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Abstract: Mastermind is a two players zero sum game of imperfect information. Starting with Erdős
and Rényi (1963), its combinatorics have been studied to date by several authors, e.g., Knuth (1977),
Chvátal (1983), Goodrich (2009). The first player, called “codemaker”, chooses a secret code and
the second player, called “codebreaker”, tries to break the secret code by making as few guesses as
possible, exploiting information that is given by the codemaker after each guess. For variants that
allow color repetition, Doerr et al. (2016) showed optimal results. In this paper, we consider the
so called Black-Peg variant of Mastermind, where the only information concerning a guess is the
number of positions in which the guess coincides with the secret code. More precisely, we deal with a
special version of the Black-Peg game with n holes and k ≥ n colors where no repetition of colors
is allowed. We present upper and lower bounds on the number of guesses necessary to break the
secret code. For the case k = n, the secret code can be algorithmically identified within less than
(n− 3)dlog2 ne+ 5

2 n− 1 queries. This result improves the result of Ker-I Ko and Shia-Chung Teng
(1985) by almost a factor of 2. For the case k > n, we prove an upper bound of (n− 2)dlog2 ne+ k + 1.
Furthermore, we prove a new lower bound of n for the case k = n, which improves the recent
n− log log(n) bound of Berger et al. (2016). We then generalize this lower bound to k queries for
the case k ≥ n.
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1. Introduction

In this paper, we deal with Mastermind, which is a popular board game that in the past
three decades has become interesting from an algorithmic point of view. Mastermind is a two-player
board game invented in 1970 by the postmaster and telecommunication expert Mordecai Meirowitz.
The original version of Mastermind consists of a board with twelve (or ten, or eight) rows containing
four holes and pegs of six different colors. The idea of the game is that the codemaker chooses a secret
color combination of n pegs from k possible colors and the codebreaker has to identify the code by a
sequence of queries and corresponding information that is provided by the codemaker. All queries are
also color combinations of n pegs. Information is given about the number of correctly positioned colors
and further correct colors, respectively. Mathematically, the codemaker selects a vector y ∈ [k]n and the
codebreaker gives in each iteration a query in form of a vector x ∈ [k]n. The codemaker replies with a
pair of two numbers, called black(x, y) and white(x, y), respectively. The first one is the number of
positions in which both vectors x and y coincide and the second one is the number of additional pegs
with a right color but a wrong position:
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black(x, y) = |{i ∈ [n] | x(i) = y(i)}|,
white(x, y) = max

σ∈Sn
|{i ∈ [n] | y(i) = x(σ(i))}|

− black(x, y).

The Black-Peg game is a special version of Mastermind, where answers are provided by black
information only. A further version is the so-called AB game, a.k.a. Bulls and Cows, in which all
colors within a code must be distinct. Actually, this version is supposed to be much older than the
commercial variant of Mastermind. It is an interesting open question whether both variants are of the
same complexity for the codebreaker or if one version is significantly harder because, in the AB game,
the space of possible solutions as well as the space of possible queries are both restricted. In this paper,
we deal with a special combination of the Black-Peg game and the AB game, where both the secret
vector and the guesses must be composed of pairwise distinct colors (k ≥ n) and the answers are given
by the black information only. In a breakthrough paper, Doerr et al. [1] state that k = n is the most
popular case in research, where the white information is redundant for the AB game.

Related Works: The study of Mastermind in its different variants has a long lasting history in
combinatorial game theory. In 1963, several years before the invention of Mastermind as a commercial
board game, Erdős and Rényi [2] analyzed the same problem with two colors. One of the earliest
analyses of this game after its commercialization dealing with the case of four pegs and six colors was
done by Knuth [3]. He presented a strategy that identifies the secret code in at most five guesses. For
the AB game with four pegs, it is known that at least seven guesses are required in the worst case [4].
Ever since the work of Knuth, the general case of arbitrary many pegs and colors has been intensively
investigated in combinatorics and computer science literature. In the field of complexity, Stuckman and
Zhang [5] showed that it is NP-complete (most likely impossible in polynomial time) to determine
if a sequence of queries and answers is satisfiable. Concerning the approximation aspect, there are
many works regarding different methods [5–16]. The Black-Peg game was first introduced by Chvátal
for the case k = n. He gave a deterministic adaptive strategy that uses 2ndlog2 ke+ 4n guesses. Later,
Goodrich [17] improved the result of Chvátal for arbitrary n and k to ndlog2 ke+ d(2− 1/k)ne+ k
guesses. Moreover, he proved in the same paper that this kind of game is NP-complete. A further
improvement to ndlog2 ne + k − n + 1 for k > n and ndlog2 ne + k for k ≤ n was done by Jäger
and Peczarski [18]. Doerr et al. [1] provided a randomized codebreaker strategy that only needs
O(n log log n) queries in expectation. They also showed that this asymptotic order even holds for
up to n2 log log n colors, if both black and white information is allowed. For the AB game, Jäger and
Peczarski [19] proved exact worst-case numbers of guesses for fixed n ∈ {2, 3, 4} and arbitrary k.
Concerning the combination of both variants, Black-Peg game and AB game, for almost three decades,
the work due to Ker-I Ko and Shia-Chung Teng [20] was the only contribution that provides an upper
bound for the case k = n. They presented a strategy that identifies the secret permutation in at most
2n log2 n + 7n guesses and proved that the corresponding counting problem is #P-complete.

Our Contribution: In this paper, we consider the Black-Peg game without color repetition. We first
present a deterministic polynomial-time algorithm that identifies the secret permutation in less than
(n− 3)dlog2 ne+ 5

2 n− 1 queries in the case k = n and in less than (n− 2)dlog2 ne+ k + 1 queries in
the case k > n. In a conference version (extended abstract) “Improved Approximation Algorithm for
the Number of Queries Necessary to Identify a Permutation”, upper bounds of this paper have been
presented with some sketches of the proofs [21]. Our result for the case k = n improves the result of
Ker-I Ko and Shia-Chung Teng [20] by almost a factor of 2. Furthermore, we analyze the worst-case
performance of query strategies for both variants of the Game and give a new lower bound of n queries
for the case k = n, which improves the recently presented lower bound of n− log log(n) by Berger
et al. [22]. We note, however, that the corresponding asymptotic bound of O(n) is long-established.
For k ≥ n, we generalize this lower bound to k. Both lower bounds even hold if the codebreaker is
allowed to use repeated colors in his guesses.
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2. Upper Bounds on the Number of Queries

We first consider Black-Peg Mastermind with k = n and the demand for pairwise distinct colors
in both the secret code and all queries, i.e., we deal with permutations in Sn.

2.1. Black-Peg AB-Mastermind, Case k = n

For convenience, we will use the term permutation for both, a mapping in Sn and its one-line
representation as a vector. Our algorithm for finding the secret permutation y ∈ Sn includes two main
phases that are based on two ideas. In the first phase, the codebreaker guesses an initial sequence of n
permutations that has a predefined structure. In the second phase, the structure of the initial sequence
and the corresponding information by the codemaker enable us to identify correct components yi of the
secret code one after another, each by using a binary search. Recall that, for two codes w = (w1, . . . , wn)

and x = (x1, . . . , xn), we denote by black(w, x) the number |{i ∈ [n] |wi = xi}| of components in
which w and x are equal. We denote the mapping x restricted to the set {s, . . . , `}with (xi)

`
i=s, s, ` ∈ [n].

Phase 1. Consider the n permutations, σ1, . . . , σn, which are defined as follows: σ1 corresponds
to the identity map and, for j ∈ [n− 1], we obtain σj+1 from σj by a circular shift to the right. For
example, if n = 4, we have σ1 = (1, 2, 3, 4), σ2 = (4, 1, 2, 3), σ3 = (3, 4, 1, 2) and σ4 = (2, 3, 4, 1). Within
those n permutations, every color appears exactly once at every position and, thus, we have

n

∑
j=1

black(σj, y) = n. (1)

The codebreaker guesses σ1, . . . , σn−1 and obtains the additional information black(σn, y) from
Equation (1).

Phase 2. The strategy of the second phase identifies the values of y one after another. This is
done by using two binary search routines, called FINDFIRST and FINDNEXT, respectively. The idea
behind both binary search routines is to exploit the information that, for 1 ≤ i, j ≤ n− 1, we have
σ

j
i = σ

j+1
i+1 , σn

i = σ1
i+1, σ

j
n = σ

j+1
1 and σn

n = σ1
1 , while, except for an infrequent special case, FINDFIRST is

used to identify the first correct component of the secret code, and FINDNEXT identifies the remaining
components in the main loop of the algorithm. Actually, FINDFIRST would also be able to find the
remaining components but requires more guesses than FINDNEXT (twice as many in the worst case).
On the other hand, FINDNEXT only works if at least one value of y is already known such that we have
to identify the value of one secret code component in advance.

Identifying the First Component: Equation (1) implies that either black(σj, y) = 1 holds for all
j ∈ [n] or that we can find a j ∈ [n] with black(σj, y) = 0.

In the first case, which is infrequent, we can find one correct value of y by guessing at most b n
2 c+ 1

modified versions of some initial guess, say σ1. Namely, if we define a guess σ by swapping a pair of
components of σ1, we will obtain black(σ, y) = 0, if and only if one of the swapped components has
the correct value in σ1.

In the frequent second case, we find the first component by FINDFIRST in at most 2dlog2 ne guesses.
The routine FINDFIRST is outlined as Algorithm 1 and works as follows. In the given case, we can
either find a j ∈ [n− 1] with black(σj, y) > 0 but black(σj+1, y) = 0 and set r := j + 1, or we have
black(σn, y) > 0 but black(σ1, y) = 0 and set j := n and r := 1. We call such an index j an active index.
Now, for every ` ∈ {2, 3, . . . , n}, we define the code

σj,` :=
(
(σ

j
i )

`−1

i=1 , σr
1, (σr

i )
n
i=`+1

)
,

and call the peg at position ` in σj,` the pivot peg. Note that notations of the form (σ)b
i=a substitute

σa, σa+1, . . . , σb and vanish in the case a > b. From the information σ
j
i = σr

i+1 for 1 ≤ i ≤ n − 1,
we conclude that σj,` is actually a new permutation as required. The fact that black(σr, y) = 0
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implies that the number of correct pegs up to position `− 1 in σj is either black(σj,`, y) (if y` 6= σr
1) or

black(σj,`, y)− 1 (if y` = σr
1). For our algorithm, we will only need to know if there exists one correct

peg in σj up to position `− 1. The question is cleared up, if black(σj,`, y) 6= 1. On the other hand, if
black(σj,`, y) = 1, we can define a new guess ρj,` by swapping the pivot peg with a wrong peg in σj,`.
We define

ρj,` :=


(
(σ

j
i )

`

i=1, σr
1, (σr

i )
n
i=`+2

)
, if ` < n,(

σr
1, (σj

i )
n−1

i=2 , σ
j
1

)
, if ` = n.

Algorithm 1: Routine FINDFIRST

input :Code y and an active index j ∈ [n]
output :Left most correct peg position in σj

1 if j = n then r := 1;
2 else r := j + 1;
3 a := 1;
4 b := n; // b is also the position to be found
5 while b > a do
6 ` := d a+b

2 e; // pivot position

7 Guess σj,` :=
(
(σ

j
i )

`−1

i=1 , σr
1, (σr

i )
n
i=`+1

)
;

8 s := black(σj,`, y);
9 if s = 1 then

10 if ` < n then ρj,` :=
(
(σ

j
i )

`

i=1, σr
1, (σr

i )
n
i=`+2

)
;

11 else ρj,` :=
(

σr
1, (σj

i )
n−1

i=2 , σ
j
1

)
;

12 Guess ρj,`;
13 s := black(ρj,`, y);

14 if s > 0 then b := `− 1;
15 else a := `;

16 return b;

For the case ` = n, we may assume that we applied our query procedure for an `′ < ` already,
proving that the first `′ − 1 pegs in σj are wrong, particularly σ

j
1. Now, we obtain black(ρj,`, y) > 0,

if and only if the pivot peg had a wrong color in σj,` meaning that there is one correct peg in σj in the
first `− 1 places. Thus, we can find the position m of the leftmost correct peg in σj by a binary search
as outlined in Algorithm 1.

Identifying a Further Component: For the implementation of FINDNEXT (Algorithm 2), we deal
with a partial solution vector x that satisfies xi ∈ {0, yi} for all i ∈ [n]. We call the (indices of the)
non-zero components of the partial solution fixed. They indicate the components of the secret code
that have already been identified. The (indices of the) zero components are called open. Whenever
FINDNEXT makes a guess σ, it requires knowing the number of open components in which the guess
coincides with the secret code, i.e., the number

black(σ, y, x) := black(σ, y)− black(σ, x).

Note that the term black(σ, x) is known by the codebreaker and not greater than black(σ, y). After
the first component of y has been found and fixed in x, there exists a j ∈ [n] such that black(σj, y, x) = 0.
As long as we have open components in x, we can either find a j ∈ [n− 1] with black(σj, y, x) > 0
but black(σj+1, y, x) = 0 and set r := j + 1, or we have black(σn, y, x) > 0 but black(σ1, y, x) = 0 and
set j := n and r := 1. Again, we call such an index j an active index. Let j be an active index and
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r its related index. Let c be the color of some component of y that is already identified and fixed
in the partial solution x. With `j and `r, we denote the position of color c in σj and σr, respectively.
The peg with color c serves as a pivot peg for identifying a correct position m in σj that is not fixed
yet. There are two possible modes for the binary search that depend on the fact if m ≤ `j. The mode is
indicated by a Boolean variable leftS and determined by lines 5 to 10 of FINDNEXT. Clearly, m ≤ `j if
`j = n. Otherwise, the codebreaker guesses

σj,0 :=
(

c, (σj
i )

`j−1

i=1 , (σj
i )

n

i=`j+1

)
.

By the information σ
j
i = σr

i+1 we obtain that (σj
i )

`j−1

i=1 ≡ (σr
i )

`j
i=2. We further know that every open

color has a wrong position in σr. For that reason, black(σj,0, y, x) = 0 implies that m ≤ `j.

Algorithm 2: Routine FINDNEXT

input :Code y, partial solution x 6= 0 and an active index j ∈ [n]
output :Position of a correct open component in σj

1 if j = n then r := 1;
2 else r := j + 1;
3 Choose a color c of identified peg (a value c of some non-zero component of x);
4 Let `j and `r be the positions with color c in σj and σr, respectively;
5 if `j = n then leftS := true;
6 else

7 Guess σj,0 :=
(

c, (σj
i )

`j−1

i=1 , (σj
i )

n

i=`j+1

)
;

8 s := black(σj,0, y, x);
9 if s = 0 then leftS := true;

10 else leftS := false;

11 if leftS then
12 a := 1;
13 b := `j;

14 else
15 a := `r;
16 b := n;

17 while b > a do
18 ` := d a+b

2 e; // position for peg c

19 if leftS then σj,` :=
(
(σ

j
i )

`−1

i=1 , c, (σr
i )

`j
i=`+1, (σj

i )
n

i=`j+1

)
;

20 else σj,` :=
(
(σr

i )
`r−1
i=1 , (σj

i )
`−1

i=`r
, c, (σr

i )
n
i=`+1

)
;

21 Guess σj,`;
22 s := black(σj,`, y, x);
23 if s > 0 then b := `− 1;
24 else a := `;

25 return b;

The binary search for the exact value of m is done in the interval [a, b], where m is initialized as n
and [a, b] as

[a, b] :=

{
[1, `j], if leftS,

[`r, n], else



Games 2018, 9, 2 6 of 12

(lines 11 to 16 of FINDNEXT). In order to determine if there is an open correct component on the left
side of the current center ` of [a, b] in σj, we can define a case dependent permutation:

σj,` :=


(
(σ

j
i )

`−1

i=1 , c, (σr
i )

`j
i=`+1, (σj

i )
n

i=`j+1

)
, if leftS,(

(σr
i )

`r−1
i=1 , (σj

i )
`−1

i=`r
, c, (σr

i )
n
i=`+1

)
, else.

In the first case, the first ` − 1 components of σj,` coincide with those of σj. The remaining
components of σj,` cannot coincide with the corresponding components of the secret code if they have
not been fixed yet. This is because the `-th component of σj,` has the already fixed value c, components
`+ 1 to `j coincide with the corresponding components of σr, which satisfies black(σr, y, x) = 0, and
the remaining components have been checked to be wrong in this case (cf. former definition of leftS in
line 5 and line 9, respectively). Thus, there is a correct open component on the left side of ` in σj, if and
only if black(σj,`, y, x) 6= 0. In the second case, the same holds for similar arguments. Now, if there
is a correct open component to the left of `, we update the binary search interval [a, b] by [a, `− 1].
Otherwise, we update [a, b] by [`, b].

The Main Algorithm. The main algorithm is outlined as Algorithm 3. It starts with an empty
partial solution and finds the components of the secret code y one-by-one. Herein, the vector v does
keep records about the number of open components in which the permutations σ1, . . . , σn equal y
and is, thus, initialized by vi := black(σi, y), i ∈ [n− 1] and vn := n−∑n−1

i=1 vi. As mentioned above,
the main loop always requires an active index. For that reason, if v = 1n in the beginning, we fix
one solution peg in σ1 and update x and v, correspondingly. Every call of FINDNEXT in the main
loop augments x by a correct solution value. Since one call of FINDNEXT requires at most 1 + dlog2 ne
guesses, Algorithm 3 does not need more than (n− 3)dlog2 ne+ 5

2 n− 1 queries for n ≥ 10 (inclusive
n− 1 initial guesses, b n

2 c+ 1 guesses to find the first correct peg, n− 3 calls of FINDNEXT and 2 final
queries) to break the secret code.

Algorithm 3: Algorithm for Permutations

1 Let y be the secret code and set x := (0, 0, . . . , 0);
2 Guess the permutations σi, i ∈ [n− 1];
3 Initialize v ∈ {0, 1, . . . , n}n by vi := black(σi, y), i ∈ [n− 1], vn := n−∑n−1

i=1 vi;
4 if v = 1n then
5 j := 1;
6 Find the position m of the correct peg in σ1 by at most b n

2 c+ 1 further guesses;

7 else
8 Call m := FINDFIRST(y, j) for an active index j ∈ [n] to find the position m of the correct

peg in σj by at most 2dlog2 ne further guesses;

9 xm := σ
j
m;

10 vj := vj − 1;
11 while |{i ∈ [n] | xi = 0}| > 2 do
12 Use v to choose an active index j ∈ [n]; // (vj > 0, vj+1 = 0)
13 m := FINDNEXT(y, x, j);
14 xm := σ

j
m;

15 vj := vj − 1;

16 Make at most two more guesses to find the remaining two unidentified colors;

Example 1. We consider the case n = k = 8 and suppose that the secret code y is

7 1 4 3 2 8 5 6.
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Figure 1 (upper panel) shows n possible initial queries. We illustrate the procedure FINDNEXT and
further suppose that we have already identified the positions of three colors indicated in the partial
solution x:

• • • • 2 • 5 6.

From the n3 values in Figure 1, we see that black(σ3, y, x) = 1 and black(σ4, y, x) = 0, so we
choose 3 as our active index applying FINDNEXT with the highlighted initial queries, σ3 and σ4.
Choosing the already identified color 2 as a pivot color, FINDNEXT does its binary search to identify
the next correct peg as demonstrated in the lower panel of Figure 1. Since the information n3 for query
σa is 0 (cf. lines 7–9 of Algorithm 2), all correctly placed but unidentified pegs in σ3 are in the first
four places. Thus, we can apply a binary search for the leftmost correct peg in the first four places of
query σ3 using the pivot peg. Here, the binary search is done by queries σb and σc and identifies the
peg with color 7 (in general, the peg that is left to the leftmost pivot position for which n3 is non-zero).
If the response to σa would have been greater than 0, we would have found analogously a new correct
peg among the last four places of σ3.

σ1 1 2 3 4 5 6 7 8
σ2 8 1 2 3 4 5 6 7
σ3 7 8 1 2 3 4 5 6
σ4 6 7 8 1 2 3 4 5
σ5 5 6 7 8 1 2 3 4
σ6 4 5 6 7 8 1 2 3
σ7 3 4 5 6 7 8 1 2
σ8 2 3 4 5 6 7 8 1

0 0 0
2 0 2
3 2 1
1 1 0
0 0 0
0 0 0
1 0 1
1 0 1

queries n1 n2 n3

σa

σb

σc

2 7 8 1
7 8 2 1
7 2 8 1

3 4 5 6
3 4 5 6
3 4 5 6

2 2 0
3 2 1
3 2 1

queries n1 n2 n3

Figure 1. Upper panel: initial queries σj with associated responses n1 = black(σj, y), coincidences with
a partial solution n2 = black(σj, x), and the difference of both n3. Lower panel: binary search queries
to extend the partial solution. The highlighted subsequences correspond to the subsequences of the
selected initial queries.

2.2. More Colors Than Positions

Now, we consider the variant of Black-Peg Mastermind where k > n and color repetition is
forbidden. Let y = (y1, . . . , yn) be the code that must be found. We use the same notations as above.

Phase 1. Consider the k permutations σ1, . . . , σk, where σ1 corresponds to the identity map on [k]
and for j ∈ [k− 1], we obtain σj+1 from σj by a circular shift to the right. We define k codes σ1, . . . , σk

by σj = (σ
j
i)

n

i=1, j ∈ [k]. For example, if k = 5 and n = 3, we have σ1 = (1, 2, 3), σ2 = (5, 1, 2),
σ3 = (4, 5, 1), σ4 = (3, 4, 5) and σ5 = (2, 3, 4). Within those k codes, every color appears exactly once at
every position, and, thus, we have

k

∑
j=1

black(σj, y) = n,

similar to Equation (1). Since k > n, this implies
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Lemma 1. There is a j ∈ [k] with black(σj, y) = 0.

Phase 2. Having more colors than holes, we can perform our binary search for the next correct
position without using a pivot peg. The corresponding simplified version of FINDNEXT is outlined as
Algorithm 4. Using that version of FINDNEXT also allows to simplify our main algorithm (Algorithm 3)
by adapting lines 2 and 3, and, due to Lemma 1, skipping lines 4–10, as FINDNEXT can be already
applied to find the first correct peg. Thus, for the required number of queries to break the secret code,
we have: the initial k− 1 guesses, a call of the modified FINDNEXT for all but the last two positions (at
most dlog2 ne guesses per position) and one or two final guesses. This yields the modified Mastermind
Algorithm breaking the secret code in at most (n− 2)dlog2 ne+ k + 1 queries.

Algorithm 4: Routine FINDNEXT for k > n
input :Code y, partial solution x 6= 0 and an active index j ∈ [k]
output :Position m of a correct open component in σj

1 if j = n then r := 1;
2 else r := j + 1;
3 a := 1, b := n;
4 while b > a do
5 ` := d a+b

2 e; // mid position of current interval

6 Guess σ :=
(
(σr

i )
`−1
i=1 , (σj

i )
n

i=`

)
;

7 s := black(σ, y, x);
8 if s > 0 then a := `;
9 else b := `− 1;

10 return a;

3. Lower Bounds on the Number of Queries

In the following, we consider the case that the secret code has no repetition but arbitrary
questions are allowed. Note that the lower bounds for that case especially hold true for Black-Peg
AB-Mastermind, since the codebreaker will not be able to detect a secret code with less attempts, if the
set of allowed queries is restricted to the corresponding subset. Similar to the upper bounds, we prove
the respective lower bounds on the necessary number of queries by construction.

3.1. Black-Peg AB-Mastermind, Case k = n

In each iteration, the worst case for the code breaker is simulated by allowing the codemaker
to replace his secret code with another permutation from the remaining feasible search space. For
m ∈ N, we denote the m-th query of the code breaker with xm and the m-th secret code adaption of the
codemaker with ym. The remaining feasible search space Rm consists of all permutations that agree
with the first m pairs of queries and answers:

R0 := Sn,

Rm := {σ ∈ Sn | black(yj, xj) = black(σ, xj) for all j ∈ [m]}, for m > 0.

Now, a simple strategy of the codemaker is to reply every query xm, m ∈ N, with the smallest
possible number

bm := min
σ∈Rm−1

black(σ, xm),

choosing his new secret code ym ∈ Rm−1 such that black(ym, xm) = bm. We obtain our lower bound on
the necessary number of queries by proving the following Lemma.

Lemma 2. It holds that bm ≤ m for all m < n.
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In particular, none of the first n− 1 queries will be answered with n. Thus, the secret code cannot
be identified with less than n queries.

Proof. Assuming that our claim is wrong, we fix the smallest number m ∈ [n− 1] with bm > m. Let

D := {c ∈ [n] | (xm)−1(c) = (ym)−1(c)}

be the set of colors that are correctly placed in the current query with respect to the current secret code.
For every i ∈ [n], let Ci ⊆ [n] be the set of all colors that do not occur at position i in any of the former
m− 1 queries nor in the current secret code, i.e.,

Ci := {c ∈ [n] | c 6= x`(i) for all ` ∈ [m]}.

The intersections Ci ∩ D, i ∈ [n] are not empty since |D| = bm ≥ m + 1 but at most m of the n
colors are missing in Ci. This fact will enable us to determine a new feasible secret code z ∈ Rm−1

such that black(z, xj) = bj for all j ∈ [m− 1] but black(z, xm) < bm, a contradiction to the minimality
of bm. The new secret code z is constructed from ym by changing the colors of some components that
coincide with xm, choosing the new color at a given position i from Ci ∩ D. The precise procedure
is outlined as Algorithm 5. Starting with any position i1 where ym and xm have the same color,
we choose another color c1 ∈ Ci1 ∩ D. Since c1 ∈ D, there must be another position i2 such that
ym(i2) = c1 = xm(i2). Thus, for s > 1, we can iteratively determine positions is where ym and xm

have the same color, cs−1, and choose a new color cs ∈ Cis ∩ D (while loop, lines 5–9). The iteration
stops, if the chosen color cs corresponds with a color that appears in ym at some position it, t < s,
that has been considered before (indicated by the set A). Note that the iteration must terminate
with 2 ≤ s ≤ m + 1, since A is empty in the beginning, and |D| = m + 1. The set of chosen colors
{c` | t ≤ ` ≤ s} is equal to the set of colors {ym(i`) | t ≤ ` ≤ s} at the corresponding positions in ym.
Hence, the new secret code z (defined in lines 10–11) is again a permutation. Now, let j ∈ [m− 1] be
the number of some former query. Since z ∈ Rm−1 ⊆ Rj−1, the definition of bj implies black(z, xj) ≥ bj.
However, black(z, xj) ≤ bj also holds since black(ym, xj) = bj (ym ∈ Rm), and, for each position i with
z(i) 6= ym(i), we have z(i) 6= xj(i) (z(i) ∈ Ci). Furthermore, the construction of z immediately yields
black(z, xm) < black(ym, xm) = bm, since z is obtained from ym by changing some pegs that coincided
in ym and xm. Thus, z is indeed a secret permutation in Rm−1 that contradicts the minimality of bm.

Algorithm 5: Secret code adaption, k = n

1 s := 1;
2 A := ∅;
3 Choose position i1 ∈ [n] with ym(i1) = xm(i1);
4 Choose color c1 ∈ Ci1 ∩ D;
5 while cs 6∈ A do
6 A := A ∪ {ym(is)};
7 s := s + 1;
8 is := (ym)−1(cs−1);
9 Choose color cs ∈ Cis ∩ D;

10 Find the unique t < s with ym(it) = cs;
11 z := ym;
12 for ` := t to s do z(i`) := c`;

3.2. More Colors Than Positions

Considering the case k > n, we adapt the codemaker strategy from the former subsection, i.e.,
in each turn m, the codemaker chooses the new secret code ym such that the answer is the smallest
possible answer bm. We easily obtain a lower bound of k queries by the following:
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Lemma 3. It holds that bm < n for all m < k.

Proof. Assume for a moment that there exists an m < k with bm = n. Like before, let

Ci := {c ∈ [n] | c 6= x`(i) for all ` ∈ [m]}.

Similar to Algorithm 5, we now replace certain entries of ym by elements of the corresponding Ci.
The detailed procedure is described in Algorithm 6.

Algorithm 6: Secret code adaption, k > n

1 s := 1;
2 i1 := 1;
3 A := ∅;
4 B := {c ∈ [k] | For all i ∈ [n] : yk(i) 6= c};
5 Choose color c1 ∈ C1;
6 while cs 6∈ A ∪ B do
7 A := A ∪ {ym(is)};
8 s := s + 1;
9 is := (ym)−1(cs−1);

10 Choose color cs ∈ Cis ;

11 if cs ∈ A then
12 Find the unique t < s with ym(it) = cs;

13 else t := 1;
14 z := ym;
15 for ` := t to s do z(i`) := c`;

We start with position one and choose a color c1 ∈ Ci1 . As soon as we have cs ∈ B, we construct z
by starting with yk and then replacing the color ym(i`) by the color ci` for any ` ≤ s. The set of chosen
colors {c` | ` ≤ s} is equal to the set of colors {ym(i`) | ` ≤ s} except for cs, which only appears in
the first set and ym(i`), which only appears in the second. Since cs ∈ B, we know that z has no color
occurring twice.

If the iteration stops because of cs ∈ A, the procedure is identical to the one in Algorithm 5. Thus,
in both cases, we find that black(z, xm) < bm and black(z, x`) = b` for any ` ∈ [m− 1], in contradiction
to the minimality of bm.

4. Discussion

We present deterministic algorithms for the identification of a secret code in “Black-Peg
AB-Mastermind” as well as a “cheating algorithm” for the codemaker. Our constructive algorithms
yield new upper and lower bounds on the necessary number of queries. A challenge of the considered
Mastermind variant is that no color repetition is allowed for a query while most strategies for other
Mastermind variants exploit the property of color repetition. We improve the recent lower bound
of Berger et al. [22] and show that the worst case number of queries for Black-Peg AB-Mastermind
with k = n is at least n, another matter than the asymptotic bound of O(n), which is long-established.
Ko and Teng [20] conjecture that this number is actually Ω(n log n), a proof of which would close the
gap to the upper bound, answering the question of whether the AB game is harder than the general
game. The lower bound proof of Berger et al. is derived by solely considering the search space partition
with respect to the number of coincidences with the very first query. On the other hand, our algorithmic
proof does not exploit any structure property of the remaining search space. For both reasons, we
expect at least some room for improvements of the lower bound. Our corresponding general lower
bound for Black-Peg AB-Mastermind (case k ≥ n) is k. In the future, we will keep both bounds in
focus, but the real challenge is to prove or disprove the conjecture of Ko and Teng. It would also be
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interesting to examine the impact of further restrictions concerning the answers by the codemaker.
We conjecture that our binary search approach will also work if the codemaker answers a query by
only indicating if there is at least one black peg.
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