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Abstract: In this paper, mean-field type games between two players with backward stochastic
dynamics are defined and studied. They make up a class of non-zero-sum, non-cooperating,
differential games where the players’ state dynamics solve backward stochastic differential equations
(BSDE) that depend on the marginal distributions of player states. Players try to minimize their
individual cost functionals, also depending on the marginal state distributions. Under some
regularity conditions, we derive necessary and sufficient conditions for existence of Nash equilibria.
Player behavior is illustrated by numerical examples, and is compared to a centrally planned
solution where the social cost, the sum of player costs, is minimized. The inefficiency of a Nash
equilibrium, compared to socially optimal behavior, is quantified by the so-called price of anarchy.
Numerical simulations of the price of anarchy indicate how the improvement in social cost achievable
by a central planner depends on problem parameters.

Keywords: mean-field type game; non-zero-sum differential game; cooperative game; backward
stochastic differential equations; linear-quadratic stochastic control; social cost; price of anarchy

1. Introduction

Mean-field type games (MFTG) is a class of games in which payoffs and dynamics depend not
only on the state and control profiles of the players, but also on the distribution of the state-control
processes. MFTGs has by now a plethora of applications in the engineering sciences, see [1] and the
references therein. This paper studies MFTGs between two players, with state-distribution dependent
cost functionals Ji : U i → R, i = 1, 2, and mean-field BSDE state dynamics. The Nash solution
(û1
· , û2
· ) ∈ U 1 ×U 2 is dictated by the pair of inequalities

J1(û1
· ; û2
· ) ≤ J1(u1

· ; û2
· ), ∀u1

· ∈ U 1,

J2(û2
· ; û1
· ) ≤ J2(u2

· ; û1
· ), ∀u2

· ∈ U 2.
(1)

Following the path laid-out in [2], we establish a Pontryagin type maximum principle, yielding
necessary and sufficient conditions for any pair of controls satisfying (1). Behavior in the equilibrium (1)
is compared to the socially optimal solution, that minimizes the social cost J := J1 + J2

J(û1
· , û2
· ) ≤ J(u1

· , u2
· ), ∀u1

· ∈ U 1, u2
· ∈ U 2. (2)

1.1. Related Work

Pontryagin’s maximum principle is the tool, alongside dynamic programming, to characterize
optimal controls in both deterministic and stochastic settings. It can treat not only standard stochastic
systems, but generalizes to optimal stopping, singular controls, risk-sensitive controls and partially
observed models. Pontryagin’s maximum principle yields necessary conditions that must be satisfied
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by any optimal solution. The necessary conditions become sufficient under additional convexity
conditions. Early results showed that an optimal control along with the corresponding optimal state
trajectory must solve the so-called Hamiltonian system, which is a two-point (forward-backward)
boundary value problem, together with a maximum condition of the so-called Hamiltonian function.
A very useful aspect of this result is that minimization of the cost functional (over a set of control
functions) may reduce to pointwise maximization of the Hamiltonian, at each point in time (over the
set of control values). Pontryagin’s technique for deterministic systems and stochastic systems with
uncontrolled diffusion can be summarized as follows: assume that there exists an optimal control, make
a spike-variation of it and then consider the first order term of the Taylor expansion with respect to the
perturbation. This leads to variational inequality and the result follows from duality. If the diffusion is
controlled, second order terms in the Taylor expansion has to be considered. In this case, one ends
up with two forward-backward SDEs and a more involved maximum condition for the Hamiltonian.
See [3] for a detailed account. For stochastic systems, the backward equation is fundamentally different
from the forward equation, whenever one is looking for adapted solutions. An adapted solution to a
BSDE is a pair of adapted stochastic processes (Y·, Z·), where Z· corrects “non-adaptiveness” caused
by the terminal condition of Y·. As pointed out by [4], the first component Y· corresponds to the mean
evolution of the dynamics, and Z· to the risk between current time and terminal time. Linear BSDEs
extends to non-linear BSDEs [5], with applications not only within stochastic optimal control but
also in stochastic analysis [6] and finance [7,8], and to forward-backward SDEs (FBSDE). BSDEs with
distribution-dependent coefficients, mean-field BSDEs, were derived as limits of particle systems in [9].
Existence and uniqueness results for mean-field BSDEs, as well as a comparison theorem, are provided
in [10].

In stochastic differential games, both zero-sum and nonzero-sum, Pontryagin’s stochastic
maximum principle (SMP) and dynamic programming are the main tools for obtaining conditions for
an equilibrium. These tools were essentially inherited from the theory of stochastic optimal control.
As in the optimal control setting, the latter deals with solving systems of second-order parabolic partial
differential equations, while the former is related to analyzing FBSDEs where, in the case of initial
state constraints, the BSDE corresponds to the adjoint process. For a recent example of the use of SMP
in stochastic differential game theory, see [11].

The theory of mean-field type control (MFTC), initiated in [2], treats stochastic control problems
with coefficients dependent on the marginal state-distribution. This theory is by now well developed
for forward stochastic dynamics, i.e., with initial conditions on state [12–15]. With SMPs for MFTC
problems at hand, MFTG theory can inherit these techniques like stochastic differential game theory
does in the mean-field free case. See [16] for a review of solution approaches to MFTGs. A MFTC
problem can be interpreted as a large population limit of a cooperative game, where the players
share a joint goal to optimize some objective [17]. A close relative to MFTC is mean field games
(MFG). MFGs is class of non-cooperative stochastic differential games where a large number of
indistinguishable (anonymous) players interact weakly through a mean-field coupling term, initiated
by [18,19] independently, and followed up by, among many others [20–22]. Weak player-to-player
interaction through a mean-field coupling restricts the influence one player has on any other player to
be inversely proportional to the number of players, hence the level of influence of any specific player is
very small. The coupling of player state dynamics leads to conflicting objectives, and an approximation
of mass behavior provides an approximate limit solution (equilibrium) to the MFG. In contrast
to the MFG, players in a MFTG can be influential, and distinguishable (non-anonymous). That is,
state dynamics and/or cost need not be of the same form over the whole player population, and a single
player can have a major influence on other players’ dynamics and/or cost.

Already in [23], an SMP in local form was derived for a controlled non-linear BSDE. By first
finding a global estimate for the variation of the second component of the BSDE solution, an SMP in
global form was derived in [24]. A reinterpretation of BSDEs as forward stochastic optimal control
problems [4] opened up for a new solution approach in the field of control of BSDEs. Inspired by
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the reinterpretation, optimal control of LQ BSDEs was solved in [25] by constructing a sequence of
forward control problems with an additional state constraint, whose limit solution is the solution
to the original LQ BSDE control problem. This approach was later used by [26] to solve a general
FBSDE control problem, where the authors overcome the difficulty of controlling the diffusion in
the forward process. Instead of writing down a second-order adjoint equation for the full system,
the technique of [25] is used. Previous to that, [27] studied optimal control problem for general
coupled forward–backward stochastic differential equations (FBSDEs) with controlled diffusions.
A maximum principle of Pontryagin’s type for the optimal control is derived, by means of spike
variation techniques.

Optimal control of mean-field BSDEs has recently gained attention. In [28] the mean-field LQ
BSDE control problem with deterministic coefficients is studied. Assuming the control space is linear,
linear perturbation is used to derive a stationarity condition which together with a mean-field FBSDE
system characterizes the optimal control. Existence of optimal controls is also proven under convexity
assumptions. Other recent work on the control of BSDEs includes [29,30], both using the FBSDE
approach of [27].

1.2. Potential Applications of MFTG with Mean-Field BSDE Dynamics

In [31], a model is proposed for pedestrians groups moving towards targets they are forced
to reach, such as deliveries and emergency personnel. The strict terminal condition leads to the
formulation of a dynamic model for crowd motion where the state dynamics is a mean-field BSDE.
Mean-field effects appear in pedestrian crowd models as approximations of aggregate human
interaction, so the game would in fact be a MFTG [32]. A game between such groups is of interest since
it can be a tool for decentralized decision making under conflicting interests. Other areas of application
include strategies for financial investments, where often future conditions are specified [8,33] and
lead to dynamic models including BSDEs. The already mentioned study [1] presents a lengthy list of
applications of forward MFTGs in engineering sciences.

1.3. Paper Contribution and Outline

In this paper, control of mean-field BSDEs is extended to games between players whose state
dynamics are mean-field BSDEs. Such games are in fact MFTGs, since the distribution of each player is
effected by both players’ choice of strategy. Our MFTG could be viewed as a game between mean-field
FBSDEs, where the backward equation is the state equation, and the forward equation is pure noise.
A Pontryagin’s type SMP is derived, resulting in a verification theorem and conditions for existence of
a Nash equilibrium. This solution approach is similar to that of [23,24,28]. The use of spike-perturbation
requires minimal assumptions on the set of admissible controls, and differentiating measure-valued
functions makes it possible to go beyond linear-quadratic mean-field cost and dynamics. The state
BSDE is not converted to a forward optimization problem in the spirit of [25]. As a consequence,
the adjoint equation in our SMP is a forward SDE. For the sake of comparison, optimality conditions for
the cooperative situation are derived. In this setting, the players work together to optimize social
cost, which is the the sum of player costs. The approach used is a straight-forward adaptation of the
techniques used in control of SDEs of mean-field type; again, we do not need to take the route via some
equivalent forward optimization problem to solve the backward MFTC problem. This cooperative
game is a MFTC problem, and our result here is basically a special case of the FBSDE results in [27]
or [26] mentioned above, although mean-field terms are present. Numerical simulations are done
in the linear-quadratic case, which is explicitly solvable up to a system of ODEs. The examples
pinpoint differences between player behavior in the game versus the centrally planned solution.
The fraction between the social cost in the game equilibrium and the social cost optimum quantifies
the game efficiency and was first studied in [34] for traffic coordination on networks under the name
coordination ratio. This fraction was later renamed to the price of anarchy in [35]. We notice that paying
a high price for using large control values, or deviating from a preferred initial position makes the
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problem stiffer, in the sense that the improvement by team optimality is decreasing, while paying a
high price for mean-field related costs makes the problem less stiff.

The rest of this paper is organized as follows. The problem formulation is given in Section 2.
Sections 3 and 4 deal with necessary and sufficient conditions for any Nash equilibrium and social
optimum; maximum principles for the MFTG and the MFTC are derived. An LQ problem is solved
explicitly in Section 5, and numerical results are presented. The paper concludes with some remarks
on possible extensions in Section 6, followed by an appendix containing proofs.

2. Problem Formulation

List of Symbols

T ∈ (0, ∞)—the time horizon.
(Ω,F ,F,P)—the underlying filtered probability space.
L(X)—the distribution of a random variable X under P.
L2
Ft
(Ω;Rd)—the set of Rd-valued Ft-measurable random variables X such that E[|X|2] < ∞.

G—the progressive σ-algebra.
X·—a stochastic process {Xt}t≥0.
S2,k—the set of Rk-valued, continuous G-measurable processes X· such that E[ sup

t∈[0,T]
|Xt|2] < ∞.

H2,k—the set of Rk-valued G-measurable processes X· such that E[
∫ T

0 |Xs|2ds] < ∞.
U i— the set of admissible controls for player i.
P(X )—the set of probability measures on X .
P2(X )—the set of probability measures on X with finite second moment.
Θi

t—the t-marginal of the state-, law- and control-tuple of player i.
‖Z‖F—the trace (Frobenius) norm of the matrix Z.
∂yi f (yi)—derivative of the Rd-valued function f .
∂µi f (µi)—derivative of the P2(Rd)-valued function f , see Appendix A for details.

Let T > 0 be a finite real number representing the time horizon of the game. Consider a filtered
probability space (Ω,F , {Ft}t≥0,P) on which two independent standard Brownian motions W1

· , W2
·

are defined, d1- and d2-dimensional respectively. Additionally, y1
T , y2

T ∈ L2
FT

(Ω;Rd) and ξ,
F0-measurable, are defined on the space. We assume that these five random objects are independent
and that they generate the filtration F := {Ft}t≥0. Notice that ξ makes F0 non-trivial. Let G be the
σ-algebra on [0, T]×Ω of Ft-progressively measurable sets. For k ≥ 1, let S2,k be the set of Rk-valued
and continuous G-measurable processes X· := {Xt : t ∈ [0, T]} such that E[supt∈[0,T] |Xt|2] < ∞,

and let H2,k be the set of Rk-valued G-measurable processes X· such that E[
∫ T

0 |Xs|2ds] < ∞.
Let (Ui, dUi ) be a separable metric space, i = 1, 2. Player i picks her control ui

· from the set

U i :=
{

u : [0, T]×Ω→ Ui | u· is F-adapted, E
[∫ T

0
dUi (us)

2ds
]
< ∞

}
. (3)

The distribution of any random variable ξ ∈ X will be denoted by L(ξ) ∈ P(X ), and −i
will denote the index {1, 2}\i. Given a pair of controls (u1

· , u2
· ) ∈ U 1 × U 2, consider the system of

controlled BSDEs

dYi
t = bi(t, Θi

t, Θ−i
t , Zt)dt + Zi,1

t dW1
t + Zi,2

t dW2
t , Yi

T = yi
T , i = 1, 2, (4)

where Θi
t = (Yi

t ,L(Yi
t ), ui

t) and Zt = [Z1,1
t Z1,2

t Z2,1
t Z2,2

t ]. Furthermore,

bi : Ω× [0, T]× S×Ui × S×U−i ×Rd×(2d1+2d2) → Rd, (5)
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where S := Rd×P(Rd) is equipped with the norm ‖(y, µ)‖S := |y|+ d2(µ), d2 being the 2-Wasserstein
metric on P(Rd). Rd×(2d1+2d2) is equipped with the trace norm ‖Z‖F = tr(ZZ∗)1/2. Note that if X
is a square integrable random variable in Rd, then d2(L(X)) < ∞ and L(X) ∈ P2(Rd), the space of
measures with finite d2-norm.

Given (u1
· , u2
· ) ∈ U 1×U 2, a pair of Rd×Rd×(d1+d2)-valued G-measurable processes (Yi

· , [Z
i,1
· Zi,2
· ]),

i = 1, 2, is a solution to (4) if

Yi
t = yi

T −
∫ T

t
bi(s, Θi

s, Θ−i
s , Zs)ds−

2

∑
j=1

∫ T

t
Zi,j

s dW j
s , ∀t ∈ [0, T], a.s., (6)

and (Yi
· , [Z

i,1
· Zi,2
· ]) ∈ S2,d ×H2,d×(d1+d2).

Remark 1. Any terminal condition yi
T ∈ L2

FT
(Ω;Rd) naturally induces a F-martingale Yi

t := E[yi
T | Ft].

The martingale representation theorem then gives existence of a unique process [Zi,1
· , Zi,2

· ] ∈ H2,d×(d1+d2) such
that Yi

t = yi
T +

∫ T
t Zi,1

s dW1
s +

∫ T
t Zi,2

s dW2
s , i.e., [Zi,1

· , Zi,2
· ] plays the role of the projection and without it, Yi

·
would not be G-measurable. Hence the noise (W1

· , W2
· ) generating the filtration is common to both players,

and [Zi,1
· , Zi,2

· ], i = 1, 2 is their respective reaction to it. Player i may actually be effected by all the noise in the
filtration even if only some components of (W1

· , W2
· ) appear in bi. An interpretation of [Zi,1

· , Zi,2
· ] is that it is

a second control of player i: first she plays ui
· to heed preferences on energy use, initial position etc., then she

picks [Zi,1
· , Zi,2

· ] so that her path to yi
T is the optimal prediction based on available information in the filtration at

any given time. The component bi in (4) acts as a velocity in.

Existence and uniqueness of (4) is given by a slight variation of the results of [10], where the
one-dimensional case is treated. For the d-dimensional mean-field free case, see [36].

Assumption 1. The process bi(ω, ·, 0, . . . , 0), i = 1, 2, belongs to H2,d and for any vi =

(yi, µi, ui, y−i, µ−i, u−i, z) ∈ S×U1 × S×U2 ×Rd×(2d1+2d2), bi(ω, ·, vi), i = 1, 2, is G-measurable.

Assumption 2. Given a pair of control values (u1, u2) ∈ U1 ×U2, there exists a constant L > 0 such that for
all t ∈ [0, T] and tuples (y1, µ1, y2, µ2, z), (ȳ1, µ̄1, ȳ2, µ̄2, z̄) ∈ S× S×Rd(2d1+2d2)

|bi(t, yi, µi, ui, y−i, µ−i, u−i, z)− bi(t, ȳi, µ̄i, ui, ȳ−i, µ̄−i, u−i, z̄)|

≤ L

(
2

∑
j=1
‖(yj, µj)− (ȳj, µ̄j)‖S + ‖z− z̄‖F

)
, P-a.s., i = 1, 2.

(7)

Theorem 1. Let Assumptions 1 and 2 hold. Then, for any terminal conditions y1
T , y2

T ∈ L2(Ω,FT ,P;Rd)

and (u1
· , u2
· ) ∈ U 1 × U 2, the system of mean-field BSDEs (4) has a unique solution (Yi

· , [Z
i,1
· , Zi,2

· ]) ∈
S2,d ×H2,d×(d1+d2), i = 1, 2.

Next, we introduce the best reply of player i as follows:

Ji(ui
·; u−i
· ) := E

[∫ T

0
f i(t, Θi

t, Θ−i
t )dt + hi(Yi

0,L(Yi
0), Y−i

0 ,L(Y−i
0 ))

]
(8)

for given maps f i : [0, T]× S×Ui × S×U−i → R and hi : Ω× S× S→ R.

Assumption 3. For any pair of controls (u1
· , u2
· ) ∈ U 1 × U 2, f i(·, Θi

·, Θ−i
· ) ∈ L1

F (0, T;R) and
h(Yi

0,L(Yi
0), Y−i

0 ,L(Y−i
0 )) ∈ L1

F0
(Ω;R).
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The problems we consider next are

1. The Mean-field Type Game (MFTG): find the Nash equilibrium controls of
inf

ui·∈U i
Ji(ui

·; u−i
· ), i = 1, 2,

s.t. dYi
t = bi(t, Θi

t, Θ−i
t , Zt)dt + Zi,1dW1

t + Zi,2
t dW2

t , Yi
T = yi

T .
(9)

2. The Mean-field Type Control Problem (MFTC): find the optimal control pair of
inf

(u1· ,u2· )∈U1×U2
J(u1
· , u2
· ) := J1(u1

· ; u2
· ) + J2(u2

· ; u1
· ),

s.t. dYi
t = bi(t, Θi

t, Θ−i
t , Zt)dt + Zi,1dW1

t + Zi,2
t dW2

t , Yi
T = yi

T ,

i = 1, 2.

(10)

In the game each player assumes that the other player acts rationally, i.e., minimizes cost, and picks
her control as the best response to that. This leads to a set of two inequalities, characterizing any
control pair (u1

· , u2
· ) that constitute a Nash equilibrium. In this paper, each player is aware of the other

player’s control set, best response function and state dynamics. Therefore, even though the decision
process is decentralized, both players solve the same set of inequalities. When there is not a unique
Nash equilibrium, there is an ambiguity around which equilibrium strategy to play if the players do
not communicate. In the control problem, a central planner decides what strategies are played by both
of the players. The central planner might just be the two players cooperating towards a common goal,
or some superior decision maker. The goal is to find the control pair that minimizes the social cost J.
This notion of a centrally planned/cooperative solution is related to the concept of team optimality in
team problems [37]. In a team problem, the players share a common objective. A team-optimal solution
is then the solution to the joint minimization of the common objective. In our case, the social cost J is
a common objective in the MFTC. The Nash solution to the team problem is given by the control pair
that satisfies the two inequalities

J(û1
· , û2
· ) ≤ J(u1

· , û2
· ), ∀u1

· ∈ U 1,

J(û1
· , û2
· ) ≤ J(û1

· , u2
· ), ∀u2

· ∈ U 2.
(11)

In (11), each player is minimizing the social cost with respect to its marginal, under the assumption
that the other player is minimizing its marginal. This is the so-called player-by-player optimality of
a control pair in a team problem. Notice that if we set J1(u1

· ; u2
· ) = J2(u2

· ; u1
· ) in (9), it becomes a team

problem. The solution to the MFTG (9) will then be the player-by-player optimal solution to the
minimization of the social cost.

Logically, we expect the optimal social cost to be lower than the social cost in a Nash equilibrium.
The ratio between the worst case social cost in the game and the optimal social cost is called the price
of anarchy, and we will highlight it in the numerical simulations in Section 5 where we also observe
behavioral differences between MFTG and MFTC given identical data.

3. Problem 1: MFTG

This section is the derivation of necessary and sufficient equilibrium conditions of (9). Given the
existence of such a pair of controls, we derive the conditions by the means of a Pontryagin type
stochastic maximum principle.

Assume that (û1
· , û2
· ) is a Nash equilibrium for the MFTG, i.e., satisfies the following system

of inequalities, {
J1(û1

· ; û2
· ) ≤ J1(u1

· ; û2
· ), u1

· ∈ U 1,

J2(û2
· ; û1
· ) ≤ J2(u2

· ; û2
· ), u2

· ∈ U 2.
(12)
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Consider the first inequality, with ūε,1 chosen as a spike-perturbation of û1. That is, for u· ∈ U 1,

ūε,1
t :=

{
û1

t , t ∈ [0, T]\Eε,

ut, t ∈ Eε.
(13)

Here, Eε is any subset of [0, T] of Lebesgue measure ε. Clearly, ūε,1
· ∈ U 1. When player 1 plays the

spike-perturbed control ūε,1
· and player 2 plays the equilibrium control û2

· , we denote the dynamics by{
dȲε,1

t = b1(t, Θ̄ε,1
t , Ȳε,2

t ,L(Ȳε,2
t ), û2

t , Z̄ε
t )dt + Z̄ε,1,1

t dW1
t + Z̄ε,1,2

t dW2
t , Ȳ1

T = y1,

dȲε,2
t = b2(t, Ȳε,2

t ,L(Ȳε,2
t ), û2

t , Θ̄ε,1
t , Z̄ε

t )dt + Z̄ε,2,1
t dW1

t + Z̄ε,2,2
t dW2

t , Ȳ2
T = y2.

(14)

The performance of the perturbed dynamics (14) will be compared with that of the
equilibrium dynamics{

dŶ1
t = b1(t, Θ̂1

t , Θ̂2
t , Ẑt)dt + Ẑ1,1

t dW1
t + Ẑ1,2

t dW2
t , Ŷ1

T = y1,

dŶ2
t = b2(t, Θ̂2

t , Θ̂1
t , Ẑt)dt + Ẑ2,1

t dW1
t + Ẑ2,2

t dW2
t , Ŷ2

T = y2.
(15)

For simplicity, we write for ϕ ∈ {b1, f 1, h1}, ψ ∈ {b2, f 2, h2}, ϑ ∈ {bi, f i, hi, i = 1, 2},

ϕ̄ε
t := ϕ(t, Θ̄ε,1

t , Ȳε,2
t ,L(Ȳε,2

t ), û2
t , Z̄ε

t ),

ψ̄ε
t := ψ(t, Ȳε,2

t ,L(Ȳε,2
t ), û2

t , Θ̄ε,1
t , Z̄ε

t ),

ϑ̂t := ϑ(t, Θ̂i
t, Θ̂−i

t , Ẑt).

(16)

In this shorthand notation, which will be used from now on, the difference in performance is

J1(ūε,1
· ; û2

· )− J1(û1
· ; û2
· ) = E

[∫ T

0
f̄ ε,1
t − f̂ 1

t dt + h̄ε,1
0 − ĥ1

0

]
. (17)

Any derivative of f : a → f (a) will be denoted ∂a f , indifferent of the space the function is
mapping from/to.

Assumption 4. The functions

(y1, µ1, u1, y2, µ2, u2, z) 7→ bi(t, yi, µi, ui, y−i, µ−i, u−i, z)

(y1, µ1, u1, y2, µ2, u2) 7→ f i(t, yi, µi, ui, y−i, µ−i, u−i)

(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i)

(18)

are for all t a.s. differentiable at (Θ̂1
t , Θ̂2

t , Ẑt), (Θ̂1
t , Θ̂2

t ) and (Ŷ1
0 ,L(Ŷ1

0 ), Ŷ2
0 ,L(Ŷ2

0 )) respectively. Furthermore,

∂yj b̂i
t, ∂µj b̂i

t, ∂yj f̂ i
t , ∂µj f̂ i

t , i, j = 1, 2, (19)

are for all t a.s. uniformly bounded, and

∂yj ĥi
0 +E

[
∗(∂µj ĥi

0)
]
∈ L2

F0
(Ω;Rd). (20)

For i = 1, 2,

h̄ε,i
0 − ĥi

0 =
2

∑
j=1

{
∂yj ĥi

0(Ȳ
ε,j
0 − Ŷ j

0) +E
[
(∂µj ĥi

0)
∗(Ȳε,j

0 − Ŷ j
0)
] }

+
2

∑
j=1

{
o
(
|Ȳε,j

0 − Ŷ j
0|
)
+ o

(
E[|Ȳε,j

0 − Ŷ j
0|

2]1/2
)}

.

(21)
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A brief overview on differentiation of P2(Rd)-valued functions is found in Appendix A,
and the notation (∂µj ĥi

0)
∗ is defined in (A8). Both Ȳε,1

t − Ŷ1
t and Ȳε,2

t − Ŷ2
t appear in (21), this suggests

that we need to introduce two first order variation processes. That is, we want (Ỹi
· , [Z̃

i,1
· , Z̃i,2

· ]), i = 1, 2,
that for some C > 0 satisfies

sup
0≤t≤T

E
[
|Ỹi

t |2 +
2

∑
j=1

∫ t

0
‖Z̃i,j

s ‖2
F ds

]
≤ Cε2,

sup
0≤t≤T

E
[
|Ȳε,i

t − Ŷi
t − Ỹi

t |2 +
2

∑
j=1

∫ t

0
‖Z̄ε,i,j

s − Ẑi,j
s − Z̃i,j

s ‖2
F ds

]
≤ Cε2.

(22)

Let δi denote variation in ui
· so that for ϑ ∈ { f i, bi, i = 1, 2},

δiϑ(t) := ϑ(t, Ŷi
t ,L(Ŷi

t ), ūε,i
t , Θ̂−i

t , Ẑt)− ϑ̂t. (23)

Assumption 5. For yi, µi ∈ S, i = 1, 2, z ∈ Rd×(2d1+2d2) and (u1, u2), (v1, v2) ∈ U1 ×U2, there exists
a constant L > 0 such that

|bi(t, yi, µi, ui, y−i, µ−i, u−i, z)− bi(t, yi, µi, vi, y−i, µ−i, v−i, z)| ≤ L
2

∑
j=1

dU j(uj, vj), (24)

a.s. for all t ∈ [0, T].

Lemma 1. Let Assumptions 1, 2, 4 and 5 be in force. The first order variation processes that satisfy (22) is
given by the following system of BSDEs,

dỸi
t =

(
2

∑
j=1

{
∂yj b̂i

tỸ
j
t +E

[
(∂µj b̂i

t)
∗Ỹ j

t

]}
+

2

∑
j,k=1

∂zj,k b̂i
tZ̃

j,k
t + δ1bi(t)1Eε(t)

)
dt

+
2

∑
j=1

Z̃i,j
t dW j

t ,

Ỹi
T = 0,

i = 1, 2.

(25)

A proof is found in the appendix. By Lemma 1,

E
[

h̄ε,1
0 − ĥ1

0

]
= E

[
2

∑
j=1

∂yj ĥ1
0Ỹ j

0 +E
[
(∂µj ĥ1

0)
∗Ỹ j

0

]]
+ o(ε)

= E
[

2

∑
j=1

p1,j
0 Ỹ j

0

]
+ o(ε),

(26)

where the introduced costates p1,j
· , j = 1, 2, satisfy p1,j

0 := ∂yj ĥ1
0 +E

[
∗(∂µj ĥ1

0)
]
. The notation ∗(∂µj ĥ1

0) is
defined in (A10). Assumption 4 grants us existence and uniqueness to Equation (27) below.

Lemma 2 (Duality relation). Lett Assumptions 1, 2 and 4 hold. Let p1,j
· be the solution to the SDE

dp1,j
t = −

{
∂yj Ĥ1

t +E
[
∗(∂µj Ĥ1

t )
]}

dt−
2

∑
k=1

∂zj,k Ĥ1
t dWk

t ,

p1,j
0 = ∂yj ĥ1

0 +E
[
∗(∂µj ĥ1

0)
]

,

(27)
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where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 ×U2 ×Rd×(2d1+2d2),

H1(ω, t, y1, µ1, u1, y2, µ2, u2, z, p1,1
t , p1,2

t )

:=
2

∑
j=1

bj(ω, t, yj, µj, uj, y−j, µ−j, u−j, z)p1,j
t − f 1(t, y1, µ1, u1, y2, µ2, u2).

(28)

Then the following duality relation holds,

E
[
∑2

j=1 p1,j
0 Ỹ j

0

]
= −E

[∫ T
0 ∑2

j=1 p1,j
t δ1bj(t)1Eε(t) + Ỹ j

t

(
∂yj f̂ 1

t +E
[
∗(∂µj f̂ 1

t )
])

dt
]

. (29)

A proof of the lemma above is found in the appendix. We have that

f̄ ε,i
t − f̂ i

t =
2

∑
j=1

{
∂yj f̂ i

t (Ȳ
ε,j
t − Ŷ j

t ) +E
[
(∂µj f̂ i

t )
∗(Ȳε,j

t − Ŷ j
t )
] }

+ δ1 f i(t)1Eε(t)

+
2

∑
j=1

{
o
(
|Ȳε,j

t − Ŷ j
t |
)
+ o

(
E[|Ȳε,j

t − Ŷ j
t |

2]1/2
)}

.

(30)

By the expansion (30) and Lemma 1,

E
[∫ T

0
f̄ ε,1
t − f̂ 1

t dt
]
= E

[∫ T

0

2

∑
j=1

Ỹ j
t

(
∂yj f̂ 1

t +E
[
∗(∂µj f̂ 1

t )
])

+ δ1 f 1(t)1Eε(t)dt

]
+ o(ε),

(31)

which yields

J1(ūε,1
· ; û2

· )− J1(û1
· ; û2
· ) = E

[∫ T

0

{
−p1,1

t δ1b1(t)− p1,2
t δ1b2(t) + δ1 f 1(t)

}
1Eε(t)dt

]
+ o(ε).

(32)

Therefore

J1(ūε,1
· ; û2

· )− J1(û1
· ; û2
· ) = −E

[∫ T

0
δ1H1(t)1Eε(t)dt

]
+ o(ε). (33)

From the last identity, we can derive necessary and sufficient conditions for player 1’s best
response to û2

· .
The same argument can be carried out for players 2’s best response to û1

· . Naturally, we need to
impose the corresponding assumptions on player 2’s control. For completeness and later reference,
we state now the second player’s version of Lemma 2.

Lemma 3 (Duality relation, player 2). Let Assumptions 1, 2 and 4 hold, and let p2,j
· be the solution to the SDE

dp2,j
t = −

{
∂yj Ĥ2

t +E
[
∗(∂µj Ĥ2

t )
]}

dt−
2

∑
k=1

∂zj,k Ĥ2
t dWk

t ,

p2,j
0 = ∂yj ĥ2

0 +E
[
∗(∂µj ĥ2

0)
]

,

(34)

where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 ×U2 ×Rd×(2d1+2d2),

H2(ω, t, y2, µ2, u2, y1, µ1, u1, z, p2,1
t , p2,2

t )

:=
2

∑
j=1

bj(ω, t, yj, µj, uj, y−j, µ−j, u−j, z)p2,j
t − f 2(t, y2, µ2, u2, y1, µ1, u1).

(35)
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Then the following duality relation holds,

E
[

2

∑
j=1

p2,j
0 Ỹ j

0

]
= −E

[∫ T

0

2

∑
j=1

p2,j
t δ2bj(t)1Eε(t) + Ỹ j

t

(
∂yj f̂ 2

t +E
[
∗(∂yj f̂ 2

t )
])

dt

]
. (36)

Necessary equilibrium conditions can be stated as a system of 6 Equations, 2 state BSDEs and
4 costate (adjoint) SDEs. Sufficient conditions for a Nash equilibrium can now be stated as convexity
conditions on the 4 functions Hi, hi, i = 1, 2. We let Assumptions 1–5 be in place.

Theorem 2. [Necessary equilibrium conditions] Suppose that (Ŷi
· , [Ẑ

i,1
· , Ẑi,2

· ], ûi
·), i = 1, 2, is an equilibrium

for the MFTG and that pi,j
· , i, j = 1, 2, solve (27) and (34). Then, for i = 1, 2,

ûi
t = argmax

α∈Ui
Hi(t, Ŷi

t ,L(Ŷi
t ), α, Θ̂−i

t , Ẑt, pi,1
t , pi,2

t ), a.e. t, a.s. (37)

Proof. Let Eε := [s, s + ε], u· ∈ U 1 and A ∈ Ft for t ∈ Eε. Consider the spike-perturbation

uε
t :=

{
ut1A + û1

t 1Ac , t ∈ Eε,

û1
t , t ∈ [0, T]\Eε.

(38)

Then
Ĥ1

t − H1(t, Ŷ1
t ,L(Ŷ1

t ), uε
t , Θ̂2

t , Ẑt, p1,1
t , p1,2

t ) =(
Ĥ1

t − H1(t, Ŷ1
t ,L(Ŷ1

t ), ut, Θ̂2
t , Ẑt, p1,1

t , p1,2
t )
)

1A1Eε(t).
(39)

Applying (33), we obtain

1
ε
E
[∫ s+ε

s

(
Ĥ1

t − H1(t, Ŷ1
t ,L(Ŷ1

t ), ut, Θ̂2
t , Ẑt, p1,1

t , p1,2
t )
)

1Adt
]
≥ 1

ε
o(ε). (40)

Sending ε to zero yields

E
[(

Ĥ1
s − H1(s, Ŷ1

s ,L(Ŷ1
s ), us, Θ̂2

s , Ẑs, p1,1
s , p1,2

s )
)

1A

]
≥ 0, a.e. s ∈ [0, T]. (41)

The last inequality holds for all A ∈ Fs, thus

E
[(

Ĥ1
s − H1(s, Ŷ1

s ,L(Ŷ1
s ), us, Θ̂1

s , Ẑs, p1,1
s , p1,2

s )
)
| Fs

]
≥ 0, a.e. s ∈ [0, T], a.s. (42)

By measurability of the integrand in (42),

û1
t = argmax

α∈U1
H1(t, Ŷ1

t ,L(Ŷ1
t ), α, Θ̂2

t , Ẑt, p1,1
t , p1,2

t ), a.e. t ∈ [0, T], a.s. (43)

The same argument yields

û2
t = argmax

α∈U2
H2(t, Ŷ2

t ,L(Ŷ2
t ), α, Θ̂1

t , Ẑt, p2,1
t , p2,2

t ), a.e. t ∈ [0, T], a.s. (44)

Theorem 3. [Sufficient equilibrium conditions] Suppose that û1
· and û2

· satisfy (37). Suppose furthermore that
for (t, pi,1, pi,2, z) ∈ [0, T]×Rd ×Rd ×Rd×(2d1+2d2), i = 1, 2,

(y1, µ1, u1, y2, µ2, u2) 7→ Hi(t, yi, µi, ui, y−i, µ−i, u−i, z, pi,1, pi,2) (45)
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is concave a.s. and
(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i) (46)

is convex a.s. Then û1
· , û2
· constitute an equilibrium control and (Ŷi

· , [Ẑ
i,1
· , Ẑi,2

· ], ûi
·), i = 1, 2, is an equilibrium

for the MFTG.

Proof. By assumption, δi Hi(t) ≤ 0 for any spike variation, almost surely for a.e. t. Applying the
convexity and concavity assumptions in the expansion steps results in the inequality

0 ≤ −E
[∫ T

0
δi Hi(t)1Eε(t)dt

]
≤ Ji(ui

·; û−i
· )− Ji(ûi

·; û−i
· ). (47)

4. Problem 2: MFTC

Carrying out a similar argument to that of the previous section, we find necessary optimality
conditions for problem (10). Also, we readily get a verification theorem. The pair (û1

· , û2
· ) ∈ U 1 ×U 2 is

optimal if
J(û1
· , û2
· ) ≤ J(u1

· , u2
· ), (u1

· , u2
· ) ∈ U 1 ×U 2. (48)

Assume from now on that (û1
· , û2
· ) is an optimal control. We study the inequality (48) when

(ǔε,1
· , ǔε,2

· ) is a spike-perturbation of (û1
· , û2
· ),

(ǔε,1
t , ǔε,2

t ) :=

{
(û1

t , û2
t ), t ∈ [0, T]\Eε,

(u1
t , u2

t ), t ∈ Eε,
(49)

where Eε is any subset of [0, T] of Lebesgue measure ε and (u1
· , u2
· ) ∈ U 1 ×U 2. When the players use

the perturbed control, we denote the state dynamics by{
dY̌ε,1

t = b1(t, Θ̌ε,1
t , Θ̌ε,2

t , Žε
t )dt + Žε,1,1

t dW1
t + Žε,1,2

t dW2
t , Y̌1

T = y1,

dY̌ε,2
t = b2(t, Θ̌ε,2

t , Θ̌ε,1
t , Žε

t )dt + Žε,2,1
t dW1

t + Žε,2,2
t dW2

t , Y̌2
T = y2,

(50)

and we will compare their performance to that of the optimally controlled state dynamics{
dŶ1

t = b1(t, Θ̂1
t , Θ̂2

t , Ẑt)dt + Ẑ1,1
t dW1

t + Ẑ1,2
t dW2

t , Ŷ1
T = y1,

dŶ2
t = b2(t, Θ̂2

t , Θ̂1
t , Ẑt)dt + Ẑ2,1

t dW1
t + Ẑ2,2

t dW2
t , Ŷ2

T = y2.
(51)

For simplicity, we write for ϑ ∈ {bi, f i, hi, i = 1, 2},

ϑ̌ε
t := ϑ(t, Θ̌ε,i

t , Θ̌ε,−i
t , Žε

t ),

ϑ̂t := ϑ(t, Θ̂i
t, Θ̂−i

t , Ẑt),
(52)

and in this notation,

J(ǔε,1
· , ǔε,2

· )− J(û1
· , û2
· ) = E

[∫ T

0
f̌ ε,1
t + f̌ ε,2

t − f̂ 1
t − f̂ 2

t dt + ȟε,1
0 + ȟε,2

0 − ĥ1
0 − ĥ2

0

]
= E

[∫ T

0
f̌ ε
t − f̂tdt + ȟε

0 − ĥ0

] (53)

where ft := f 1
t + f 2

t and ht := h1
t + h2

t . Again, we want to find first order variation processes
(Ỹi
· , [Z̃

i,1
· , Z̃i,2

· ]), i = 1, 2, that satisfy (22) with (Ȳε,i
· , [Z̄ε,i,1

· , Z̄ε,i,2
· ]) replaced by its ’checked’ counterpart

(Y̌ε,i
· , [Žε,i,1

· , Žε,i,2
· ]).
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Assumption 6. The functions

(y1, µ1, u1, y2, µ2, u2, z) 7→ bi(t, yi, µi, ui, y−i, µ−i, u−i, z)

(y1, µ1, u1, y2, µ2, u2) 7→ f i(t, yi, µi, ui, y−i, µ−i, u−i)

(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i)

(54)

are for all t a.s. differentiable at (Θ̂1
t , Θ̂2

t , Ẑt), (Θ̂1
t , Θ̂2

t ) and (Ŷ1
0 ,L(Ŷ1

0 ), Ŷ2
0 ,L(Ŷ2

0 )) respectively. Furthermore,

∂yj b̂i
t, ∂µj b̂i

t, ∂yj f̂ i
t , ∂µj f̂ i

t , i, j = 1, 2, (55)

are for all t a.s. uniformly bounded and ∂yj ĥi
0 +E

[
∗(∂

j
µ ĥi

0)
]
∈ L2

F0
(Ω;Rd).

Notice that the point of differentiability is generally not the same in Assumptions 4 and 6.
Above, (û1

· , û2
· ) is an optimal control while in Assumption 4, it is an equilibrium control. Let δ denote

simultaneous variation in controls, for ϑ ∈ { f i, bi, i = 1, 2},

δϑ(t) := δ1ϑ(t) + δ2ϑ(t). (56)

Lemma 4. Let Assumptions 1, 2, 5 and 6 be in force. The first order variation processes that satisfy the ’checked’
version of (22) is given by the following system of BSDEs,

dỸi
t =

(
2

∑
j=1

{
∂yj b̂iỸ j

t +E
[
(∂µj b̂i)∗Ỹ j

t

]}
+ δbi(t)1Eε(t) +

2

∑
j,k=1

∂zj,k b̂iZ̃j,k
t

)
dt

+
2

∑
j=1

Z̃i,j
t dW j

t ,

Ỹi
T = 0,

i = 1, 2,

(57)

The proof follows the same steps as the proof of Lemma 1.
By Lemma 4,

E
[

ȟε
0 − ĥ0

]
= E

[
2

∑
j=1

pj
0Ỹ j

0

]
+ o(ε), (58)

where pj
0 := ∂yj ĥ0 +E

[
∗(∂µj ĥ0)

]
.

Lemma 5 (Duality relation). Let Assumptions 1, 2 and 6 hold. Let pj
· be the solution to the SDE

dpj
t = −

{
∂yj Ĥt +E

[
∗(∂µj Ĥt)

]}
dt−

2

∑
k=1

∂zj,k ĤtdWk
t ,

pj
0 = ∂yj ĥ0 +E

[
∗(∂µj ĥ0)

]
,

(59)

where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 ×U2 ×Rd×(2d1+2d2),

H(ω, t, y1, µ1, u1, y2, µ2, u2, z, p1
t , p2

t )

:=
2

∑
j=1

bj(ω, t, yj, µj, uj, y−j, µ−j, u−j, z)pj
t − f j(t, yj, µj, uj, y−j, µ−j, u−j).

(60)
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Then the following duality relation holds,

E
[

2

∑
j=1

pj
0Ỹ j

0

]
= −E

[∫ T

0

2

∑
j=1

pj
tδbj(t)1Eε(t) + Ỹ j

t

(
∂yj f̂t +E

[
∗(∂µj f̂t)

])
dt

]
. (61)

The proof of Lemma 5 is almost identical that of Lemma 2. By Lemma 4,

J(ǔε,1
· , ǔε,2

· )− J(û1
· , û2
· ) = E

[∫ T

0

{
−p1

t δb1(t)− p2
t δb2(t) + δ f (t)

}
1Eε(t)dt

]
+ o(ε). (62)

Thus

J(ǔε,1
· , ǔε,2

· )− J(û1
· , û2
· ) = −E

[∫ T

0
δH(t)1Eε(t)dt

]
+ o(ε). (63)

In the following two theorems, Assumptions 1–3, 5 and 6 are in force.

Theorem 4 (Necessary optimality conditions). Suppose that (Ŷi
· , [Ẑ

i,1
· , Ẑi,2

· ]), i = 1, 2 is an optimal solution
to the MFTC and that pi

·, i = 1, 2, solves (59). Then, for i = 1, 2,

(û1
t , û2

t ) = argmax
(v,w)∈U1×U2

H(t, Ŷ1
t ,L(Ŷ1

t ), v, Ŷ2
t ,L(Ŷ2

t ), w, Ẑt, p1
t , p2

t ), a.e.t, a.s. (64)

Theorem 5 (Sufficient optimality conditions). Suppose (û1
· , û2
· ) satisfy (64). Suppose furthermore that for

(t, p1, p2, z) ∈ [0, T]×Rd ×Rd ×Rd×(2d1+2d2), i = 1, 2,

(y1, µ1, u1, y2, µ2, u2) 7→ H(t, y1, µ1, u1, y2, µ2s, u2, z, p1, p2) (65)

is concave a.s. and
(y1, µ1, y2, µ2) 7→ h(y1, µ1, y2, µ2) (66)

is convex a.s. Then (û1
· , û2
· ) is an optimal control and (Ŷi

· , [Ẑ
i,1
· , Ẑi,2

· ], ûi
·), i = 1, 2 solves the MFTC.

5. Example: The Linear-Quadratic Case

In this section we consider a linear-quadratic version of (9) and (10), in the one dimensional
case. Let ai, ci,j, qi,j, q̄i,j, q̃i,j, s̄i,j, si, s̄E

i , ri : [0, T] 7→ R, i, j = 1, 2 be deterministic coefficient functions,
uniformly bounded over [0, T]. Additionally, ri(t) ≥ ε > 0 for i = 1, 2. Define

bi(t, Θi
t, Θ−i

t , Zt) = ai(t)ui
t +

2

∑
j=1

ci,j(t)W
j
t ,

f i(t, Θi
t, Θ−i

t ) =
2

∑
j=1

{
1
2

qi,j(t)(Y
j
t )

2 +
1
2

q̄i,j(t)E[Y
j
t ]

2 + q̃i,j(t)Y
j
tE[Y

j
t ]

+ s̄i,j(t)E[Y
j
t ]Y
−j
t

}

+ si(t)Yi
t Y−i

t + s̄E
i (t)E[Y

i
t ]E[Y−i

t ] +
1
2

ri(t)(ui
t)

2.

(67)

The uniform boundedness of the coefficients implies Assumptions 1–6, given initial costs
h1, h2, satisfying Assumption 4 and 6. Assumption 3 (integrability of f i) follows by classical BSDE
estimates [38]. Recall player 1 and 2’s Hamiltonian, defined in (28) and (35). In the setup of
this example,



Games 2018, 9, 88 14 of 26

Hi(t, Θi
t, Θ−i

t , Zt) =(
a1(t)u1

t +
2

∑
j=1

c1,jW
j
t

)
pi,1 +

(
a2(t)u2

t +
2

∑
j=1

c2,jW
j
t

)
pi,2

−
2

∑
j=1

{
1
2

qi,j(t)(Y
j
t )

2 +
1
2

q̄i,j(t)E[Y
j
t ]

2 + q̃i,j(t)Y
j
tE[Y

j
t ] + s̄i,j(t)E[Y

j
t ]Y
−j
t

}

− si(t)Yi
t Y−i

t − s̄E
i (t)E[Y

i
t ]E[Y−i

t ]− 1
2

ri(t)(ui
t)

2.

(68)

The Hessian of (y1, . . . , u2) 7→ H1(t, y1, . . . , u2, z, p1,1, p1,2) is

H1(t) := −



q1,1(t) q̃1,1(t) 0 s1(t) s̄1,2(t) 0
q̃1,1(t) q̄1,1(t) 0 s̄1,1(t) s̄E

1 (t) 0
0 0 r1(t) 0 0 0

s1(t) s̄1,1(t) 0 q1,2(t) q̃1,2(t) 0
s̄1,2(t) s̄E

1 (t) 0 q̃1,2(t) q̄1,2(t) 0
0 0 0 0 0 0


(69)

and the Hessian of (y1, . . . , u2) 7→ H2(t, y1, . . . , u2, z, p2,1, p2,2) is

H2(t) := −



q2,1(t) q̃2,1(t) 0 s2(t) s̄2,2(t) 0
q̃2,1(t) q̄2,1(t) 0 s̄2,1(t) s̄E

2 (t) 0
0 0 0 0 0 0

s2(t) s̄2,1(t) 0 q2,2(t) q̃2,2(t) 0
s̄2,2(t) s̄E

2 (t) 0 q̃2,2(t) q̄2,2(t) 0
0 0 0 0 0 r2(t)


. (70)

The coefficients are further assumed to be such thatH1(t) andH2(t) are negative semi-definite
for all t ∈ [0, T]. Also, we assume that (y1, . . . , µ2) 7→ hi(y1, . . . , µ2), yet unspecified, is convex.
Theorem 3 yields

ûi
t = ai(t)r−1

i (t)pi,i
t , (71)

where pi,i
· solves (27) or (34), depending on i. In fact the equilibrium is unique in this case, since ûi

· is
the unique pointwise solution to (37) and pi,i

· is unique, see (A25) and (A26). By Theorem 5,

ûi
t = ai(t)r−1

i (t)pi
t, (72)

where pi
· solves (59), is an optimal control for the linear-quadratic MFTC and it is unique.

5.1. MFTG

The equilibrium dynamics are
dŶi

t =

(
a2

i (t)r
−1
i (t)pi,i

t +
2

∑
j=1

ci,jW
j
t

)
dt + Ẑi,1

t dW1
t + Ẑi,2

t dW2
t ,

Ŷi
T = yi

T .

(73)

We see that only two costate processes, p1,1
· and p2,2

· , are relevant here. This is a consequence of
the lack of explicit dependence on u−i in the bi and f i specified in (67). Nevertheless, the running cost
f i depends implicitly on u−i through player −i’s state and mean.
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We make the following ansatz: there exists deterministic functions αi, ᾱi, βi, β̄i, θi : [0, T] → R,
i = 1, 2 and γi,j : [0, T]→ R, i, j = 1, 2, such that

Ŷi
t = αi(t)pi,i

t + ᾱi(t)E[pi,i
t ] + βi(t)p−i,−i

t + β̄i(t)E[p−i,−i
t ] + γi,1(t)W1

t + γi,2(t)W2
t + θi(t). (74)

Clearly, we need to impose the terminal conditions

αi(T) = 0, ᾱi(T) = 0, βi(T) = 0, β̄i(T) = 0, γi,j(T) = 0, θi(T) = yi
T . (75)

Calculations presented in the appendix identifies coefficients and yields the following system of
ODEs determining αi(·), . . . , θi(·),

α̇i(t) + αi(t)Pi(t) + βi(t)R−i(t) = a2
i (t)r

−1
i (t),

˙̄αi(t) + αi(t)P̄i(t) + ᾱi(t)(Pi(t) + P̄i(t)) + βi(t)R̄−i(t) + β̄i(t)(R−i(t) + R̄−i(t)) = 0,

β̇i(t) + αi(t)Ri(t) + βi(t)P−i(t) = 0,
˙̄βi(t) + αi(t)R̄i(t) + ᾱi(t)(Ri(t) + R̄i(t)) + βi(t)P̄−i(t) + β̄i(t)(P−i(t) + P̄−i(t)) = 0,

γ̇i,1(t) + αi(t)Φi(t) + βi(t)Φ−i(t) = ci,1(t),

γ̇i,2(t) + αi(t)Ψi(t) + βi(t)Ψ−i(t) = ci,2(t),

θ̇i(t) + θi(t)
(
(αi(t) + ᾱi(t))(Qi(t) + Q̄i(t)) + (βi(t) + β̄i(t))(S−i(t) + S̄−i(t))

)
+ θ−i(t)

(
(αi(t) + ᾱi(t))(Si(t) + S̄i(t)) + (βi(t) + β̄i(t))(Q−i(t) + Q̄−i(t))

)
= 0,

(76)

where

Pi(t) := Qi(t)αi(t) + Si(t)β−i(t),

P̄i(t) := Qi(t)ᾱi(t) + Q̄i(t)(αi(t) + ᾱi(t)) + Si(t)β̄−i(t) + S̄i(t)(β−i(t) + β̄−i(t)),

Ri(t) := Qi(t)βi(t) + Si(t)α−i(t),

R̄i(t) := Qi(t)β̄i(t) + Q̄i(t)(βi(t) + β̄i(t)) + Si(t)ᾱ−i(t) + S̄i(t)(α−i(t) + ᾱ−i(t)),

Φi(t) := (Qi(t)γi,1(t) + Si(t)γ−i,1(t)), Ψi(t) := (Qi(t)γi,2(t) + Si(t)γ−i,2(t)),

Qi(t) := qi,i(t) + q̃i,i(t), Q̄i(t) := q̃i,i(t) + q̄i,i(t),

Si(t) := si(t) + s̄i,i(t), S̄i(t) := s̄i,−i(t) + s̄E
i (t).

(77)

Now (74)–(77) gives us the equilibrium dynamics. In this fashion, it is possible to solve LQ
problems more general than (67).

5.2. MFTC

The optimally controlled dynamics are
dŶi

t =

(
a2

i (t)r
−1
i (t)pi

t +
2

∑
j=1

ci,jW
j
t

)
dt + Ẑi,1

t dW1
t + Ẑi,2

t dW2
t ,

Ŷi
T = yi

T .

(78)

We make almost the same ansatz as before, assume that there exists deterministic functions
αi, ᾱi, βi, β̄i, θi : [0, T]→ R, i = 1, 2 and γi,j : [0, T]→ R, i, j = 1, 2, with terminal conditions

αi(T) = 0, ᾱi(T) = 0, βi(T) = 0, β̄i(T) = 0, γi,j(T) = 0, θi(T) = yi
T (79)
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such that

Ŷi
t = αi(t)pi

t + ᾱi(t)E[pi
t] + βi(t)p−i

t + β̄i(t)E[p−i
t ] + γi,1(t)W1

t + γi,2(t)W2
t + θi(t). (80)

By redefining Qi, Q̄i, Si, S̄i in (77),

Qi(t) := q1,i(t) + q2,i(t) + q̃1,i(t) + q̃2,i(t),

Q̄i(t) := q̃1,i(t) + q̃2,i(t) + q̄1,i(t) + q̄2,i(t),

Si(t) := s1(t) + s2(t) + s̄1,i(t) + s̄2,i(t),

S̄i(t) := s̄1,−i(t) + s̄2,−i(t) + s̄E
1 (t) + s̄E

2 (t),

(81)

(76), (77) and (79), (80) gives us the optimally controlled state dynamics.

5.3. Simulation and the Price of Anarchy

Let T := 1, ξ := (y1
0, y2

0) ∈ L2
F0
(Ω;Rd × Rd) be preferred initial positions for player 1 and 2

respectively, and

f i
t :=

1
2

(
ri(ui

t)
2 + ρi(Yi

t −E[Y−i
t ])2

)
, hi

t :=
νi
2
(Yi

0 − yi
0)

2. (82)

In this setup,H1 andH2 are negative semi-definite if ri, ρi > 0, hi is convex if νi > 0. In Figure 1
numerical simulations of MFTG and MFTC are presented. In (a), the two players have identical
preferences, but different terminal conditions. The situation is symmetric in the sense that we expect
the realized paths of player 1 reflected through the line y = 0 to be approximately paths of player 2.
In (c), preferences are asymmetric and as a consequence, the realized paths are not each others
mirrored images.

The central planner in a MFTC uses more information than a single player does. In fact, in our
example, γi,j(t) = 0 when i 6= j in the MFTG. The interpretation is that in the game, player i does not
care about player −i’s noise, only its mean state. For the central planner however, γi,j is not identically
zero for i 6= j. This can be observed in (b), where the central planner makes the player states evolve
under some common noise.

In (c) we see an interesting contrast between the MFTG and the MFTC. Player 1 (black) feels no
attraction to player 2 (ρ1 = 0) while player 2 is attracted to the mean position of player 1 (ρ2 > 0). In the
game, player 1 travels on the straight line from (t, y) ≈ (0,−1) to its terminal position (t, y) = (1,−2).
Player 2, on the other hand, deviates far from its preferred initial position at time t = 0, only to be
in the proximity of player 1. In the MFTC, the central planner makes player 1 linger around y = 0
for some time, before turning south towards the terminal position. The result is less movement
movement by player 2. Even though player 1 pays a higher individual cost, the social cost is reduced
by approximately 33%. The social cost J is approximated by

J(u1, u2) ≈ 1
N

N

∑
i=1

j(ωi), (83)

where j(ωi) = ∑2
j=1
∫ T

0 f j
t (ωi)dt + hj(ωi). In (a) and (c), the outcomes of j (circles for equilibrium

control, stars for optimal control) are presented along with the approximation of J (dashed lines)
for N = 100. The optimal control yields the lower social cost in both cases. This is expected,
the general inefficiency of a Nash equilibrium in nonzero-sum games is well known [39]. The price of
anarchy quantifies the inefficiency due to non-cooperation, see for static games [34,40], for differential
games [41] and for linear-quadratic mean-field type games [42]. The price of anarchy in mean-field
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games has been studied recently in [43,44]. It is defined as the largest ratio between social cost for
an equilibrium (MFTG) to the optimal social cost (MFTC),

PoA := sup
(û1
· ,û2
· ) MFTG

equilibrium

J(û1
· , û2
· )

min
ui·∈U i ,i=1,2

J(u1· , u2· )
. (84)

(a)

y1
T a1 c11 c12 r1 ρ1 ν1 y1

0

−2 1 0.3 0 1 1 1 N (0, 0.1)

y2
T a2 c21 c22 r2 ρ2 ν2 y2

0

2 1 0 0.3 1 1 1 N (0, 0.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-2

-1

0

1

2

Y
1

, 
Y

2

MFTG state - player 1 (black), player 2 (red)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-2

-1

0

1

2

Y
1

, 
Y

2

MFTC state - player 1 (black), player 2 (red)

(b)

y1
T a1 c11 c12 r1 ρ1 ν1 y1

0

−2 1 3 0 1 10 1 N (0, 0.1)

y2
T a2 c21 c22 r2 ρ2 ν2 y2

0

2 1 0 3 1 10 1 N (0, 0.1)

(c)

y1
T a1 c11 c12 r1 ρ1 ν1 y1

0

−2 1 0.3 0 1 4 1 N (0, 0.1)

y2
T a2 c21 c22 r2 ρ2 ν2 y2

0

2 1 0 0.3 1 0 1 N (2, 0.1)

Figure 1. Numerical examples: (a) symmetric preference, (b) single path sample, (c) asymmetric
attraction and initial position. Circles indicate the preferred initial positions.
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Taking the parameter set of (a) as a point of reference, see Table 1, we vary one parameter at the
time and study PoA. The result is presented in Figure 2. In the intervals studied, PoA is increasing
in ρi and T and decreasing in νi and ri. The reason is that the players become less flexible when
νi and/or ri are increased, and the improvement a central planner can do decreases. On the other
hand, an increased time horizon gives the central planner more time to improve the social cost.
Also, an increased preference on attraction rewards the unegoistic behavior in the MFTC model.

Table 1. Parameter values in the symmetric case (a).

y1
T a1 c11 c12 r1 ρ1 ν1 y1

0

−2 1 0.3 0 1 1 1 N (0, 0.1)

y2
T a2 c21 c22 r2 ρ2 ν2 y2

0

2 1 0 0.3 1 1 1 N (0, 0.1)

0 0.5 1 1.5 2

2

1.04

1.06

1.08

1.1

1.12

P
o

A

(a) Variation of ρ2 in [0.2, 2].

0 0.5 1 1.5 2 2.5 3 3.5 4

r
2

1.05

1.06

1.07

1.08

1.09

1.1

P
o
A

(b) Variation of r2 in [0.2, 4].

0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.065

1.07

1.075

1.08

1.085

1.09

P
o

A

(c) Variation of ν1 in [0.2, 4].

0 0.5 1 1.5 2

T

1

1.02

1.04

1.06

1.08

1.1

P
o
A

(d) Variation of T in [0.2, 2].

Figure 2. Numerical approximations (N = 5000) of the price of anarchy PoA.

6. Conclusions and Discussion

Mean-field type games with backward stochastic dynamics, where the coefficients are allowed
to depend on the marginal distributions of the player states, have been defined in this paper.
Under regularity assumptions necessary conditions for a Nash equilibrium have been derived in
the form of a stochastic maximum principle. Additional convexity assumptions yielded sufficient
conditions. In linear-quadric examples, player behavior in the MFTG is compared to the centrally
planned solution in the MFTC. The efficiency of the MFTG Nash equilibrium, quantified by the price
of anarchy, and its dependence on problem parameters is studied.

The framework presented in this paper has many possible extensions, towards both theory and
applications. The theory for martingale-driven BSDEs is now standard, and one could exchange
W1
· , W2

· throughout this paper for two martingales M1
· , M2

· , possibly jump processes, and approach
the game with the theory of forward-backward SDEs. Indeed, the topic of games between mean-field
FBSDEs seems yet unexplored. These kind of problems would have immediate applications in finance.

With our definition of U i, we have restricted ourselves to open loop adapted controls in this
paper. Other information structures, such as perfect/partial state- and/or law feedback controls,
lagged or noise-perturbed controls are possible. Furthermore, both players have perfect information
about each other in this paper. Taking inspiration from for example [45,46], the access to information
could be restricted, so that the players have only partial information on states/laws. These types
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of extensions are interesting both from the theoretical and applied point of view. Depending on
application, the information structure of the problem will naturally change.

Exploring conditions for the MFTG to be a potential game, or an S-modular game, can open
a door for applications in for example interference management and resource allocation [47–49] to
make use of this framework.
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BSDE Backward stochastic differential equation
FBSDE Forward-backward stochastic differential equation
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MFTC Mean-field type control problem
MFTG Mean-field type game
ODE Ordinary differential equation
PoA Price of Anarchy
SDE Stochastic differential equation

Appendix A. Differentiation and Approximation of Measure-Valued Functions

Derivatives of measure-valued functions will be defined with the lifting technique, outlined for
example in [14,15,50]. Consider the function f : P2(Rd)→ R. We assume that our probability space is
rich enough, so that for every µ ∈ P2(Rd), there exists a square-integrable random variable X whose
distribution is µ, i.e., µ = L(X). For example, ([0, 1],B([0, 1]), dx) has this property. Then we may
write f (µ) =: F(X) and we can differentiate F in Fréchet-sense whenever there exists a continuous
linear functional DF[X] : L2(F ;Rd)→ R such that

F(X + Y)− F(X) = E[DF[X]Y] + o(‖Y‖2) =: DY f (µ) + o(‖Y‖2), (A1)

where ‖Y‖2
2 := E[Y2]. DY f (µ) is the Fréchet derivative of f at µ, in the direction Y and we have that

DY f (µ) = E[DF[X]Y] =: lim
t→0

E[F(X + tY)− F(X)]

t
, Y ∈ L2(F ;Rd), µ = L(X). (A2)

By Riesz’ Representation Theorem, DF[X] is unique and it is known [14] that there exists a Borel
function ϕ[µ] : Rd → Rd, independent of the version of X, such that DF[X] = ϕ[µ](X). Therefore,
with µ′ = L(X′) for some random variable X′, (A1) can be written as

f (µ′)− f (µ) = E[h[X](X′), X′ − X] + o(‖X′ − X‖2), ∀X′ ∈ L2(F ;Rd). (A3)

We denote ∂µ f (µ; x) := h[µ](x), x ∈ Rd, ∂µ f (L(X); X) =: ∂µ f (L(X)), and we have the identity

DF[X] = h[L(X)](X) = ∂µ f (L(X)). (A4)

Example A1. If f (µ) = (
∫
Rd xdµ(x))2 then

lim
t→0

E[X + tY]2 −E[X]2

t
= E[2E[X]Y], (A5)

and ∂µ f (µ) = 2
∫
Rd xdµ(x).
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Example A2. If f (µ) =
∫
Rd xdµ(x) then ∂µ f (µ) = 1.

The Taylor approximation of a measure-valued function is given by (A3), and we will write

f (L(X′))− f (L(X)) = E
[
∂µ f (L(X))(X′ − X)

]
+ o(‖X′ − X‖2). (A6)

Assume now that f takes another argument, ξ. Then

f (ξ,L(X′))− f (ξ,L(X)) = E
[
∂µ f (ξ̃,L(X); X)(X′ − X)

]
+ o(‖X′ − X‖2), (A7)

where the expectation is not taken over the tilded variable. Note that PX is deterministic. In situations
where the expected value is taken only over the directional argument of ∂µ f , we will write

E
[
∂µ f (ξ̃,L(X); X)(X′ − X)

]
=: E

[
(∂µ f (ξ,L(X)))∗(X′ − X)

]
. (A8)

The expected value in (A7) is a random quantity because of ξ̃. Taking another expected value,
and changing the order of integration, leads to

E
[
Ẽ[∂µ f (ξ̃,L(X); X)](X′ − X)

]
, (A9)

where the tilded expectation is taken only over the tilded variable. The notation for this will be

Ẽ[∂µ f (ξ̃,L(X); X)] =: E
[∗(∂µ f (ξ,L(X)))

]
. (A10)

Appendix B. Proofs

Lemma 1

Let

b̃i
t :=

2

∑
j=1

{
∂yj b̂i

tỸ
j
t +E

[
(∂µj b̂i

t)
∗Ỹ j

t

]}
+

2

∑
j,k=1

∂zj,k b̂i
tZ̃

i,j
t , (A11)

then Ỹi
t = −

∫ T
t b̃i

s + δ1bi(s)1Eε(s)ds − ∑2
j=1
∫ T

t Z̃i,j
s dWs. An application of Ito’s formula to |Ỹ1

t |2 +
|Ỹ2

t |2 yields
2

∑
i=1
|Ỹi

t |2 +
∫ T

t

2

∑
i,j=1
‖Z̃i,j

s ‖2
Fds =

∫ T

t
2

2

∑
i=1
〈Ỹi

s , b̃i
s + δ1bi(s)1Eε(s)〉ds

+
2

∑
i,j=1

∫ T

t
〈Ỹi

s , Z̃i,j
s dW j

s〉.
(A12)

Let D denote the largest bound for all the derivatives of b1 and b2 present. By Jensen’s and
Young’s inequalities,

2
2

∑
i=1
〈Ỹi

s , b̃i
s〉 ≤

2

∑
i=1

{
(6D + 16D2)|Ỹi

s |2 + 2DE[|Ỹi
s |2]
}
+

1
2

2

∑
i,j=1
‖Z̃i,j

s ‖2
F. (A13)
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The stochastic integrals in (A12) are local martingales and vanish under an expectation [36].
Therefore, with K0 := 8D + 16D2,

E
[

2

∑
i=1
|Ỹi

s |2 +
1
2

2

∑
i,j=1

∫ T

t
‖Z̃i,j

s ‖2
F ds

]
≤ K0

∫ T

t
E
[

2

∑
i=1
|Ỹi

s |2
]

ds

+ 2
∫ T

t
E
[

2

∑
i=1
〈Ỹi

s , δ1bi(s)1Eε(s)〉
]

ds.

(A14)

Let τ ∈ [0, T], then

sup
(T−τ)≤t≤T

K0

∫ T

t
E
[

2

∑
i=1
|Ỹi

s |2
]

ds ≤ K0δ sup
(T−τ)≤t≤T

E
[

2

∑
i=1
|Ỹi

s |2
]

. (A15)

and by Hölder’s and Young’s inequalities,

sup
(T−τ)≤t≤T

∫ T

t
E
[

2

∑
i=1
〈Ỹi

s , δ1bi(s)1Eε(s)〉
]

ds

≤ sup
(T−τ)≤t≤T

∫ T

t

2

∑
i=1

E
[
|Ỹi

s |2
]1/2

E
[
|δ1bi(s)1Eε(s)|2

]1/2
ds

≤
2

∑
i=1

{
sup

(T−τ)≤t≤T
E
[
|Ỹi

s |2
]1/2

} ∫ T

T−τ
E
[
|δ1bi(s)|2

]1/2
1Eε(s)ds

≤
2

∑
i=1

δ

2

{
sup

(T−τ)≤t≤T
E
[
|Ỹi

s |2
]}

+
1
2δ

(∫ T

T−δ
E
[
|δ1bi(s)|2

]1/2
1Eε(s)ds

)2

.

(A16)

By Assumption 5 and the definition of U 1, we have for some K1 > 0,

1
2δ

(∫ T

T−δ
E
[
|δ1bi(s)|2

]1/2
1Eε(s)ds

)2

≤ K1ε2 (A17)

Plugging (A15) and (A16) into (A14) yields

sup
(T−δ)≤t≤T

E
[
(1− (K0 + 1)δ)

2

∑
i=1
|Ỹi

t |2 +
1
2

2

∑
i,j=1

∫ T

t
‖Z̃i,j

s ‖2
F ds

]
≤ K1ε2. (A18)

For δ < (K0 + 1)−1, we conclude that

sup
(T−δ)≤t≤T

E
[

2

∑
i=1
|Ỹi

t |2 +
2

∑
i,j=1

∫ T

t
‖Z̃i,j

s ‖2
F ds

]
≤ K2ε2, (A19)

where K2 > 0 depends on δ, the bound D, the Lipschitz coefficient of bi and the integration bound in
the definition of U 1. The steps above can be repeated for the intervals [T − 2δ, T − δ], [T − 3δ, T − 2δ],
etc. until 0 is reached. After a finite number of iterations, we have

sup
0≤t≤T

E
[

2

∑
i=1
|Ỹi

t |2 +
2

∑
i,j=1

∫ T

t
‖Z̃i,j

s ‖2
F ds

]
≤ K3ε2, (A20)

where K3 depends on K2 and T. This is the first estimate in (22). The second estimate follows from
similar calculations.
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Lemma 2

Integration by parts yields

E
[

2

∑
j=1

Ỹ j
0 p1,j

0

]
= −E

[∫ T

0

2

∑
j=1

Ỹ j
t dp1,j

t + p1,j
t dỸ j

t + d〈Ỹ j
t , p1,j〉tdt

]
. (A21)

Assume that dp1,j
t = β

j
tdt + σ

j,1
t dW1

t + σ
j,2
t dW2

t , then

2

∑
i=1

Ỹi
t dp1,i

t + p1,i
t dỸi

t + d〈p1,i, Ỹi〉t =
2

∑
i=1

[
Ỹi

t

(
βi

tdt + σi,1
t dW1

t + σi,2
t dW2

t

)
+ p1,i

t

(
2

∑
j=1

{
∂yj b̂i

tỸ
j
t +E

[
(∂µj b̂i

t)
∗Ỹ j

t

]
+

2

∑
k=1

∂zj,k b̂i
tZ̃

j,k
t

}
+ δ1bi(t)1Eε(t)

)

+ σi,1
t Z̃i,1

t + σi,2
t Z̃i,2

t

]
dt + (. . . )dW1

t + (. . . )dW2
t .

(A22)

Hence, the lemma is equivalent to that, under expectations, we have

−E
[ ∫ T

0

{
Ỹ1

t β1
t + Ỹ2

t β2
t

+ Ỹ1
t

{
p1,1

t ∂y1 b̂1
t + p1,2

t ∂y1 b̂2
t +E

[
∗(∂µ1 b̂1

t )p1,1
t

]
+E

[
∗(∂µ1 b̂2

t )p1,2
t

] }
+ Ỹ2

t

{
p1,1

t ∂y2 b̂1
t + p1,2

t ∂y2 b̂2
t +E

[
∗(∂µ2 b̂1

t )p1,1
t

]
+E

[
∗(∂µ2 b̂2

t )p1,2
t

] }
+ (p1,1

t ∂z1,1 b̂1
t + p1,2

t ∂z1,1 b̂2
t + σ1,1

t )Z̃1,1
t + (p1,1

t ∂z1,2 b̂1
t + p1,2

t ∂z1,2 b̂2
t + σ1,2

t )Z̃1,2
t

+ (p1,1
t ∂z2,1 b̂1

t + p1,2
t ∂z2,1 b̂2

t + σ2,1
t )Z̃2,1

t + (p1,1
t ∂z2,2 b̂1

t + p1,2
t ∂z2,2 b̂2

t + σ2,2
t )Z̃2,2

t

+ (p1,1
t δ1b1(t) + p1,2

t δ1b2(t))1Eε(t)

}
dt

]

= −E
[∫ T

0

2

∑
i=1

(
Ỹi

t

{
∂yi f̂ 1

t +E
[
∗(∂µi f̂ 1

t )
]}
− p1,i

t δ1bi(t)1Eε(t)
)

dt

]
.

(A23)

We match coefficients and get

β
j
t = −

(
p1,1

t ∂yj b̂1
t + p1,2

t ∂yj b̂2
t +E

[
∗(∂µi b̂1

t )p1,1
t

]
+E

[
∗(∂µi b̂2

t )p1,2
t

])
+ ∂yj b̂1

t +E
[
∗(∂µj b̂1

t )
]

= −
{

∂yj Ĥ1
t +E

[
∗(∂µj Ĥ1

t

]}
,

σ
j,k
t = −

(
p1,1

t ∂zj,k b̂1
t + p1,2

t ∂zj,k b̂2
t

)
.

(A24)

Linear-Quadratic MFTG–Derivation of ODE System

Under the ansatz, the adjoint equation is
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dpi,i
t =

{
(qi,i(t) + q̃i,i(t))Ŷi

t + (q̃i,i(t) + q̄i,i(t))E[Ŷi
t ]

(si,1(t) + si,2(t)s̄i,i(t))Ŷ−i
t + (s̄i,−i(t) + s̄E

i,1 + s̄E
i,2(t))E[Ŷ

−i
t ]
}

dt

=:
{

Qi(t)Ŷi
t + Q̄i(t)E[Ŷi

t ] + Si(t)Ŷ−i
t + S̄i(t)E[Ŷ−i

t ]
}

dt

=
{

Qi(t)
(

αi(t)pi,i
t + ᾱi(t)E[pi,i

t ] + βi(t)p−i,−i
t + β̄i(t)E[p−i,−i

t ]

+ γi,1(t)W1
t + γi,2W2

t + θi(t)
)

+ Q̄i(t)
(
(αi(t) + ᾱi(t))E[pi,i

t ] + (βi(t) + β̄i(t))E[p−i,−i
t ] + θi(t)

)
+ Si(t)

(
α−i(t)p−i,−i

t + ᾱ−i(t)E[p−i,−i
t ] + β−i(t)pi,i

t + β̄−i(t)E[pi,i
t ]

+ γ−i,1W1
t + γ−i,2W2

t + θ−i(t)
)

+ S̄i(t)
(
(α−i(t) + ᾱ−i(t))E[p−i,−i

t ] + (β−i(t) + β̄−i(t))E[pi,i
t ] + θ−i(t)

)}
dt

=
{

pi,i
t

(
Qi(t)αi(t) + Si(t)β−i(t)

)
+E[pi,i

t ]
(

Qi(t)ᾱi(t) + Q̄i(t)(αi(t) + ᾱi(t)) + Si(t)β̄−i(t) + S̄i(t)(β−i(t) + β̄−i(t))
)

+ p−i,−i
t

(
Qi(t)βi(t) + Si(t)α−i(t)

)
+E[p−i,−i

t ]
(

Qi(t)β̄i(t) + Q̄i(t)(βi(t) + β̄i(t)) + Si(t)ᾱ−i(t) + S̄i(t)(α−i(t) + ᾱ−i(t))
)

+ W1
t (Qi(t)γi,1(t) + Si(t)γi,2(t)) + W2

t (Qi(t)γi,2 + Si(t)γ−i,2)

+ θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}

dt

=:
{

pi,i
t Pi(t) +E[pi,i

t ]P̄i(t) + p−i,−i
t Ri(t) +E[p−i,−i

t ]R̄i(t)

+ W1
t Φi(t) + W2

t Ψi(t) + θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}

dt,

(A25)

and the expected value of pi,i
· solves

d(E[pi,i
t ]) =

{
E[pi,i

t ](Pi(t) + P̄i(t)) +E[p−i,−i
t ](Ri(t) + R̄i(t))

+ θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}

dt.
(A26)

The initial conditions pi,i
0 , E[pi,i

0 ], p−i,−i
0 , E[p−i,−i

0 ] are given by a system of linear equations, which
is derived is the same way as (A25) and (A26). Applying Ito’s formula to the ansatz, and using (A25)
and (A26), we get
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dŶi
t =

(
α̇i(t)pi,i

t + ˙̄αi(t)E[pi,i
t ] + β̇i(t)p−i,−i

t + ˙̄βi(t)E[p−i,−i
t ]

+ γ̇i,1(t)W1
t + γ̇i,2(t)W2

t + θ̇i(t)
)

dt

+ αi(t)dpi,i
t + ᾱi(t)d(E[pi,i

t ]) + βi(t)dp−i,−i
t + β̄i(t)d(E[p−i,−i

t ])

+ γi,1(t)dW1
t + γi,2(t)dW2

t

=
{

pi,i
t

(
α̇i(t) + αi(t)Pi(t) + βi(t)Ri(t)

)
+E[pi,i

t ]
(

˙̄αi(t) + αi(t)P̄i(t) + ᾱi(t)(Pi(t) + P̄i(t))

+ βi(t)R̄−i(t) + β̄i(t)(R−i(t) + R̄−i(t))
)

+ p−i,−i
t

(
β̇i(t) + αi(t)Ri(t) + βi(t)P−i(t)

)
+E[p−i,−i

t ]
(

β̇i(t) + αi(t)R̄i(t) + ᾱi(t)(Ri(t) + R̄i(t))

+ βi(t)P̄−i(t) + β̄i(t)(P−i(t) + P̄−i(t))
)

+ W1
t

(
γ̇i,1 + αi(t)Φi(t) + βi(t)Φ−i(t)

)
+ W2

t

(
γ̇i,2 + αi(t)Ψi(t) + βi(t)Ψ−i(t)

)
+
(

θ̇i(t) + θi(t)
(
(αi(t) + ᾱi(t))(Qi(t) + Q̄i(t)) + (βi(t) + β̄i(t))(S−i(t) + S̄−i(t))

)
+ θ−i

(
(αi(t) + ᾱi(t))(Si(t) + S̄i(t)) + (βi(t) + β̄i(t))(Qi(t) + Q̄i(t))

))}
dt

+ γi,1(t)dW1
t + γi,2dW2

t .

(A27)

We can now match these dynamics with the true state dynamics and we get the system of
ODEs (76) and γi,j(t) = Ẑi,j

t .
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