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Abstract: With the improvement of environmental protection standards, selective catalytic reduction
(SCR) has become the mainstream technology of flue gas deNOx. Especially, the low-temperature
SCR nano-catalyst has attracted more and more attention at home and abroad because of its potential
performance and economy in industrial applications. In this paper, low-temperature SCR catalysts
were prepared using the activated carbon loading MnOx-Cu. Then, the catalysts were packed into the
fiedbed stainless steel micro-reactor to evaluate the selective catalytic reduction of NO performance.
The influence of reaction conditions was investigated on the catalytic reaction, including the MnOx-Cu
loading amount, calcination and reaction temperature, etc. The experimental results indicate that
SCR catalysts show the highest catalytic activity for NO conversion when the calcination temperature
is 350 ◦C, MnOx loading amount is 5%, Cu loading amount is 3%, and reaction temperature is 200 ◦C.
Under such conditions, the NO conversion arrives at 96.82% and the selectivity to N2 is almost 99%. It
is of great significance to investigate the influence of reaction conditions in order to provide references
for industrial application.

Keywords: low-temperature SCR; activated carbon; nano-catalyst; reaction condition; NO conversion

1. Introduction

The emission of nitrogen oxides (NOx) has aroused widespread concern in recent years, which is
dangerous to human health and brings many negative effects on the environment, such as urban smog,
acid rain, and so on. Increasingly stringent limits for flue gas emissions have driven many researchers
to look for suitable methods [1,2]. Selective non-catalytic reduction (SNCR) is a more economical NOx

control method with a considerable efficiency of 40–70%, which involves the reduction of NOx by a
nitrogen agent, usually ammonia (NH3) or urea, and it is relatively simple to implement. Although
reasonably inexpensive, SNCR process has a serious limitation. For example, the NOx reduction
efficiency drops off drastically at slightly higher or lower temperatures because the temperature
window over which nitrogen agents are effective is relatively narrow [3,4]. The selective catalytic
reduction (SCR) of NOx with NH3 has been regarded as the most effective method to reduce the
emission of NOx. However, the SCR catalysts have to be placed upstream of the electrostatic
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precipitator and desulfurization units to avoid costly heating of the flue gas due to its high working
temperature window (300–400 ◦C), where the SCR catalysts are susceptible to deactivation by dust
accumulation and sulfur poison. As an alternative, low-temperature SCR catalysts could be placed
downstream of the electrostatic precipitator and desulfurization units. Therefore, it is crucial to develop
low-temperature SCR catalysts, which can work at 200 ◦C or even lower, and adapt to the complex
flue gas environment [5–7]. Many scientists whether foreign and domestic had carried out the study
of low-temperature SCR catalysts and their main research contents included the active component
and catalyst support. However, sintering often occurs in the preparation of single component SCR
catalyst, which reduces the dispersion of the active component and the activity of the SCR catalyst.
The sintering is avoided by adding transition metal and the performance of SCR catalyst is improved.
Therefore, the researches and developments of low-temperature SCR catalyst focused on the transition
metal oxide catalyst at home and abroad [8–11]. Copper and copper compounds are thought to have
excellent catalytic properties at low temperatures, which can improve the physical properties of the
SCR catalyst as a promoter [12,13]. Chmielarz et al. prepared a M-Mg-Al catalyst with a coprecipitation
of hydrotalcite (M=Cu2+, Co2+, and Cu2++Co2+), and they compared the catalytic properties of the
mixed catalyst. The results showed Cu-Mg-Al > Cu-Co-Mg-Al > Co-Mg-Al and the deNOx efficiency
of 80–95% at temperatures of 200–250 ◦C [14].

Manganese (Mn) is thought to have a very outstanding catalytic property at low temperatures,
and Mn-based catalyst has been widely studied over the past few decades owing to its low cost. In
relation to the supported metal oxide catalysts, the researchers mainly focused on the MnOx catalyst.
MnOx is characterized by strong catalytic performance for NOx as the active component of thenSCR
catalyst. There are many kinds of MnOx due to the wide distribution of the Mn valence. The Mn
with a different valence can be converted to each other, which promotes the selective reduction of
NOx by NH3. Therefore, the valence state of Mn in MnOx has a significant effect on the activity of the
SCR catalyst. Moreover, composite oxide catalysts are of great interest because one metal element can
modify the catalytic properties of another, which results from both electronic and structural influences.
For example, binary metal oxide solid solutions might be formed between Mn and Cu [15,16]. Qi et al.
used a different precipitation agent to prepare a series of Mn oxide catalyst by coprecipitation, and the
catalyst activities were investigated under the condition of NH3-NOx. The results indicated that the
catalyst was of high catalytic activity at a low temperature using sodium carbonate as a precipitant
preparation of Mn oxide catalysts [17]. Ouzzine et al. studied the Mn-Cu composite catalyst and found
that the catalytic temperature range was wide through the activity test. The NOx conversion was more
than 60% in the range of 150–400 ◦C. What is more, they found that Cu could absorb sulfur dioxide and
form sulfate, which improved sulfur resistance greatly [18]. Yao et al. successfully prepared a series of
Mn/CeO2 catalysts via impregnation using deionized water, anhydrous ethanol, acetic acid, and oxalic
acid as a solvent and found that the Mn/Ce catalyst exhibited the best water and sulfur tolerance [19].
Therefore, mixing MnOx with suitable metal oxides and loading Mn-based active components on a
suitable support could be considered as an efficient strategy [20].

Activated carbon (AC) is a kind of materials with a high specific surface area, unique pore
structure, excellent dispersion of active components and chemical stability, which has been widely
studied as substrates for supporting low-temperature SCR catalysts. If AC is adopted as the catalyst
support, the possibility of sintering deactivation could be reduced [21–25]. Valdés-Sols et al. confirmed
that the vanadium loaded on the carbon-ceramic body was of a good low-temperature property, and
the ability to resist the poison of catalyst for sulfur dioxide was greater than the Mn catalyst. But water
vapor in the flue gas had an influence on the catalyst activation [26]. García-bordejé et al. studied
low-temperature SCR characteristics using carbon materials loaded on a honeycomb support, and
vanadium loaded on the carbon material. They found that deNOx efficiency was 59.8–72.1% at 150 ◦C
and 68–78.6% at 180 ◦C [27]. Shanxi Institute of Coal Chemistry of Chinese Academy of Sciences
prepared a SCR catalyst of V2O5 loaded on the carbon honeycomb support. They found the catalyst
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not only had a deNOx effect, but also could resist SO2 poisoning. But the engineering practicability of
the low-temperature SCR catalyst still needs further research [28,29].

Although the catalyst varied, it is the key problem on how to effectively reduce NOx emission
from flue gas at a low temperature and with low energy. At the same time, the SCR catalysts in
industrial application are facing many problems, such as high costs, poisoning and transformations.
The steady increase of NOx emissions necessitates the improvement of abatement technologies [30]. In
this context, the research on low-temperature SCR catalyst was launched. According to the data, 95%
of NOx in flue gas is in the form of NO. The by-products NO2 and N2O were formed in the reaction,
but the amount generated was very small. Therefore, NO was used to simulate the catalytic reduction
of NOx in this research and the NO conversion was taken as an index of the SCR catalyst [31,32]. The
influence of reaction conditions on NO conversion was investigated, including the MnOx-Cu loading
amount, calcination and reaction temperatures, etc. The optimal preparation and reaction conditions
of low-temperature SCR catalyst were determined in a series of experiments so that it could provide
basic research data for industrial application.

2. Results and Discussion

2.1. The Characterization of Support

The AC was purified by 1%, 5% and 10% nitric acid, then filtered, washed and dried, respectively.
Observed by the X-ray diffraction (XRD) pattern as shown in Figure 1, there are two dispersed peaks in
the scope from 20 to 30◦, and there are three dispersed peaks in the scope from 30 to 40◦. The skeleton
structure of AC is similar to amorphous carbon and it is mainly composed of graphite microcrystals in
which 2–4 layers single layer graphite sheets are stacked. The dispersed peaks are graphite microcrystals
with different structures, which indicates that the AC sample has a low graphitization structure and
silica is an inorganic component of AC. There is almost no amorphous peak in the XRD diffraction
pattern of the AC, which indicates that AC is of good crystallinity after processing.
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Figure 1. XRD pattern of AC.

The Brunauer-Emmett-Teller (BET) surface areas, pore volumes and pore sizes of AC are
summarized in Table 1. From Table 1, the BET surface area of AC increases by about 9.10% after the
nitric acid purification process, and total pore volume is not significant. It is worth noting that the
purified micropore volume of AC increases and the average pore diameter decreases. Obviously, the
nitric acid process enhances the microporous nature of AC, which is conducive to the dispersion of
MnOx and Cu on the AC surface. Furthermore, it is beneficial for SCR catalyst in terms of mass transfer,
adsorption and activation of reactants during the reaction [33]. The AC average pore diameter falls in
the range of 8–11 nm, favoring gas molecule diffusion in the pores and thus ruling out the diffusion
limitation in the adsorption and desorption process.
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Table 1. Physical characteristics of AC.

Sample BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Micropore Volume
(cm3/g)

Average Pore
Diameter (nm)

Before processing 638 ± 1.96 0.29 ± 0.01 0.26 ± 0.02 10.27 ± 0.03
After processing 696 ± 2.28 0.30 ± 0.02 0.31 ± 0.03 8.56 ± 0.02

2.2. The Influence of MnOx Loading Amount on Catalytic Activity

The influence of MnOx loading amount on SCR catalyst activity was investigated when the Cu
loading amount (% wt) was 1%, 3%, 5%, 7%, 10%, respectively. The calcination temperature was 350 ◦C.
The experiments compared the different MnOx loading amount of SCR catalyst under different reaction
temperatures for NO conversion. Figure 2 presents the NO conversion changes with MnOx loading
amounts and reaction temperatures when Cu loading amounts were 1%, 3%, 5%, 7%, 10%, respectively.

When MnOx loading amounts change in the scope of 1–5%, NO conversion increases with
the increase of MnOx loading amounts. There are more active sites if the catalyst has more active
components, which is helpful to enhance catalytic activity. However, NO conversion decreases when
MnOx loading amounts change in the scope of 5–10%. All the experimental results indicate that SCR
catalysts show optimal performance when the MnOx loading amount reaches 5%, and NO conversion
arrives at 95.31%, 96.82%, 95.20%, 92.65%, 88.00% at a reaction temperature of 200 ◦C. As can be seen
from Figure 2, the SCR catalyst shows strong activity at 200 ◦C, which indicates that the SCR catalyst
is suitable for deNOx of low temperature flue gas. Whatever the Cu loading amount change, NO
conversion reaches the maximum with a MnOx loading amount of 5%, and the N2 selectivity remains
stable at nearly 99%.
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2.3. The Influence of Cu Loading Amount on Catalytic Activity

The influence of Cu loading amount on SCR catalyst activity was explored when MnOx loading
amounts (% wt) were 1%, 3%, 5%, 7%, 10%, respectively. The calcination temperature was 350 ◦C. The
experiments compared the different Cu loading amount of the SCR catalyst under different reaction
temperatures for NO conversion. Figure 3 illustrates the influence of the Cu loading amount on NO
conversion with different MnOx loading amounts. NO conversion arrives at 93.58%, 93.79%, 96.82%,
91.82%, 87.93% when the Cu loading amount is 3%, and the reaction temperature is 200 ◦C, respectively.

When the Cu loading amount changes in the scope of 1–3%, NO conversion always increases
with the increase of the Cu loading amount. However, NO conversion decreases when the Cu loading
amount changes in the scope of 3–10%. Whatever the MnOx loading amount changes, NO conversion
reaches the maximum with a Cu loading amount of 3%, and the N2 selectivity remains stable at nearly
99%. On the whole, NO conversion decreases gradually when the reaction temperature exceeds 200 ◦C.
This result reveals that the MnOx-Cu/AC catalyst has a good activity at a low temperature.
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2.4. The Influence of Calcination Temperature on Catalytic Activity

In four different calcination temperatures (250 ◦C, 300 ◦C, 350 ◦C and 400 ◦C), the SCR catalysts
(Cu loading amount of 3%, and MnOx loading amount of 5%) were prepared. Figure 4 shows that NO
conversion is highest up to 96.49% when the calcination temperature is 350 ◦C, and the N2 selectivity
remains stable at nearly 99%.
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The SCR catalyst could not give full play to the function because MnOx and Cu might not integrate
adequately due to the calcination temperature of 300 ◦C. When the calcination temperature reaches
400 ◦C, the temperature may lead to the inside pore channels of SCR catalyst to be collapsed or closed
due to sintering, which reduces the number of active sites on the surface of the SCR catalyst. The high
calcination temperature may reduce the dispersion of active sites [34]. Huang et al. found that the
suitable calcination temperature could improve the attrition strength of the SCR catalyst, while the
continuous increase of the calcination temperature could change the mechanical property and catalytic
performance of the SCR catalyst in a perverse way [35].

2.5. The Influence of Reaction Temperature on Catalytic Activity

From the above experiments, NO conversion reaches a maximum at a calcination temperature of
350 ◦C, MnOx loading amount of 5%, and Cu loading amount of 3%. Then the MnOx-Cu/AC catalysts
were prepared under that condition. The influence of reaction temperature on NO conversion was
investigated at 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C, respectively.

Figure 5 presents that the NO conversion of MnOx-Cu catalyst increases firstly and then decreases
with the increase in reaction temperature, and the N2 selectivity remains stable at nearly 99%.
Especially, the NO conversion reaches 96.82% when the reaction temperature is 200 ◦C. According
to Ren’s research, the reason why NO conversion increases rapidly with the increase in temperature
is that the consumption of NH3 is mainly for the NO reduction reaction. Therefore, NO conversion
increases rapidly in the temperature range of 100 to 200 ◦C. After that, NO reaction will be restricted for
the occurrence of NH3 oxidation reaction if the reaction temperature continues to rise, that is because
the NH3 oxidation reaction will easily occur at a high reaction temperature [36].
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2.6. The Catalytic Stability Test of SCR Catalyst

Long-time stability is a crucial indicator to evaluate the catalytic performance of SCR catalysts in
practical industrial application. As shown in Figure 6, a 25 h stability test was carried out to investigate
catalytic stability at 200 ◦C. The calcination temperature of the MnOx-Cu/AC catalyst was 350 ◦C.
Throughout the 25 h continuous procedure, the deNOx activity of MnOx-Cu/AC catalyst is rather
stable with a slight fluctuation around ±1% over time, the NO conversion remains at nearly 96%, and
the selectivity of N2 is almost 99%. There is almost no deactivation occurring during 25 h at 200 ◦C,
which further demonstrates that the MnOx-Cu/AC catalyst behaves with excellent stability.
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2.7. The Catalytic Activity Analysis of the SCR Catalyst

In order to explore the relationship between the structure and performance in detail, microstructure
and micromorphology analysis were performed. The XRD pattern of SCR catalysts with a loading
amount of 3%, 5% MnOx and 3%, 5% Cu is shown in Figure 7, which presents that the obvious peaks
are between 20◦ and 50◦. Its main phase is graphite microcrystal with different structures. The MnOx

is not found in the XRD pattern, which is consistent with Jiang’s report and indicates that the active
component is present in an amorphous state. Moreover, it is very likely that Mnn+ ions are incorporated
into the copper oxide lattice to form a solid solution during the calcinations [37]. The amorphous
MnOx may be one of the key factors for the excellent catalytic activity in deNOx performance according
to Tang’s research [38]. CuO shows a peak at 37.2◦, and Wang et al. found that Cu was present nearly
exclusively in the form of mononuclear ions and oligomeric species [39].
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XPS analysis was carried out to determine the atomic concentration and chemical states of different
species presented on catalysts surface. Figure 8 shows the oxidation state of Mn species and the
binding energy peaks of Mn 2p for MnOx/Cu-AC catalyst. The Mn 2P3/2 peak of 5% MnOx-3% Cu/AC
catalyst can be separated into three peaks, i.e., 642.3 eV, 643.4 eV and 644.7 eV, which correspond to
Mn2+ species, Mn3+ species and Mn4+ species, respectively. The active components are mainly in the
form of MnO, Mn2O3 and MnO2. The Mn valence binding energy distribution of SCR catalysts as
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shown in Table 2, and the valence distribution of Mn oxides are dominated by Mn3+ and Mn4+. The
MnOx catalytic activity has been ascribed to the potential of Mn to form several oxides and to provide
oxygen selectively from its crystalline lattice [40]. The proportion of Mn3+ and Mn4+ reaches maximum
when the loading amount of Cu is 3%, which indicates that the reducibility of the SCR catalyst is
relatively strong. Xin et al. suggested that Mn3+ could activate NH3 into NH2 intermediate that would
readily react with NO to produce N2 [41]. Yao et al. confirmed that an ample amount of Mn4+ ions is
one of the key factors enhancing NH3 oxidation in the NH3-SCR process due to the strong oxidizing
state of Mn (IV) [42]. According to Lee’s research, the existence of various Mn valences increased the
electron transfer during the NO conversion processes, which could promote the denitration reaction
for NH3-SCR [43]. Fang et al. found that there was a strong interaction between manganese oxides
and copper oxides, and the valence distribution of Mn was affected by the loading amount of Cu [44].
Furthermore, a synergistic interaction between Mn and Cu might exist according to the redox couple:
Mn3+ + Cu2+

→Mn4+ + Cu+.
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Table 2. The Mn valence binding energy distribution of SCR catalysts.

SCR Catalysts Mn2+ (eV) Mn3+ (eV) Mn4+ (eV) N(Mn3+ +Mn4+)/n(Mnx+)

5% MnOx-3% Cu 642.3 643.4 644.7 0.86
5% MnOx-5% Cu 642.3 643.4 644.8 0.85
3% MnOx-5% Cu 642.1 643.2 644.8 0.82
3% MnOx-3% Cu 640.2 641.8 643.5 0.78

The distribution of acidic sites were characterized by NH3-TPD with the loading amount of 3%,
5% MnOx and 3%, 5% Cu, respectively. The calcination temperature was 350 ◦C. As is shown in
Figure 9a, the weaker desorption peak appears at 68 ◦C, which corresponds to the weak acidic sites of
SCR catalysts. In addition, the stronger desorption peak appears at 142 ◦C, which corresponds to the
strong acidic sites. The peak area and intensity of the catalyst with a loading amount of 5% MnOx-3%
Cu are higher than others, which indicates that there are more acidic sites in the catalyst surface.
The optimum combination ratio makes the active component of MnOx dispersed uniformly, and it is
conducive to improving the activity of the SCR catalyst [45]. Many research showed that surface acidity
played a critical role in SCR reaction [46,47]. Therefore, the increased acidic sites might represent one
of the most important reasons for the higher catalytic activity of the MnOx-Cu/AC catalyst. Yao et al.
found that the synergistic effects between Mn and Cu ions could further enhance the low-temperature
performances via modified active sites [48]. Moreover, Shu et al. found that surface acidity played a
critical role in the SCR reaction [49]. Consequently, the increased acidic sites might represent one of the
most important reasons for the higher catalytic activity of the MnOx-Cu/AC catalyst.

The redox property is an important index to evaluate the performance of catalysts, and H2-TPR
technology provides an effective way in measuring the reducibility of the SCR catalyst. The sample
amount of SCR catalyst was 0.10 g and the concentration of H2 was 3% in the process of analysis.
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Figure 9b presents the TPR profiles of the MnOx-Cu/AC catalyst, and the H2 consumption amounts in
the temperature range of 100–220 ◦C are summarized in Table 3. As can be seen from Figure 9b, one
reduction peak is observed for MnOx-Cu/AC catalyst, which can be attributed to the reduction of MnOx,
and the peak area of 5% of the MnOx-3% Cu/AC catalyst is higher than others. The reduction peak
appears around 200 ◦C, and the reduction of MnO2→Mn2O3→MnO may occur at this process [50,51].
The TPR profiles of the MnOx-Cu/AC catalyst are able to deconvoluted into three Gaussian peaks
(dotted curves). The lowest temperature peak (150–177 ◦C) is attributed to the reduction of highly
dispersed MnOx surface species, the higher temperature peak (194–208 ◦C) corresponds to the bulk-like
MnOx, and the highest temperature peak (200–212 ◦C) appearing in the MnOx-Cu/AC catalyst is
related to the MnOx strongly interacted with CuO [52,53]. It could be concluded that H2 consumption
amounts increase with the increase of the Mn and Cu loading amount, and the H2 consumption of
5% of the MnOx-3% Cu/AC catalyst is obviously higher than that of others, which suggests that the
reducibility is relatively strong and verifies that 5% MnOx-3% Cu is the optimal ratio. Dong et al.
found that Cu and Mn elements might form the copper galaxite of CuMn2O4, and the interaction
between MnOx and Cu improved the activity of the catalyst effectively and was beneficial for NO
conversion [54].
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Table 3. The H2 consumption of the SCR catalysts.

SCR Catalysts Peak Area H2 Consumption (µmol/g)

5% MnOx-3% Cu 7197 828
5% MnOx-5% Cu 6883 791
3% MnOx-5% Cu 6790 780
3% MnOx-3% Cu 6612 759

2.8. The Reaction Mechanism of NH3-SCR

According to the above research, the optimal component ratio of the SCR catalyst is loaded 5%
MnOx and 3% Cu on AC. The large specific surface area of AC is beneficial to the uniform loading of
active component Mn. NH3 and NO simulate the catalytic reduction in this work. As for the reaction
mechanism of SCR, more and more scholars think that the SCR catalytic reaction should comply with
the Eley-Rideal (E-R) mechanism. Another view with the Langmuir-Hinshelwood (L-H) mechanism
is now accepted for the NH3-SCR process reaction mechanism. For the E-R mechanism, the redox
reaction takes place between active NH3 and gaseous NO. The adsorbed NH3 is activated at the weak
acid site on the surface of the catalyst, with the adsorption and activation of NH3 as the critical step.
For the L-H mechanism, the NO of the gas phase first interacts with O2 and subsequently the NOx is
adsorbed onto the surface of the catalyst where it is oxidized to nitrates and nitrites in the role of lattice
oxygen [55–59]. The NO removal mechanism of the MnOx-Cu/AC catalyst can be seen in Figure 10. In
both E-R and L-H catalytic mechanisms, acidic sites are beneficial to the adsorption and activation of
NH3 and NOx in a low-temperature NH3-SCR process [60–62]. Kijlstra et al. suggested that the Mn3+
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location on the surface of MnOx/Al2O3 was the Lewis acid center [63]. On the MnOx-Cu catalysts, a
mechanism similar with that on the MnOx/Al2O3 were pointed out by researchers. Most researchers
believe that NH3 is adsorbed to the Lewis acid center and intermediates like NH2* or adsorbed NH3

formed, then they react with NO through the E-R mechanism getting N2 and H2O [64,65]. Yang et al.
found that chemisorption mechanism was responsible for the adsorption of reactants through density
functional theory calculations and NH2

* produced from NH3 dehydrogenation was identified as a
key reactive intermediate in the selective catalytic reduction activity of NO with NH3 over CuMn2O4

spinel [66]. For the catalytic process, the optimal reaction pathway of N2 formation in NH3-SCR of NO
is a two-step process: (1) NH2 formation from NH3 dehydrogenation (NH3* + *→NH2* + H*), and (2)
the reaction between NH2 and NO (NH2* + NO*→ N2* + H2O*).
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3. Materials and Methods

3.1. Catalyst Preparation

AC was used as the support to prepare the low-temperature SCR catalysts in this experiment,
which was purchased from Sinopharm Chemical Reagent Ltd Co. Twenty mesh beforehand and
smaller AC particles were selected in order to ensure the uniform particle size of AC. The original
AC contained many impurities, such as amorphous carbon and Fe, Ni and Co, etc. Therefore, it was
necessary to purify AC to avoid the influence of these impurities on catalyst preparation. Firstly, AC
particles were added to different concentrations of nitric acid in turn and stirred for 2 h. Next, these
activated carbon particles experienced dilution, filtering, deionized water flushing to pH = 6–7 in
turn. Then, 110 ◦C drying in electrothermal blowing for 12 h. The AC was supported with MnOx and
Cu using impregnation methods, where Mn and Cu nitrates were dissolved in deionized water, and
a certain amount of the AC was added. The mixture of metal nitrates and carbon was heated and
continuously stirred for 5 h after impregnated with a rotary evaporation instrument for 2 h, and then
these particles were dried respectively in 110 ◦C for 5 h and in 50 ◦C for 12 h. After drying, the sample
was calcined in a certain temperature under N2 atmosphere for 2 h. Finally, the sample was cooled
down to room temperature with protection of N2, and the MnOx-Cu/AC catalyst was packed into a
fiedbed stainless steel micro-reactor for the performance evaluation of SCR for NO conversion.
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3.2. Catalyst Characterization

X-ray diffraction (XRD) measurement was performed by an XRD-7000 S system (Shimadzu
Corporation, Japan). The 2θ scans covered the range from 10◦ to 80◦ at a 5◦ min−1 scan rate and a
step of 0.02◦. Cu Kα radiation was employed, and the X-ray tube was operated at 40 kV and 40 mA.
Specific surface area and pore size were calculated by the Brunauer-Emmett-Teller (BET) method and
the Barrett-Joyner-Halenda (BJH) method, respectively. The surface atomic states of the catalysts
were analyzed by X-ray photoelectron spectroscopy (XPS, AXIS Ultra DLD) with Al Kα radiation
(hv = 1486.6 eV) as the excitation source at 150 W. C1 s-binding energy of 284.6 eV was taken as a
reference. The hydrogen temperature programmed reduction (H2-TPR) experiments of the prepared
catalysts were performed on a Tianjin XQ TP5080 auto-adsorption apparatus. Prior to the H2-TPR
experiment, 0.10 g of the catalyst was pretreated with Ar at a total flow rate of 50 mL/min at 200 ◦C
for 1 h, and subsequently cooled to room temperature under an Ar atmosphere. Finally, the reactor
temperature was raised to 700 ◦C at a constant heating rate of 10 ◦C/min under a flow of H2 (10%)/Ar
(50 mL/min). The H2 consumption was monitored by a thermal conductivity detector (TCD) during
the experiment. The curve data of temperature programmed desorption of ammonia (NH3-TPD) were
recorded by a thermal conductivity detector (TCD) in a Tianjin XQ TP5080 auto-adsorption apparatus.
First, the quartz tube is added to the catalysts and a helium gas of 30 mL/min was introduced and
the temperature of the furnace was raised from room temperature to 200 ◦C with a 10 ◦C/min heating
rate. After a span of 30 min at 200 ◦C, the catalysts were cooling to 80 ◦C. The sample was adsorbed
for 30 min under pure ammonia gas conditions of 30 mL/min. The physically adsorbed ammonia
to the surface of the catalyst was then purged with 30 mL/min helium for 1 h. At last, the catalysts
were heated to 500 ◦C at a heating rate of 5 ◦C/min under a helium gas flow of 30 mL/min, and a
temperature-programmed ammonia desorption curve was recorded.

3.3. Catalyst Activity Evaluation

The device was used for NH3-SCR reaction activity evaluation process as shown in Figure 11. The
catalytic activities of solid samples were evaluated in a fiedbed stainless steel micro-reactor loaded
with 0.10 g of catalyst powder in 20 mesh size. The electrically heated wire and thermocouple in a
fiedbed stainless steel micro-reactor was used to heat the mixed gas. In order to simulate the realistic
exhaust condition, the composition of NH3, NO and O2 in the feed gas were 0.12%, 0.10% and 3.60%,
respectively. The total flow rate was 1.00 L/min and the gas hourly space velocity (GHSV) was 5000 h−1.
N2 was used as balance gas and NH3 was used as reductant. Catalytic activity was measured in a
steady flow mode in a fiedbed stainless steel micro-reactor. Each part of gas was controlled by mass
flow controllers. Prior to each activity test, the catalysts were pretreated at 200 ◦C for 2 h with flowing
air, and cooled to the initial reaction temperature around 100 ◦C. The steady-state deNOx activity test
was then conducted in the reaction temperature range from 100 to 350 ◦C at intervals of 50 ◦C. Each
temperature point was kept for 30 min to achieve a balanced reaction gas concentration and all of the
data were obtained when the SCR reaction reached the steady state.
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An FT-IR gas analyzer (GASM ET DX 4000, Finland) was used for the purpose of analyzing the
concentrations of NOx (NO + NO2) and N2O in the outlet gas. The following Equations (1) and (2)
were used to estimate the NOx conversion and N2 selectivity:

NO conversion (%) =
NOin −NOxout

NOin
× 100% (1)

N2 selectivity (%) =
NOin −NOxout − 2N2Oout

NOin −NOxout
× 100% (2)

where NOin refers to the concentration of nitric oxide at the inlet of the reactor, NOxout refers to the
concentration of NOx (NO + NO2) at the outlet of the reactor, N2Oout refers to the concentration of
N2O at the outlet of the reactor.

The catalytic activity experiments were done in triplicate. If the experimental data fluctuated
greatly, it was discarded. If the fluctuation of the experimental data was less than 10%, it was averaged.
Finally, the average was plotted in the figures. The error bar was plotted in the figures, which was
used as an index to evaluate the difference between the average and measurement. The following
Equations (3) and (4) were the experiment result average and error bar, respectively.

Na =
N1 + N2 + N3

3
(3)

Error bar =

∑3
i = 1|Ni −Na|

3
(4)

where Na represents the average of three experiment results, N1, N2 and N3 represent the result of
three experiments, respectively. Ni and Na represent the measured and averaged result, respectively.

4. Conclusions

In this paper, an impregnation method was used to prepare the low-temperature SCR catalysts
made of MnOx-Cu loaded on activated carbon. Then, the catalysts were packed into the fixed bed
reactor to evaluate the selective catalytic reduction of NO performance. The experimental results
show that NO conversion is highest at 96.82% and it remains rather stable with a slight fluctuation
around ±1% over time throughout the 25 h continuous procedure when the calcination temperature is
350 ◦C, and MnOx loading amount is 5%, and Cu loading amount is 3%, and reaction temperature is
200 ◦C, which can meet the needs of deNOx at a low temperature and provide reference for industrial
production and application. The concentration of N2O as a by-product in the outlet gas is measured.
The results show that the concentration of N2O is very low in the outlet gas of the reactor in the SCR
reaction, and the selectivity to N2 is almost 99%. Although much progress has been made in this
research, many problems need to be solved. As for the development of low-temperature SCR catalysts
in the future, it is worthwhile to explore Mn-based catalysts with excellent resistance to sulfur, water
and so on. Discovering new doping elements and novel supports may be promising research directions,
and monolithic catalysts should be given more consideration from a commercial perspective.
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