the formation of heterostructures and the associated reduction in the recombination
of electrons and holes, the type of TiO2 phase is important as well. The rutile phase is more stable,
however, usually less photoactive than anatase. It is worth mentioning the charge recombination rate
is lower in case of rutile [25]. The most significant difference between the anatase and rutile phases of
TiO2 is in concentration of adsorbed oxygen. The molecular oxygen more easily interacts with oxygen
vacancies than with TiO2 surface, and in addition to that, the interaction is much stronger for rutile than
anatase [25]. This fact results in electron transfer from surface defects to an adsorbed oxygen, leading
to a formation of superoxide anion (O−2 ). Superoxide anion is a reactive oxygen species, however, its
utilization for oxidation of organic compounds is generally low. Nevertheless, O•−2 is an important
part in the oxidation process carried out in acidic or neutral environment. It is especially useful in
degradation of phenolic compounds, hydroxyl radicals, on the other hand, better oxidize organic
intermediates to CO2 [25]. The above mentioned highlights the necessity of oxygen atmosphere (air)
for the oxidation of MTBE. This was confirmed by Barreto et al. [26] who conducted the photocatalytic
degradation of MTBE without oxygen as one of the blank tests, and almost no decrease in MTBE
concentration was observed.

The adsorbed oxygen molecules reacted with the electron and created superoxide anion radicals
(1), which can undergo a few steps, resulting in production of hydrogen peroxide (2) and (3) [16].
The hydrogen peroxide can be reduced by electrons, as well resulting in more hydroxyl radicals and,
through that, increasing the conversion of MTBE (4).

O2 + e− → O•−2 (1)

O•−2 + H+
→ HO•2 (2)

HO•2 + HO•2 → H2O2 + O2 (3)

H2O2 + e− → OH• + OH− (4)

OH− + h+
→ OH− (5)

Due to this fact, there are two sources of hydroxyl radical-hydrogen peroxide can be produced
in the reaction mixture of two-electron transfer (Equation (6)) or water oxidation (Equation (7))
(its formation was found, etc. in [26]).

O2 + 2 e− + 2 H+
→ H2O2 (6)

2 H2O + 2 h+
→ H2O2 + 2 H+ (7)

For the above reasons, the anatase rutile combination is more effective in oxidizing MTBE than
the anatase brookite combination.

Since rutile has significantly higher ability to adsorb oxygen than anatase [25], it is clear why
TiO2–ISOP–C/800 sample has higher photocatalytic activity toward TOC conversion than all the
other photocatalysts. There is the highest amount of rutile present and therefore, there is the highest



Catalysts 2020, 10, 35 9 of 12

separation of charge carriers, either through heterojunction or by easier reduction of adsorbed oxygen
to superoxide anion radical.

Reaction Mechanism

Mohebali et al. [17] proposed two reaction path ways leading to either 2-methyl propanoic acid
or acetic acid. The important thing to know is what initiates the oxidation of organic molecule; is it
photogenerated hole itself or hydroxyl radical created from the water oxidation? It is well known
electron–hole pair is generated after absorption of photon with sufficient energy by TiO2 (1). In order
to find out whether the reaction is initiated by hole or hydroxyl radical experiment with isopropyl
alcohol was carried out (see Supplementary Materials). Isopropyl alcohol serves as hydroxyl radical
scavenger, therefore, the reaction rate would decrease if hydroxyl radicals oxidize MTBE and stayed
the same in case holes oxidize MTBE molecule [27]. The test was carried out repeatedly in presence
of TiO2–P25. Since the conversion of MTBE decreased from 92% (without isopropanol) to 37% (with
0.19 mL isopropanol) we can safely assume the oxidation of MTBE is initiated by hydroxyl radicals
created from single hole water oxidation (2). These findings are in an agreement with Hwang et al. [27].
The most represented by-product, tert-butyl formate (TBF), is formed through two steps according (3).

The reduction of adsorbed oxygen by photogenerated electron helps to charge carriers’ separation
and lowers the recombination rate. Therefore, another experiment was conducted. This time,
chloroform as superoxide anion radical scavenger was added (see Supplementary Materials).
Chloroform willingly interacts with superoxide anion radicals shifting the equilibrium so more
superoxide anion radicals are produced and the separation of charge carriers is even more enhanced.
This was confirmed experimentally where the addition of chloroform (0.016 mL) increased the MTBE
conversion to 100% from 92% in presence of TiO2–P25.

3. Materials and Methods

3.1. Photocatalysts Preparation Method

Altogether, 4 different TiO2 photocatalysts were prepared, using either titanyl sulphate or titanium
(IV) isopropoxide as Ti-precursor depending on the used chemical method (thermal hydrolysis
vs. sol-gel), and different processing (pressurized hot solvents crystallization vs. calcination).
The preparation method and processing for individual TiO2 photocatalysts is described in Table 3.

Table 3. Information about preparation of investigated TiO2 photocatalysts.

Photocatalysts Labeling
Preparation Processing

Method Precursor Method Conditions

TiO2–TYS–C/450 Thermal hydrolysis Titanyl
sulphate Calcination 450 ◦C (2 h), 3 ◦C min−1

TiO2–ISOP–C/400 Sol-gel Titanium (IV)
isopropoxide Calcination 400 ◦C (4 h), 10 ◦C min−1

TiO2–ISOP–PFC Sol-gel Titanium (IV)
isopropoxide

Pressurized hot
fluids crystallization

200 ◦C, 10 MPa, 1.5 L H2O
+ 0.25 L CH3OH + 0.1 L
H2O, 3.5–4.5 mL min−1

TiO2–ISOP–C/800 Sol-gel Titanium (IV)
isopropoxide Calcination 800 ◦C (4 h), 5 ◦C min−1

The preparations of individual TiO2 were following:
TiO2–TYS–C/450: The titanium precursor stock solution was prepared from titanyl sulphate

monohydrate (TiOSO4 H2O). The solution was stirred with a spindle stirrer for 3 days until complete
dissolution of titanyl sulphate monohydrate in water. The final concentration of stock solution was
100 g of TiO2 L−1 of solution. Then the stock solution was mixed with 0.5 wt.% H2SO4 solution and
stirred at temperature of 80 ◦C on a magnetic stirrer for 60 min. The solution was cooled at laboratory
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temperature. After cooling, a 20 wt.% NaOH solution was added until the pH of the solution rose to 7.
The resulting suspension was filtered using a Buchner funnel. The collected precipitate was washed with
demineralized water until the sulfates were removed. The presence of sulfates was verified using BaCl2
solution. The obtained precipitate was dried in an oven at 50 ◦C for 24 h to constant weight. Afterwards,
the precipitate was calcined in an oven at 450 ◦C for 2 h using a temperature ramp of 3 ◦C min−1.

TiO2–ISOP–C/400: Titania sol was prepared by mixing cyclohexane, Triton X-114, demineralized
water, and titanium (IV) isopropoxide in molar ratio of 11:1:1:1. Firstly, cyclohexane, Triton X-114,
and water were mixed and stirred for 15 min. Then titanium (IV) isopropoxide was added and the
micellar sol was mixed for 30 min for homogenization. Afterwards, the sol was poured into a Petri
dish and aged for 48 h on air. The gelation of sol took place. The gel was crashed to 3 × 3 mm small
pieces, placed in crucibles, and calcined in an oven at 400 ◦C for 4 h using a temperature ramp of 10 ◦C
min−1 to obtain TiO2 powder. The powder sample was sieved to particle size < 0.160 mm.

TiO2–ISOP–PFC: The titanium-based gel was prepared identically as mentioned in the case of
TiO2–ISOP–C/400, but the crashed gel was crystallized at 200 ◦C and 10 MPa, using the sequence of
solvents: 1.5 L of demineralized water, 0.25 L of methanol, and 0.1 L of demineralized water with
a flow rate of 3.5–4.5 mL min−1 to obtain TiO2 powder. The powder sample was sieved to particle
size < 0.160 mm.

TiO2–ISOP–C/800: The titanium-based gel was prepared identically as mentioned in the case of
TiO2–ISOP–C/400, but the crashed gel was calcined in an oven at 800 ◦C for 4 h using a temperature
ramp of 5 ◦C min−1 to obtain TiO2 powder. The powder sample was sieved to particle size < 0.160 mm.

TiO2–P25: Commercially available TiO2 powder (particle size < 0.09 mm) used as a reference
photocatalyst to be compared with investigated prepared photocatalysts.

3.2. Characterization of TiO2 Photocatalysts

Each photocatalyst was characterized by several characterization techniques, such as nitrogen
physisorption [28], powder X-ray diffraction [29], transmission electron microscopy [28], and diffuse
reflectance UV-vis spectroscopy [30]. For more detail see Supplementary Materials.

3.3. Photocatalytic Degradation of MTBE

The annular batch photoreactor was used for the photocatalytic degradation of MTBE.
The photoreactor was homemade from stainless steel and was fitted with stoppers around its
inner periphery in order to achieve better mixing. Total volume of the photoreactor was 305 mL.
The suspension of 0.1 g of photocatalyst in the 100 mL MTBE solution was used for the photocatalytic
test. The concentration of MTBE was 70 µmol L−1 (52 mg L−1). The mixture was stirred using magnetic
stirrer at 600 rpm. The reactor was sealed in order to monitor composition of the gas phase, which
was air at the beginning of the reaction. The gas sample was taken at 0 h and analyzed on GC/BID.
The solution was left in the dark for 75 min in order to reach adsorption/desorption equilibrium.
Reaction itself started by turning on the 8 W Hg lamp with peak intensity at 254 nm, which was placed
in quartz glass tube in the axis of symmetry of the reactor. The photocatalytic test was carried out for
60 min, and samples were taken each 15 min. Liquid samples (2 mL) were taken through septum at the
bottom of the reactor, and the photocatalyst was filtered out using syringe filters with quartz pre-filter.
The composition of the liquid phase was analyzed using SPME method (Solid Phase Micro Extraction)
and GC/FID.

4. Conclusions

MTBE represents a rising threat to the environment and its effective removal (with all the
by-products) is necessary. This work investigates MTBE oxidation in presence of various TiO2

photocatalysts prepared by different methods. The TiO2–ISOP–C/800 photocatalyst showed significantly
higher activity toward TOC removal and also high activity for MTBE conversion. Base on the results
the phase composition of TiO2 was found to be the key parameter in the photocatalytic degradation of
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MTBE. Notably, the presence of the heterojunction in biphasic TiO2 photocatalysts is profitable, because
it enables better separation of electrons and holes. Furthermore, the rutile phase, unlike brookite phase,
more easily reduce adsorbed oxygen by photogenerated electrons to superoxide radical, which also
supports the separation of charge carriers leading to higher photocatalytic activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/35/s1, Figure
S1: Dependence of MTBE conversion on time in presence of TiO2 P25 without and with scavengers of OH• and O•−2 .

Author Contributions: Photocatalytic measurements, M.Š.; preparation of analytical method, K.H.; photocatalysts
preparation, M.V. and L.M.; Writing—Original draft preparation, M.R.; Writing—Review and editing, K.K. and
M.R. All authors have read and agreed to the published version of the manuscript.
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