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Abstract: This paper examines how to construct subgame-perfect mixed-strategy equilibria in
discounted repeated games with perfect monitoring. We introduce a relatively simple class of strategy
profiles that are easy to compute and may give rise to a large set of equilibrium payoffs. These sets
are called self-supporting sets, since the set itself provides the continuation payoffs that are required
to support the equilibrium strategies. Moreover, the corresponding strategies are simple as the
players face the same augmented game on each round but they play different mixed actions after
each realized pure-action profile. We find that certain payoffs can be obtained in equilibrium with
much lower discount factor values compared to pure strategies. The theory and the concepts are
illustrated in 2× 2 games.
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1. Introduction

This paper examines how mixed actions can be used in obtaining subgame-perfect equilibria
in discounted repeated games. In repeated games, the set of subgame-perfect equilibria can be
defined recursively: a strategy profile is an equilibrium if certain equilibrium payoffs are available as
continuation payoffs, and these continuation payoffs may be generated by means of other equilibrium
strategy profiles. This construction has been presented for pure strategies in Abreu et al. [1,2], where
they give a fixed-point characterization of the set of equilibrium payoffs (see also [3–12]).

The mixed-strategy model has been examined in [3,13–15], where it is shown that the folk theorem
holds with and without public correlation and observable mixed actions. We examine a model where
correlated strategies are not available and the players are not arbitrarily patient but have fixed discount
factors (not necessarily all the same) between zero and one. Busch and Wen [16] examine a related
model of negotiation with unobservable mixed actions. The model has also been generalized to
imperfect monitoring [2,17,18], incomplete information [19,20], and stochastic games [21–23].

It is difficult to compute the set of subgame-perfect equilibria in repeated games. This is because
the equilibrium strategies may depend recursively on each other. To find an equilibrium strategy,
one needs to know the equilibrium strategies that produce the continuation payoffs that the strategy
requires, and these continuation payoffs may be different after each realized pure-action profile.
The only method that we are aware of is by Berg [24] that systematically enumerates all the required
stage games that emerge in the repeated game. This method has only been implemented in specific
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situations and it has not been implemented in general games. One difficulty in computing equilibria is
finding the optimal punishment payoffs and strategies (see [25,26], where pure-strategy punishments
are studied). This is an open problem, and we assume that the punishment payoffs are known. In this
paper, we introduce a new concept called self-supporting sets, which give strategy profiles that are
easy to compute and generate a large set of equilibrium payoffs. The idea is based on the concept of
self-generating sets [3], which are sets that can be generated as equilibrium payoffs in the repeated
game such that the continuation payoffs are chosen from the set itself. We simplify the concept by
requiring that the whole set is generated by Nash equilibria of a single stage game. Our idea relies on
the fact that mixed strategies can generate an uncountable set of payoffs in a single stage game when
the players are indifferent between the actions1; note, the idea of indifference is also used in belief-free
equilibrium [27,28]. On the equilibrium path, players face the same augmented game (that takes into
account the continuation payoffs) on each round, but they may play different mixed actions after each
realized pure-action profile. Thus, our strategies on the equilibrium path are simple and they can be
presented as a finite state strategy equilibrium [29]2. This simplicity has also a practical advantage as
boundedly rational players are not likely to play complicated strategies. Moreover, the self-supporting
strategies are not stationary nor of one-period memory when the pure-action profiles are used as
states. Our idea eliminates the complicated recursive dependency of the self-generating sets and the
set of equilibria. The self-generating sets are dramatically more complicated since they may involve
long sequences of dependencies of payoffs that are generated by different strategies that require
continuation payoffs that are generated by other strategies, which require some new continuation
payoffs and so on (see Example 1 in Section 3.2).

The self-supporting sets and corresponding strategies are useful in the sense that they do not rely
on nor require any other equilibrium profiles or payoffs, except for the punishment profiles in the
case that a player deviates from his strategy. Thus, if one can find such sets, they are automatically
subsets of the equilibrium payoffs. We demonstrate the concept in a prisoner’s dilemma, where a large
set of equilibrium payoffs is obtained with surprisingly low discount factor values, and this shows
a dramatic difference to the pure-strategy equilibria. See [3,10,11,27,30–33] for the earlier analysis of
prisoner’s dilemma. Moreover, we believe that large, self-supporting sets can be found in many games
since they exist, at least, in the following 2× 2 repeated games: prisoner’s dilemma, stag hunt, chicken
and no conflict games (see Figure 1).

It is interesting to compare the set of equilibria in pure, mixed and correlated strategies. It is not
clear what the correct model is and it depends on the game situation in hand. Pure strategies may be
founded, e.g., in public or governmental decision making where it is unlikely that the players would
randomize between the alternatives. This may also be the case with boundedly rational players who
may prefer simple strategies rather than playing different mixed strategies on each round the game
is played; note, in some models, it is possible to purify mixed-strategy equilibria [34,35]. The mixed
strategies can, however, produce higher equilibrium payoffs, as was shown in [24], or decrease the
punishment payoffs, which may enlarge the set of equilibria. A higher payoff itself is a reason enough
to play mixed strategies, and it is an open problem how to find all mixed-strategy equilibria. In this
paper, we show that the interior payoffs in the prisoner’s dilemma can be obtained in mixed strategies
with much lower discount factor values compared to the pure strategies. Finally, we note that the
correlated strategies are not reasonable in all game situations, since it requires a trusted third party
that organizes the public randomization and sends the suitable signals to players so that they can
coordinate their actions. We also note that there are many models of correlation in repeated games as

1 Figure 1 (and also the example in Section 5) shows that the self-supporting sets may produce a large portion of the area of
the feasible and individually rational payoffs in the game and thus even larger portion of the equilibrium payoffs.

2 Only the strategy on the equilibrium path is guaranteed to have a finite presentation but we are not aware of any result that
the punishment strategies have a finite presentation.
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the players may receive signals on every round the game is played or only before the first round, and
the players may correlate on both pure or mixed strategies.

(a) (b) (c)

Figure 1. Self-supporting sets in (a) chicken, (b) stag hunt and (c) no conflict games. The players’
payoffs of action profiles a, b, c and d are denoted by u(a) to u(d), respectively.

This paper is structured as follows. Section 2 introduces stage games and the basics of 2× 2
games. The repeated games are analyzed in Section 3. Section 4 examines a prisoner’s dilemma
game. Section 5 demonstrates the self-supporting sets in a quantity-setting duopoly. Section 6 is the
conclusion.

2. The Model

2.1. Stage Games

In a repeated game, a stage game is played repeatedly by the same players. A stage game is
characterised by the tuple (N, A, u), where

• N = {1, . . . , n} is the finite set of players,
• Ai is the finite set of pure actions for player i ∈ N, and A = ×i∈N Ai is the set of pure-action profiles.

Also, a pure action of player i is called ai ∈ Ai and a pure-action profile is called a ∈ A.
• u ∈ Rn is the payoff vector.

The play in a stage game: each player i ∈ N is allowed to randomize over his pure actions
ai ∈ Ai, yielding a mixed action qi ∈ Qi, where Qi is the set of probability distributions over Ai,
and Q = ×i∈NQi. So, it holds that qi(ai) ≥ 0 for each ai ∈ Ai and ∑ai∈Ai

qi(ai) = 1. A pure action
is a mixed action as well. A mixed-action profile is denoted by q = (q1, . . . , qn) ∈ Q. The carrier
(or support) of a mixed action is the set of pure actions that is played with a strictly positive probability:
Car(qi) = {ai ∈ Ai|qi(ai) > 0}. We also define Car(q) = ×i∈NCar(qi) and for each a ∈ Car(q), we let
πq(a) be the probability that the action profile a is realized if the mixed-action profile q is played:
πq(a) = ∏j∈N qj(aj). The payoffs in a stage game are given by the function u : Q 7→ Rn. If the players
use a mixed-action profile q ∈ Q, then player i receives an expected payoff of3

ui(q) = ∑
a∈A

ui(a)πq(a). (1)

3 Note that ui(a) denotes the stage-game payoffs and ui(q) the expected payoff of a mixed strategy q.
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Player i’s opponents’ action profile is denoted by q−i ∈ Q−i = ×j∈N,j 6=iQj. An action profile q is a
Nash equilibrium in the stage game if no player has a profitable deviation, i.e.,

ui(q) ≥ ui(q′i, q−i) for all i ∈ N, and q′i ∈ Qi. (2)

2.2. Equilibria in 2× 2 Stage Games

In this subsection, we examine what the sets of equilibrium payoffs can be in 2× 2 stage games.
These games have many classifications [36]. For example, Borm [37] shows that there are 15 classes
of games (denoted by c1–c15) based on the players’ best responses. Here, we are interested in
three types of games: (i) those that have a two-dimensional set of equilibria (typically Borm’s class
c1), (ii) one-dimensional set of equilibria (i.e., one or more line segments; classes c2–c4,c7,c10–c13),
and (iii) zero-dimensional set of equilibria (i.e., only one or more points, namely, c5,c6,c9 and c14).
We are mostly interested in the first two types of games, since they generate a larger set of payoffs.
The following examples demonstrate each type of game.

Game 1 (c1)
3, 3 1, 3
3, 1 1, 1

Game 2 (c7)
7/3, 7/3 1/3, 3
11/3, 1 1, 1

Game 3 (c14)
2, 1 0, 0
0, 0 1, 2

Game 1 has a two-dimensional set of equilibrium payoffs, namely the convex hull of
(1, 1), (1, 3), (3, 1) and (3, 3). Since both players are always indifferent, any mixed-action pair is
an equilibrium. In Game 2, the top action is a strictly dominated action for player 1, and player 2
is indifferent between his actions when player 1 plays the bottom action. Thus, player 2 can play
any mixed action when player 1 chooses the bottom action, leading to a one-dimensional set of
equilibrium payoffs, namely the line segment [1, 11/3]× 1. Game 3 is a battle-of-the-sexes game with
three equilibria, two in pure actions and one in mixed actions. These generate three payoff points,
where the mixed equilibrium gives the lowest payoff of (2/3, 2/3).

3. Repeated Games

In a repeated game, a stage game is repeated infinitely often and we make the usual assumption
that the players only observe the realized pure actions and not the accompanying mixed actions.
This so-called public past play is denoted by the set of histories Hk = Ak = ∏k A for stage k ≥ 0,
where H0 = A0 = {∅} and corresponds to the beginning of the game. So, a history contains all
the pure-action profiles that have been realized at the previous stages. The set of all histories is
H =

⋃∞
k=0 Hk. In a repeated game, a public strategy σi of player i ∈ N is a mapping that assigns a

probability distribution over player i’s actions for each possible history σi : H 7→ Qi. The set of player
i’s strategies is Σi. The players’ strategies form the strategy profile σ = (σ1, . . . , σn), a strategy profile
of all players except player i is denoted by σ−i and the set of strategy profiles is given by Σ = ×i∈NΣi.

Player i discounts the future payoffs with a discount factor δi ∈ (0, 1). The average discounted
payoff of a strategy profile σ for player i is

Ui(σ) = (1− δi)
∞

∑
k=0

δk
i uk

i (σ), (3)

where uk
i (σ) is the payoff of player i at stage k induced by the strategy profile σ. A profile σ is a Nash

equilibrium if no player has a profitable deviation, i.e.,

Ui(σ) ≥ Ui(σ
′
i , σ−i) for all i ∈ N, and σ′i ∈ Σi, (4)

and it is a subgame-perfect equilibrium (SPE) if it induces a Nash equilibrium in every subgame, i.e.,

Ui(σ|h) ≥ Ui(σ
′
i , σ−i|h) for all i ∈ N, h ∈ H, and σ′i ∈ Σi, (5)
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where σ|h is the restriction of the strategy profile after history h ∈ H.

3.1. Characterization of Equilibria in Repeated Games

The theory of subgame-perfect equilibria in infinitely repeated discounted games with pure
strategies has been developed by [1,2,38] (see also [4,10]). The more general model with mixed
strategies is analyzed, e.g., in Section 7 in [3].

Let V be the set of subgame-perfect equilibrium payoffs of a repeated game. For any compact set
W ∈ Rn, the punishment payoff of player i in the set W is denoted by

pi(W) = min{wi, w ∈W}.

The punishment payoff of player i in the repeated game is the smallest equilibrium payoff, i.e.,
pi(V). Let us consider an augmented game where the payoff of each action profile a ∈ A is given by

ũδ(a) .
= (I − T)u(a) + Tx(a),

where T is a diagonal matrix with δ1, . . . , δn on the diagonal. Note that the continuation payoffs x(a)
are included in the stage-game payoffs. Let M(x), x ∈ R|A|×n, be the set of all equilibrium payoffs
in this augmented game. Now, we are ready to state the characterization for the subgame-perfect
equilibrium payoffs (see Section 7.3 in [3] for the proof).

Theorem 1. The set V is the largest bounded fixed point of the mapping B:

W = B(W), (6)

where
B(W) =

⋃
x(a)∈W

M(x),

and the stage game’s payoffs are given by (I − T)u(a) + Tx(a), a ∈ A.

In contrast to the pure-strategy equilibria, the payoff set V is always non-empty, since every stage
game has at least one Nash equilibrium. Note that V is a compact set.

The complexity of computing all mixed-strategy equilibria is much higher compared to the
pure-strategy equilibria. Each iteration of B goes through all permutations of all the possible
continuations payoffs after each action profile over all action profiles in A.

We denote the payoff set and the mapping B with a discount factor δ by V(δ) and Bδ. A set W is
called self-generating if W ⊆ Bδ(W). The following result follows directly from Theorem 1 (see also
Section 7.3 in [3] for generalizations of these results).

Proposition 1. If a bounded set W is self-generating then Bδ(W) ⊆ V(δ).

The following result shows that the payoff set is monotone in the discount factor as long as it is
convex. For the next two results, we assume that the players have a common discount factor, which is
denoted by scalar δ = δ1 = . . . = δn.

Theorem 2. If V(δ) is convex, then V(δ) ⊆ V(δ′) for scalar δ′ ≥ δ.

It is also possible to show that convex self-generating sets are monotone. The proof is similar to
Theorem 2.

Proposition 2. If a self-generating set W ⊆ V(δ) is convex, then W ⊆ V(δ′) for scalar δ′ ≥ δ.
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3.2. Self-Supporting Sets and Monotonicity

One problem in finding subgame-perfect equilibria in repeated games is the task of finding
the strategy profiles that yield exactly the continuation payoffs such that the players are indifferent
between at least two of their pure actions. It turns out that in many games it is possible to find such
strategy profiles by selecting the continuation payoffs in such a way that the resulting augmented
game corresponds to Game 1 (so with a two-dimensional set of equilibrium payoffs). This means that
the play in the repeated game on that round is strategically similar to the play in the one-shot game of
Game 1. In the next section, we will show how this construction takes place. It makes use of so-called
self-supporting sets that are defined below.

Recall that, for x ∈ R|A|×n, the set M(x) consists of all equilibrium payoffs in the augmented
game where for each a ∈ A the continuation payoffs x(a) are included in the stage-game payoffs.

Definition 1. The set S is a self-supporting set if S ⊆ M(x) for some x ∈ R|A|×n and if for each payoff s ∈ S,
(one of) the corresponding equilibrium profile(s) q(s), has the following properties:

1. a ∈ Car(q(s)) ⇒ x(a) ∈ S, and
2. if player i plays an action ãi outside Car(qi(s)) (an observable deviation), while a−i ∈ Car(q−i(s)), then

xi(ãi, a−i) is player i’s punishment payoff pi(V).
3. if at least two players make an observable deviation, then the continuation payoff is a predetermined

equilibrium payoff.

Furthermore, we say that S is a strongly self-supporting set if it does not rely on the punishment
payoffs or if the punishment payoffs are included in the set, i.e., x(a) ∈ S for all a ∈ A. Note that each
Nash equilibrium payoff of the stage game by itself forms a strongly self-supporting set. Thus, the
self-supporting sets exist in all repeated games but they may not be large or high dimensional.

The difference to the self-generating sets is that the continuation payoffs x(a) on the equilibrium
path are generated by a single augmented game (the set M(x)) for the self-supporting sets. It also
means that the players face the same augmented game on each round, unless there is an observable
deviation. Thus, the strategies are simple but not stationary since the players may use different mixed
actions after each realized pure-action profile. The strategies on the equilibrium path can be presented
with a finite number of states, but they are not of one-period memory [29] (i.e., it is not enough to have
the pure-action profiles as states) since some pure-action profile may trigger a punishment in some
state but may be acceptable in another state. It should also be noted that the continuation payoffs
need not be extreme payoffs, as is the case with correlated strategies and the bang-bang result [3].
The following example [24] shows that self-generating sets are more complicated as they involve
multiple stage games with different continuation payoffs.

Example 1. We examine Prisoner’s Dilemma in Figure 2(a) with δ = 0.25, and show that the set consisting of
(1, 1) and two line segments 3.5× [1.75, 3.5] and [1.75, 3.5]× 3.5 is a self-generating set but not self-supporting.

The line segment 3.5× [1.75, 3.5] can be generated with Game L1 in Figure 2(b) using continuation
payoffs (3.5, 3.5), (1, 1), (2, 3.5) and (1, 1). Game L1 can be found by continuing action profile a by path a∞

(a corresponds to (3.5, 3.5), b to (0, 4), c to (4, 0) and d to (1, 1)), b and d by path d∞, and c by a suitable
mixed strategy from Game L2 (row player chooses top and column player uses mixed strategy (3/7, 4/7)). For
example, (1− δ)(4, 0) + δ(2, 3.5) = (3.5, 0.875). All the continuation payoffs belong to the self-generating set
itself. The Nash equilibria of Game L1 are the line 3.5× [1.75, 3.5] and the point (1, 1). Note that the payoff
(2, 3.5) is the only one that is outside this set. Game L2 in Figure 2(c) can be found similarly and note that
(2, 3.5) is an equilibrium payoff in game L2. Thus, these two lines support each other and they are (together
with (1, 1)) a self-generating set. This set is not self-supporting as it requires two stage games and two sets of
continuation payoffs, and thus this construction is more difficult to find.
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The following result shows that certain self-supporting sets are robust in the discount factor if the
punishment strategies do not get weaker. This means that the payoffs generated by the self-supporting
sets only fill the payoff set more when the players become more patient.

3.5,3.5 0,4

4,0 1,1

Prisoner’s Dilemma

3.5,3.5 0.25,3.25

3.5,0.875 1,1

Game L1

3.5,3.5 0.875,3.5

3.25,0.25 1,1

Game L2

(a) (b) (c)

Figure 2. Prisoner’s dilemma and the stage games used in constructing a self-generating set.

Theorem 3. Let δ ∈ [0, 1) and let T be the n× n diagonal matrix with scalar δ on the diagonal. Let S be a
self-supporting set for δ and suppose that the following conditions hold:
(i) S is a convex set,
(ii) For all s ∈ S with corresponding action profile q(s) we have:
ũδ(a) = (I − T)u(a) + Tx(a) ∈ S for all a ∈ Car(q(s)), and
(iii) pi(V(δ)) is not increasing in δ for all i ∈ N.
Also, let δ′ ≥ δ and let T′ be the corresponding diagonal matrix. Then there exists a self-supporting set S′ for δ′

such that S ⊆ S′.

Proof. Let S be a self-supporting set for δ, s ∈ S and q(s) be an equilibrium profile satisfying the three
mentioned properties. We show that the same augmented game payoffs can be obtained for discount
factor δ′ ≥ δ, and this does not introduce any profitable unilateral deviations to the players.

First, we show that there exists a continuation payoff x′(a) ∈ S for all a ∈ Car(q) such that
ũδ′(a) = ũδ(a), or

(I − T′)u(a) + T′x′(a) = (I − T)u(a) + Tx(a).

From this condition, we get

T′x′(a) = Tx(a) +
(
T′ − T

)
u(a)

and thus x′(a) is between x(a) and u(a). Substituting u(a) into this equation yields:

(I − T)T′x′(a) = (T′ − T)ũ(a) + (I − T′)Tx(a).

This means that x′(a) is a convex combination of ũ(a) and x(a). However, since S is convex and
ũ(a) ∈ S and x(a) ∈ S, this implies that x′(a) ∈ S. Moreover, the continuation payoffs are SPE payoffs
with δ′; they are generated by the set itself.

It remains to show that there are no profitable deviations that are observable. The incentive
compatibility conditions hold for δ:

(1− δi)u(q) + δiwi ≥ (1− δi)di(q) + δi pi(V(δ)), (7)
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for all i ∈ N. We show that the same profile q and the continuation payoffs w satisfy these conditions
for δ′. Let δ′i = δi + εi, where εi ≥ 0. We have:

(1− δ′i)ui(q) + δ′i wi = (1− δi)ui(q) + δiwi − ε(ui(q)− wi)

≥ (1− δi)di(q) + δi pi(V(δ))− ε(ui(q)− wi)

= (1− δi)di(q)− εui(q) + δi pi(V(δ)) + εwi

≥ (1− δi)di(q)− εdi(q) + δi pi(V(δ)) + εpi(V(δ))

≥ (1− δ′i)di(q) + δ′i pi(V(δ′))

Here, we used (7) in the first inequality. In the second inequality, we used that di(q) ≥ u(q)
(otherwise there would be no reason to deviate) and that wi ≥ pi(V(δ)) (which follows from
x(a) ≥ pi(V(δ)) for all a ∈ Car(q) by subgame-perfection). Finally, the last inequality follows
from pi(V(δ′)) ≤ pi(V(δ)). Hence, the incentive compatibility constraints are monotone in the
discount factor as long as the punishment payoffs do not increase, as observed with pure strategies in
Lemma 1 in [10].

In general, the set of equilibrium payoffs needs not be monotone in the discount factor [25,32,39].
However, if the set of continuation payoffs is convex, e.g., if correlated strategies are available, then the
payoff set is monotone in the discount factor [2]. Moreover, if the punishment payoffs are included in
the set S, i.e., the set is strongly self-supporting, then the self-supporting set is monotone if it is convex.

Proposition 3. If S is a convex strongly self-supporting set for scalar δ, then there is a convex strongly
self-supporting set S′ for δ′ ≥ δ such that S ⊆ S′.

We note that Theorem 3 and Proposition 3 could be extended to vector-valued δ if S is additionally
assumed to be a hyper-rectangle. This means that the discount factors can be unequal and δ′ ≥ δ

means that δ′i ≥ δi for all i = 1, . . . , n. In two-player games, the convex self-supporting sets are always
rectangles, which implies that the above results hold for vector-valued δ in these games. The following
result gives a sufficient condition for the existence of rectangular self-supporting sets in two-player
games.

Proposition 4. If in a bimatrix game (A, B) player 1 has two actions i1 and i2 such that b := max
j

bi1 j <

min
j

bi2 j =: b and, similarly, player 2 has two actions j1 and j2 such that a := max
i

aij1 < min
i

aij2 =: b, then

there exists δ∗ < 1 such that for all δ ≥ δ∗ there exists a rectangular self-supporting set
[
a′, a

]
×
[
b′, b

]
, where

a′ = max(a, p1(V(δ))) and b′ = max(b, p2(V(δ))).

Proof. We can create the following 2× 2 augmented subgame using actions i1, i2, j1 and j2.

a, b a′, b
a, b′ a′, b′

The Nash equilibria of the subgame is the rectangle
[
a′, a

]
×
[
b′, b

]
. The continuation payoffs for

the actions on the j2 column (or i2 row) are all lower than a (b) since the payoffs on the column (row)
are all higher than a (b). Similarly, the continuation payoffs for the actions on the j1 column (or i1 row)
are all higher than a′ (b’) since the payoffs are all lower than a′ (b′). Thus, the continuation payoffs
belong to the set itself when the discount factor is high enough. Moreover, the players do not have
any incentive to deviate outside these two actions when the discount factor is high enough and the
deviations are followed by the punishment payoffs that are smaller than or equal to a′ or b′.
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4. Strategies in the Repeated Prisoner’s Dilemma

In this section, we want to demonstrate the use of self-supporting sets in proving results in
repeated games. The results are well-known (see, for example, [27,30,31]). Recall that in symmetric
prisoner’s dilemmas all players have the same discount factor denoted by scalar δ.

PD
3, 3 0, 4
4, 0 1, 1

Theorem 4 ([30]). In game PD above, the set of subgame-perfect equilibrium payoffs for δ = 1/3 is given by
the rectangle [1, 3]× [1, 3] and the two line segments [3, 11/3]× 1 and 1× [3, 11/3].

Proof. We first show that the rectangle is a strongly self-supporting set and thus part of the payoff set.
Then we show how to get the lines as SPE payoffs and that there are no other SPE payoffs. These results
have been developed in [30]4, but here we want to demonstrate the new methodology with an example.

We can create an augmented game from game PD that corresponds to Game 1 by choosing the
expected continuation payoffs in the following way: let us denote the action pairs by a, b, c and d,
where a corresponds to the payoff (3, 3), b to (0, 4), c to (4, 0) and d to (1, 1). If the continuation
payoffs are x(a) = (3, 3), x(b) = (3, 1), x(c) = (1, 3), and x(d) = (1, 1), then the payoffs in the
augmented game are the same as the payoffs in Game 1. For example, after action profile b the payoff
is ũ(b) = (1− δ)(0, 4) + δ(3, 1) = (0, 8/3) + (1, 1/3) = (1, 3). Thus, if the action profile b is realized,
then the players continue by playing a strategy pair that gives them a continuation payoff of (3, 1).
Now, we show what these ’continuation strategy pairs’ look like for each action profile5.

The action profiles a and d are straightforward. The continuation payoff (3, 3) can be obtained
by playing action pair a infinitely. We denote this play by a∞, which is also called a path. So, if an
action pair a is realized then the continuation strategy pair is a∞, and any deviation by any player
will be detected and is punished (or followed) by the path d∞. Similarly, if d is realized, then the
continuation payoff (1, 1) will be obtained by playing the path d∞. Finally, the continuation payoff
(3, 1) (or (1, 3)) can be obtained by playing the action pair c (or b) in Game 1. Thus, in the repeated
game, the play will alternate deterministically between b and c if one of these action pairs is realized
in the augmented game at stage 1. We denote this play by (cb)∞ after b and (bc)∞ after c. Note that
the equilibrium payoffs in Game 1 form the rectangle [1, 3]× [1, 3] and all the required continuation
payoffs are contained in this set as well. So, [1, 3]× [1, 3] is actually a strongly self-supporting set, since
it even contains the punishment payoffs.

Now, we show that the payoffs on the line segment [3, 11/3] × 1 can be obtained by
subgame-perfect equilibria (a similar argument holds for the line segment 1× [3, 11/3]). We will
show that we can create an augmented game at stage 1 of game PD that corresponds to Game 2. To do
this, we let the action pairs a, b and d be followed by the path d∞, and c be followed by the path a∞.
Then, e.g., ũ(c) = (1− δ)(4, 0) + δ(3, 3) = (11/3, 1). However, the (3, 3) continuation payoff is not
in the set [3, 11/3]× 1. This means that the line segment is not a self-supporting set: it requires a
continuation payoff that is outside the set.

It remains to show that there are no other subgame-perfect equilibrium payoffs. Assume on the
contrary that there is a subgame-perfect equilibrium payoff (3 + w1, 1 + w2), where w1, w2 > 0. It is
easy to check that this payoff can only be obtained by playing first the action profile c. To generate the
payoff, the continuation payoff (x1, x2) must satisfy ũ(c) = (1− δ)(4, 0) + δ(x1, x2) = (3 + w1, 1 + w2).
From this, we get x1 = 1 + 3w1 and x2 = 3 + 3w2. This continuation payoff itself can only be

4 We thank Tadashi Sekiguchi for pointing this out.
5 Note that in general the continuation play involves mixed strategies even though pure strategies are enough in this example.

Figure 3b shows an example where mixed actions are used after action profiles b and c.
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obtained by playing action profile b first. The required continuation payoff after b turns out to be
(3 + 9w1, 1 + 9w2) > (3 + w1, 1 + w2). We can conclude that this process requires higher and higher
continuation payoffs, which will eventually be outside the convex hull of the stage-game payoffs, and
thus they cannot be generated by the repeated game.

Figure 3a illustrates a strongly self-supporting set in game PD with δ = 2/5, and b the
corresponding strategies with a finite number of states. Figure 3a shows that the continuation payoff
x(c) belongs to the shaded self-supporting set, and v = (1.5, 1.5) is an arbitrary point in the set.
It holds that ũ(c) = (1− δ)u(c) + δx(c), which geometrically means that ũ(c) is δ = 0.4 fraction on
the line from u(c) to x(c). When δ = 1/3, x(c) moves to the corner point (1, 3), which is the smallest
δ value when the self-supporting set exists. In Figure 3b, we can see the equilibrium strategy pair
that produces payoff v. Each circle corresponds to a state with the expected payoffs and the action
pair that is played in that state. The states that the arrows point to correspond to the action pairs that
should be played next. The probabilities of top and left actions are given by p and q for the row and
column players, respectively. The star ∗ denotes that the corresponding transition could be to any
equilibrium strategy, since it corresponds to the case where both players deviate from the equilibrium
strategy simultaneously. Note that the continuation play involves mixed strategies in general, unless
the continuation payoff happens to be one of the pure payoffs.

x(b)=(2.5,1.5)

p=1/4,q=3/4

v=(1.5,1.5)

p=q=1/4

x(a)=(3,3)

p=q=1

x(c)=(1.5,2.5)

p=3/4,q=1/4

x(d)=(1,1)

p=q=0

if b
is
rea

liz
ed

if a

if c

if d

a

a

d

d

c a

b

c

a*,b,c,d

b,c,d*

b

(a) (b)

Figure 3. Geometric illustration of (a) a self-supporting set and (b) the strategies in game PD. The star ∗

denotes that the corresponding transition could be to any equilibrium strategy.

Theorem 5. In game PD, for δ ≥ 1/3, the rectangle [1, 3]× [1, 3] is a subset of the set of subgame-perfect
equilibrium payoffs.

Proof. Using the fact that [1, 3]× [1, 3] is a convex strongly self-supporting set, this follows directly
from combining Proposition 3 or Theorem 3 with the proof of Theorem 4.

PD2
a, a b, c
c, b d, d

with c > a > d > b
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Theorem 6. In game PD2, a symmetric prisoner’s dilemma, the rectangle [d, a]× [d, a] is a subset of the set of
subgame-perfect equilibrium payoffs for

δ ≥ max
[
c− a

c− d
,
d− b

a− b

]
.

Proof. We want to find the smallest discount factor for which the set [d, a] × [d, a] is strongly
self-supporting. This means that the continuation payoff x(c) after action pair c must satisfy
ũ(c) = (1− δ)(c, b) + δ(x1(c), x2(c)) = (a, d). This gives

(x1(c), x2(c)) =
(
a−(1−δ)c

δ , d−(1−δ)b
δ

)
,

where, in order to make the set self-supporting, we require that x1(c) ≥ d and x2(c) ≤ a, leading to
δ ≥ max [(c− a)/(c− d), (d− b)/(a− b)].

5. Example of a Duopoly Game

Let us examine the duopoly model of Abreu [38], where two firms decide their production
quantities. The firms have three output levels: low (L), medium (M) and high (H) (see Figure 4).
The stage game’s Nash equilibrium is (M,M), which gives the players the payoff (7, 7). The players
may obtain many other equilibrium payoffs in the repeated game, including the payoff (10, 10) which
is obtained by playing (L,L) repeatedly. This outcome is supported by the punishment6 of playing H,
which makes the other player obtain, at most, a payoff of 0. In this paper, we show that large sets of
payoffs can be obtained using self-supporting sets.

Low Medium High
Low 10, 10 3, 15 0, 7

Medium 15, 3 7, 7 −4, 5
High 7, 0 5,−4 −15,−15

Figure 4. Four self-supporting sets in a duopoly game with three production quantities.

Figure 4 shows four self-supporting sets that exist when the players are patient enough:
the squares [0, 7] × [0, 7] and [7, 10] × [7, 10], and the rectangles [0, 10] × [5, 7] and [5, 7] × [0, 10].
These are equilibrium payoffs and they cover almost half of the feasible and individually rational
payoffs. The equilibrium payoffs depend on the discount factors and it is difficult to find all of them,
however, these self-supporting sets capture majority of them.

6 The optimal pure punishment strategies in this game depend on the discount factors [26].
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The self-supporting sets in games with more actions can be found by splitting the game into
smaller 2× 2 games. Randomizing between more than two actions does not bring any new payoffs
for the self-supporting sets, and it is more difficult to find the suitable continuation payoffs in the set
such that the players are indifferent between all the actions. In this game, the square [0, 7]× [0, 7] can
be found in the No Conflict game in Figure 5a. The square [7, 10]× [7, 10] can be found in Prisoner’s
Dilemma game in Figure 5b. The rectangle [0, 10]× [5, 7] can be found in Game D1 in Figure 5c, and the
other rectangle symmetrically by switching the role of the players.

L H

L 10,10 0,7

H 7,0 −15,−15

No Conflict
L M

L 10,10 3,15

M 15,3 7,7

Prisoner’s Dilemma
L H

L 10,10 0,7

M 15,3 −4,5

Game D1

(a) (b) (c)

Figure 5. Subgames used in constructing the self-supporting sets in the duopoly game.

Note that it is easy to find the self-supporting sets in 2× 2 games by Proposition 4. If the minimum
payoff against one action is higher than the maximum payoff against the other action and this holds
for both players, then the self-supporting set contains all the payoffs between the maximum and the
minimum payoffs. In Game D1, the minimum payoff of player 1 against L is 10 and the maximum
against H is 0, and the minimum payoff of player 2 against L is 7 and the maximum payoff against M is
5. Thus, the self-supporting set is [0, 10]× [5, 7]. It is easy to check geometrically that the continuation
payoffs belong to the set when the discount factors are high enough.

6. Conclusions

In this paper, we construct subgame-perfect mixed-strategy profiles in repeated games. Basically,
the players consider on each round an augmented game that takes into account the continuation
payoffs that are defined by the players’ follow-up strategies. The continuation play and payoffs can be
different after each realized pure-action profile but all the continuation payoffs need to be equilibrium
payoffs themselves. Moreover, the equilibrium payoffs can be found by computing the Nash equilibria
in all these augmented games.

How to compute the mixed-strategy equilibria efficiently is still an open problem. It is more
difficult to compute all the mixed-strategy equilibria compared to the pure (or correlated) strategies.
However, we have found that the concept of self-supporting sets may facilitate our task considerably,
since they may give us large and high-dimensional sets of equilibrium payoffs with relatively
simple accompanying strategy profiles. It is left to future research to determine how common large
self-supporting sets are in multiplayer games and under which conditions they do exist. Although,
it may be very hard to find all the equilibrium payoffs and corresponding strategy profiles, it may
be possible to compute some payoffs or good approximations fast. We think that our concept of
self-supporting sets may open up ideas for new simple strategies that produce large sets of payoffs in
repeated and stochastic games.
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