
games

Article

Economic Harmony: An Epistemic Theory of
Economic Interactions
Ramzi Suleiman 1,2

1 Department of Psychology, University of Haifa, Abba Khoushy Avenue 199, Haifa 3498838, Israel;
suleiman@psy.haifa.ac.il; Tel.: +972-(0)50-5474-215

2 Department of Philosophy, Al Quds University, East Jerusalem and Abu Dies, P.O.B. 51000, Palestine

Academic Editors: Paul Weirich and Ulrich Berger
Received: 16 September 2016; Accepted: 18 December 2016; Published: 3 January 2017

Abstract: We propose an epistemic theory of micro-economic interactions, termed Economic Harmony.
In the theory, we modify the standard utility, by changing its argument from the player’s actual
payoff, to the ratio between the player’s actual payoff and his or her aspired payoff. We show that the
aforementioned minor epistemic modification of the concept of utility is quite powerful in generating
plausible and successful predictions of experimental results, obtained in the standard ultimatum
game, and the sequential common pool resource dilemma (CPR) game. Notably, the cooperation
and fairness observed in the studied games are accounted for without adding an other-regarding
component in the players’ utility functions. For the standard ultimatum game, the theory predicts a
division of φ and 1 − φ, for the proposer and responder, respectively, where φ is the famous Golden
Ratio (≈0.618), most known for its aesthetically pleasing properties. We discuss possible extensions
of the proposed theory to repeated and evolutionary ultimatum games.

Keywords: epistemic; aspiration level; fairness; ultimatum game; common pool resource dilemma;
golden ratio; Fibonacci numbers

1. Introduction

The game theoretic approach to human and animal interactions relies on the economic rationality
assumption, which prescribes that in any interaction, all players are utility maximizers, and that their
utilities are non-decreasing functions of their payoffs. For the case of risk-neutral players, the theory
prescribes that rational players will strive to maximize their payoffs. Despite being self-consistent
and mathematically sound, standard game theory is, in many cases, at odds with experimental and
real-life data. Examples of strategic interactions in which the standard game theoretic predictions fail to
account for human behavior, include experimental and real-life data on the provision of public goods,
the management of common pool resources, bargaining situations, and situations involving trust.

From a philosophical perspective, the assumption of risk neutrality, or even of a homogeneous
population with respect to risk behavior, deprives game theory from an important epistemic attribute.
The fact that game theory fails to consider the players’ cognitions, motivations, aspirations, and other
individual attributes, reduces the analysis of economic interactions to an ontological level, in which
the behaviors of players involved in the interaction are thought to be solely determined by the
formal game structure. According to the standard approach, the variability of data resulting from
individual differences is measurement noise which should be reduced to a minimum. Proponents of
such an approach advise experimentalists to strive for lowering the data variability, by putting strict
constraints on players’ behavior [1]. Psychologists, on the other hand, view the data variability as the
“bread and butter” of their research [2].
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A major shortcoming of standard game theory, resulting from ignoring epistemic factors,
is manifest in its complete failure to predict the significant levels of cooperation and fairness observed
in a variety of non-cooperative and zero-sum games. For example, for the dictator game [3,4], standard
game theory prescribes that the player in the role of the dictator should keep the entire amount minus
an infinitesimally small portion, and the same prediction holds for the ultimatum game, in which the
responder has veto power [4,5]. In experimental studies, we find that dictators behave altruistically,
and transfer, on average, about 20%–25% of the entire amount, while in the ultimatum game the
amount transferred, on average, is about 40% of the total amount [4–7]. Non-negligible levels of
cooperation are also observed in Public Goods, Common Pool Resource (CPR), and other social
dilemma games [8–10].

Several modifications of standard game theory have been proposed to account for the cooperation
and fairness observed in short-term strategic interactions. Such modifications were usually
accomplished by incorporating an other-regarding component in the players’ utility functions.
This type of modification includes the theory of Equity, Reciprocity and Competition (or ERC) [11],
and Inequality Aversion theory (IA) [12]. ERC posits that along with pecuniary gain, people are
motivated by the ratio of their own payoffs to the payoff of others. IA assumes that in addition to
the motivation for maximizing own payoffs, individuals are motivated to reduce the difference in
payoffs between themselves and others, although with greater distaste for having lower, rather than
higher earnings. Another interesting model is the “fairness equilibrium” model [13] in which the
rationality assumption is modified by assuming that players make decisions based on their perceptions
of others’ intentions. Although such epistemic modifications yield superior predictions to the standard
game theoretic predictions, they do not qualify as general models of interactive behavior. For the
ultimatum game discussed hereafter, the predictions of ERC and IA are uninformative. ERC predicts
that the proposer should offer any amount that is larger than zero and less or equal to 50% of the
entire amount, while IA’s prediction is nonspecific, as it requires an estimation of the relative weight
of the fairness component in the proposer’s utility function. Moreover, the two theories are strongly
refuted by a three-person ultimatum game [14] designed specifically to test their predictions. In this
game, Player X offers to split a sum of money $m, allocating (m − (y + z), y, z) for herself, player Y,
and player Z, respectively. One of the latter players is chosen at random (with probability p) to
accept or reject the offer. If the responder accepts, then the proposed allocation is binding, as in the
standard ultimatum game. However, if the responder rejects the offer, then she and X receive zero
payoffs, and the non-responder receives a “consolation prize” of $c. The consolation prize was varied
across four conditions with ($)c = 0, 1, 3, 12. The probability of designating Y or Z as responder was
p = 1/2 and the amount to be allocated in all conditions was m = $15. The findings of [14] contradicted
the predictions of both ERC and IA. Frequent rejections were detected, when both theories call for
acceptance. In addition, the effect of the consolation prize for the non-responder on the probability of
the responders’ acceptance rate was insignificant, and did not increase monotonically with the size of
the consolation prize, as both theories predict.

More recently, epistemic game theoretic models were proposed as alternatives to standard game
theory, including static models based on Aumann’s interactive epistemology [15,16] and dynamic
models of interactive reasoning [17,18]. In the present paper, we propose a new epistemic theory
of economic interactions termed Economic Harmony. Instead of looking at cold cognitive variables
characterizing human players, we focus on their aspiration levels. As we shall demonstrate hereafter,
accounting for the interacting players’ aspiration levels proves successful in generating impressively
good predictions of players’ behavior in well-known experimental games.

2. Economic Harmony Theory

The proposed Economic Harmony theory postulates that instead of maximizing utilities, defined
as functions of their own payoffs, rational players strive to maximize utilities, which are functions of
their actual payoffs relative to their aspired payoffs. Moreover, while game theory looks at points of
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equilibrium in the game, in which no player can increase his or her utility by unilaterally changing
his or her equilibrium strategy, economic harmony theory solves for a point of harmony, at which the
intersection of the strategies played by the individuals yields equal utilities for all, or in psychological
terms, the point at which the satisfaction levels of all players are equal.

The view that in economic decisions, individuals compare their actual payoffs with their aspired
ones, has a long tradition in psychology [19–21]. It has been also well studied in the domain of
individual decision-making under risk, especially in relation to Security-Potential/Aspiration (CP/A)
theory [22–25]. Several studies have also incorporated individual models of aspirations in predicting
behaviors in interactive situations [26–32]. As examples, study [27] investigated the role of aspiration
levels in players’ choices in a repeated prisoner’s dilemma game, and study [30] investigated the
role of aspirations in coalition formation. Common to CP/A theory and similar models, is the use of
Herbert Simon’s conceptualization of satisficing vs. non-satisficing outcomes [21].

The proposed model resembles the aforementioned individual choice models in assuming that
individuals make choices based on their levels of satisfaction from possible outcomes, as well as
in assuming that individuals evaluate their actual outcomes by comparing them with their aspired
outcomes. However, the new model differs from previous aspiration level models in two significant
aspects: (1) it treats interactive situations rather than individual choice ones; (2) the levels of satisfaction
are defined as the ratio of the individuals’ actual outcomes to their aspired outcomes, rather than the
common definition as the difference between the actual and aspired outcomes. We contend that the
ratio scale is more fit for defining outcome satisfaction, than the difference scale. First, the ratio scale
is dimensionless and does not depend on the measurement units of the divided goods; second, it is
the standard scale in psychophysics, starting with Fechner’s law [33] and Steven’s power law [34,35]
to more recent theories of audio and visual perception [36] and signal detection [37]; third, the ratio
scale is very common in physics, biology, evolution, and other exact sciences; fourth, all types of
statistical measures are applicable to ratio scales, and only with these scales may we properly indulge
in logarithmic transformations [34].

Theory Predictions

For deriving predictions based on the proposed theory, consider an economic interaction involving

n players. Let Si denote the vector of player i’s admissible strategies. Si = {si
j}

Ji

j=1
, where si

j is strategy

j of player i (j = 1, 2, .. Ji, i = 1, 2, . . . , n). In Economic Harmony theory, we preserve the rationality
principle, while introducing a plausible modification of the players’ utility functions. Specifically,
we define the subjective utility of each player i as:

ui(..) = ui (
ri
ai
) (1)

where ri is player i’s actual payoff, ai is his or her aspired payoff, and u(..) is a bounded non-decreasing
utility function with its argument. For simplicity, we assume that u(0) = 0 and u(1) = 1. Note that in
social-psychological terms, the aforementioned definition implies that each player puts an upper limit
to his or her greed.

A point of harmony in the interaction is defined as an intersection point of strategies played by
the n interacting individuals, at which the utilities of all players, as defined above, are equal.

In formal notation, a point of harmony in the interaction is a vector of outcomes
r∗ = r∗1 , r∗2 , r∗3 , . . . .r∗n) for which the subjective utilities of all n players’ outcomes satisfy:

ui(
r∗i
ai
) = uj

(
r∗j
aj

)
For all i and j (2)
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Assuming linear utilities, Equation (2) becomes:

r∗i
ai

=
r∗j
aj

For all i and j (3)

Two remarks are in order: First, harmony points are not equilibrium points. In equilibrium,
no player can increase his or her utility by changing his or her equilibrium strategy unilaterally.
In contrast, if a harmony point is reached, a player may increase his or her utility (and decrease the
utilities of other players) by switching to another strategy. For a harmonious solution to emerge and
stabilize, it should be supported by an efficient social or institutional mechanism. In the ultimatum
and the sequential CPR games, discussed hereafter, the supporting mechanism is a second-party
punishment. However, other supporting mechanisms can be effective in sustaining harmony, such
as a third-party punishment [38], group punishment [39], punishment by a central authority [40],
reciprocity [41], reputation [42] and religious and civic moralizing [43]. Second, as in the case of the
Nash equilibrium, players are not expected to “solve” the game and play their harmonious strategies.
Rather, it is conjectured that harmonious strategies can emerge through processes of learning and
adaptation. In our epistemic theory, adaptation processes are expected to act interdependently on
each individual’s decisions and aspirations, according to criteria of success or failure [21,44,45]. In fact,
valuable insights into the co-evolution of strategies and aspiration levels have been provided by recent
simulation studies of both evolutionary, and reinforcement learning, games, which we shall discuss in
the closing section.

In the following sections, we shall demonstrate that despite its evident simplicity, Economic
Harmony theory is highly successful in accounting for the cooperation and fairness reported in several
experiments on the standard ultimatum, and sequential CPR games.

3. Predicting Behavior in Experimental Games

3.1. Predicting Offers in the Ultimatum Game

In the standard two-person ultimatum game [4,5], one player is designated the role of “proposer”,
and the second player is designated the role of “responder”. The proposer receives an amount of
monetary units and must decide how much to keep for himself or herself, and how much to transfer to
the responder. The responder replies either by accepting the proposed allocation, in which case both
players receive their shares, or by rejecting it, in which case the two players receive nothing. Thus,
whereas the proposer has complete entitlement to make an offer, the responder can inflict a harsh,
although costly, punishment on an unfair proposer.

Game theory predicts that a rational proposer, who believes that the responder is also rational,
should offer the smallest amount possible, since the responder, being rational, will accept any positive
offer. Experimental findings of numerous ultimatum studies refute this prediction. The modal offer in
most experiments is the equal split, and the mean offer is about 40% of the entire amount. In the first
ultimatum experimental [5], the mean offer was 41.9%. Numerous studies have repeatedly replicated
these results. For example, despite differences in culture, socio-economic background, and type of
currency, Kahneman et al. [6] reported a mean offer of 42.1% (for commerce students in an American
university), and Suleiman [7] reported a mean offer of 41.8% for Israeli students. A more recent
meta-analysis of ultimatum experiments conducted in twenty-six countries with different cultural
backgrounds [46] reported a mean offer of 41.5% (S.D. (standard deviation) = 5.7%), and yet another
large cross-cultural study conducted in 15 small-scale societies [47] reported a mean offer of 40.5%
(S.D. = 8.3). In stark difference with the prediction of game theory, in the above cited studies, and in
many other studies, a division of about 60–40 (%), for the proposer and responder, respectively, seems
to be robust across countries, cultures, socio-economic levels, monetary stakes, etc.
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It is important to note that altruism alone cannot account for the relatively fair divisions observed
in ultimatum bargaining. This conclusion is supported by several experiments [7,48,49]. As examples,
studies [48] and [49] compared the mean offers made by the allocators in the ultimatum and dictator
games. It was hypothesized that if genuine concern for the recipients’ well-being is the major factor
behind equitable allocations, then the mean allocation to them should be similar in the two games.
Results from the studies cited above refuted the above hypothesis, by showing that the mean allocations
to recipients were significantly lower in the dictator game, than in the ultimatum game. For example,
in [49], 70% of the dictator games played under a double anonymity condition ended with the first
mover demanding the whole ‘cake’.

3.1.1. Economic Harmony Prediction

For simplicity, but without loss of generality, we set the sum to be divided by the proposer to
be one monetary unit (1 MU). If he or she demands to keep x MUs (and transfer 1 − x MUs to the
responder), then using Equation (3) we can write:

x
ap

=
1− x

ar
(4)

where ap and ar are the aspiration levels of the proposer and the responder, respectively. Solving for
x yields:

x =
ap

ap + ar
(5)

And the amount offered to the responder is:

xr = 1 − x = 1 −
ap

ap + ar
=

ar

ap + ar
(6)

Determining x, which guarantees a harmonious allocation, in the sense of equal levels of
satisfaction, requires the measurement of the players’ aspiration levels. Probing the players’ aspiration
levels by self-reports before, or after, they make their decisions in the game is somewhat problematic
due to the notorious interdependence between attitudes and behavior. However, this problem could
be eliminated or at least minimized by using suitable experimental designs. A possible design is to
utilize the “one–one” ultimatum game treatment played according to the strategy protocol [50]. In this
game, proposers are instructed to divide a pie of a given size between themselves and their designated
responders. If the amount proposed is equal or larger than the responder’s demand, the two players
receive their shares and the game ends; but if the proposer’s offer is less than the responder’s demand,
then the proposer is given a second chance to make an offer. Under this treatment, rational proposers
and responders are expected to utilize the first round of the game to signal their aspiration levels.

In the absence of empirical data about the players’ aspiration levels, the assumption of rational
players, who are motivated to maximize their individual utilities, enables us to make a first-order
estimate about their aspiration levels. We conjecture that a self-interested proposer would aspire for
the entire sum (i.e., ap = 1). On the other hand, a rational responder, who believes that the proposer
is also rational, cannot aspire that the proposer gives him or her the entire amount or even any
amount larger than the amount that the proposer would keep for himself or herself. Embedded
in this line of reasoning is the view that in contemplating their aspiration levels, proposers and
responders use qualitatively different reference points. Proposers are assumed to adhere to a fixed
reference-point, by comparing their demands to the complete sum, which they were given the right to
divide. Their highest aspiration would be to keep the entire amount for themselves. The responders
are assumed to adhere to a social comparison rule, using the amount demanded by the proposer as
their reference-point. Another possibility, which we shall consider hereafter, is that responders might
base their aspiration levels on the equality norm, and aspire to receive half of the total amount. Under
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the “social comparison” assumption, we have ar = x, while under the “equality norm” assumption we
have ar = 1

2 . For the latter case, substituting ap = 1 and ar = 1
2 in Equation (5) yields:

x =
ap

ap + ar
=

1
1 + 1

2
=

2
3

MU (7)

And the amount offered to the responder is:

xr = 1 − x = 1 − 2
3

=
1
3

MU (8)

Under the social comparison assumption, we have ap = 1 and ar = x. Substitution in
Equation (5) yields:

x =
1

1 + x
(9)

Solving for x. we get:
x2 + x − 1 = 0 (10)

Which yields the positive solution:

x =

√
5− 1
2

= φ ≈ 0.618 MU (11)

where φ is the famous Golden Ratio, which plays a key role in many fields of science and
aesthetics [51,52]. This ratio is known to be equal to limn→ ∞

(
fn

fn+1

)
, where fn is the nth term of

the Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .., in which each term is equal to the sum
of the two preceding terms, or: fn = fn−1 + fn−2. The corresponding portion for the responder is
equal to:

xr = 1− x = 1− φ ≈ 0.38 MU (12)

3.1.2. Empirical Validation

We tested the prediction in Equation (12) using data from study [46], which reported a
Meta-analysis on 75 ultimatum experiments conducted in 26 countries with different cultural
backgrounds, and from study [47], which reported results from 15 small-scale societies, including three
groups of foragers, six groups of slash-and-burn horticulturalists, four groups of nomadic herders,
and two groups of small-scale agriculturalists. The reported mean proportional offers in the two
aforementioned studies were 0.395 and 0.405 for studies [46,47], respectively, which are quite close
to the Golden Ratio prediction of ≈0.382. A Two one-sided test of equivalence (TOST) [53] validates
this conjecture. A rule of thumb in testing for equivalence using TOST, is to set a confidence level
of ±10%. For study [46], the analysis yielded significant results for the upper and lower bounds of
the equivalence range (upper bound = 42.016, p < 0.0001; lower bound = 34.377, p = 0.0425; overall
significance = 0.0425). For study [47], the results were also significant (upper bound = 42.016, p = 0.012;
lower bound = 34.377, p = 0.0255; overall significance = 0.0255).

3.1.3. Relaxing the Rationality Assumption

In deriving the “harmony” points, we assumed that a rational proposer would aspire for the
entire amount (of 1 MU). We relax this assumption by supposing that proposers might aspire to receive
any amount between 1 MU, and 1 − α (0 ≤ α ≤ 0.5), where α is a “security” parameter [22]. Under
the assumption that the responder aspires to receive 1

2 , Equation (3) becomes:

x
1− α

=
1− x

0.5
(13)
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Solving for x we get:

x =
1− α

(1.5− α) (14)

And the amount proposed to the responder becomes:

xr = 1 − x = 1 − 1− α
(1.5− α) =

0.5
(1.5− α) (15)

On the other hand, assuming that the responder aspires to be treated equally (i.e., ar = x), we have:

x
1− α =

1− x
x

(16)

Solving for x yields:
x2 + (1− α) x − (1− α) = 0 (17)

Which solves for:

x =

√
(1− α)2 + 4 (1− α)− (1− α)

2
(18)

And the offer to the responder is:

xr = 1− x = 1 −
√

(1−α)2+ 4 (1−α)− (1−α)
2

= 3+ α +
√

(1−α)2+ 4 (1−α)
2

(19)

Figure 1 depicts the predicted offers by Equations (15) and (19) as functions of α in the range
α = 0 − 0.5.
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If we assume that the proposers might aspire for any amount between 1 and 1 − α with equal
probability, the predicted mean offer could be calculated by averaging xr over the range (0, α).
Under the assumption ar = 1

2 , using Equation (15) we have:

xr =
1
α

∫ α

0

0.5
(1.5− α)

dα =
1

2α
[ln(3) – ln(3− 2α)] (20)

While under the assumption ar = x, using Equation (19) we get:

xr = 1
α

∫ α
0

(
3+ α +

√
(1−α)2+ 4 (1−α)

2

)
dα

= 2 [3α− α2

2 −
1
2
(

α
2 −

3
2
) √

α2 − 6α + 5 + 2 ln(3 − α
−
√

α2 − 6α + 5)

(21)

As an example, suppose that the proposer aspires to get any amount between 100% and 75%
of the entire amount. Under the equality norm assumption, substituting α = 0.25 in Equation (20)
yields an offer of xr ≈ 0.37, which is only slightly higher than the offer of 1

3 , predicted for a completely
rational proposer (i.e., for α = 0). Under the social comparison assumption, substituting α = 0.25 in
Equation (21) yields an offer of xr ≈ 0.40, which is also slightly higher than 0.38, the predicted offer for
α = 0.

3.1.4. Relaxing the Linearity Assumption

For the proposer and responder with power utility functions up = ( x
ap
)a and ur = ( 1−x

ar
)

b
, applying

the harmony condition in Equation (2) yields:

(
x
ap

)
a
= (

1− x
ar

)
b

(22)

Setting ap = 1− αp and ar = x− αr we obtain:

(
x

1− αp
)

a
= (

1− x
x− αr

)
b

(23)

For the case of αp = αr = 0 we obtain:
xa+b

(1− x)b = 1 (24)

Which could be written as:
x
(

xβ + 1
)

= 1 (25)

where β = a
b .

Figure 2 depicts the predicted offer, xr = 1 − x, as a function of β. For practical cases, it is plausible
to assume that players are generally risk averse, preferring a sure thing over a gamble of equal expected
value, and a gamble with low variance over a riskier one [54]. It is also plausible to conjecture that
proposers who face the risk of losing a larger amount (in case or rejecting their offers), will display
more risk aversion than responders who would lose a smaller amount in case they decide to reject an
unfair offer. We thus may assume that a and b are smaller than 1, and that a < b, implying 0 ≤ β ≤ 1.
For β in the range (0.5, 1), numerical integration on xr as a function of β yields a mean offer of about
0.402, which is only about 0.02 less than the 0.382 predictions obtained under the linearity assumption.
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For the case of   ௣ߙ  := 0 we obtain	௥ߙ		=

௔ା௕ݔ

ሺ1 െ ሻ௕ݔ
ൌ 1  (24)

Which could be written as: 

ݔ ሺݔఉ ൅ 1ሻ ൌ 1  (25)
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௔
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3.2. Predicting Requests in a Sequential CPR Game

The common pool resource dilemma (CPR) game models situations in which a group of people
consume a limited shared resource. Under the sequential protocol of play [55] with a step-level rule,
individual requests are made in an exogenously determined order, which is common knowledge, such
that each player knows his or her position in the sequence and the total requests of the players who
proceed him or her in the sequence. If the total request does not exceed the pool size, all players receive
their requests. However, if the total request exceeds the pool size, all players receive nothing [56–58].

The n-person sequential CPR with a step-level resource has the structure of an n-person ultimatum
game, in which by making a sufficiently large request, any player can “veto” the request decisions of
the players preceding him or her in the sequence. The sub-game perfect equilibrium of the sequential
CPR game prescribes that the first mover should demand almost all the amount available in the
common pool, leaving an infinitesimally small portion to the other players. This prediction is strongly
refuted by experimental results, showing that first movers do not exploit their advantageous position
in the sequence, and that they leave a substantial portion of the resource to the other players. Moreover,
these studies reveal a robust position effect: individual requests are inversely related to the players’
positions in the sequence, with the first mover making the highest request and the last mover making
the lowest request [58–61].

3.2.1. Economic Harmony Prediction

To derive the harmony solution for the sequential CPR game, consider a game with n players.
Denote the request of the player occupying position i in the sequence by ri (i = 1, 2, . . . n).
For two successive players ri and ri + 1, the game is reduced to a two-person ultimatum game,
in which harmony is achieved when ri = φ, and ri + 1 = 1 – φ, where φ is the Golden Ratio
(see Section 3.1.1). Thus:

ri+1

ri
=

1−ϕ
ϕ

=
1
ϕ

– 1 = 1 + ϕ − 1 = ϕ ≈ 0.618 (i = 1, 2, . . . n− 1) (26)

3.2.2. Empirical Validation

We tested the above prediction using data reported in one study using groups of three players
and three studies using groups of five players [56,59–61]. In all studies, the pool size was 500 points.
The resulting predictions (using Equation (26) and a pool size of 500), together with the experimental
results, are depicted Figure 3. As shown in the figure, the match between the theoretical prediction,
and the experimental results is impressive, particularly for n = 3 (see Figure 3a). For the three, and five
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players’ games, Kolmogorov–Smirnov tests revealed that the difference between the distributions of
the theoretical and observed requests are non-significant (p = 1 and p = 0.975, for the three and five
players’ games, respectively).

Games 2017, 8, 2  9 of 15 

 

The  n‐person  sequential  CPR  with  a  step‐level  resource  has  the  structure  of  an  n‐person 

ultimatum game, in which by making a sufficiently large request, any player can “veto” the request 

decisions of the players preceding him or her in the sequence. The sub‐game perfect equilibrium of 

the  sequential CPR  game prescribes  that  the  first mover  should demand  almost  all  the  amount 

available  in  the  common pool,  leaving an  infinitesimally  small portion  to  the other players. This 

prediction is strongly refuted by experimental results, showing that first movers do not exploit their 

advantageous position in the sequence, and that they leave a substantial portion of the resource to 

the other players. Moreover,  these  studies  reveal a  robust position effect:  individual  requests are 

inversely related to the players’ positions in the sequence, with the first mover making the highest 

request and the last mover making the lowest request [58–61]. 

3.2.1. Economic Harmony Prediction   

To derive the harmony solution for the sequential CPR game, consider a game with n players. 

Denote the request of the player occupying position i in the sequence by   (i = 1, 2, … n). For two	௜ݎ

successive players  ௜ݎ   and   ,ଵ	ା	௜ݎ the game  is  reduced  to a  two‐person ultimatum game,  in which 

harmony is achieved when  	௜ݎ ൌ	φ, and  ଵ	ା	௜ݎ ൌ	1 – φ, where φ is the Golden Ratio (see Section 3.1.1). 

Thus: 

௜ାଵݎ
௜ݎ

	ൌ 	
1 െ φ
φ

	ൌ
1
φ
– 1 ൌ 1 ൅ φ െ 1 ൌ φ ൎ 0.618 

ሺ݅ ൌ 1, 2,… ݊ െ 1ሻ 

(26)

3.2.2. Empirical Validation 

We tested the above prediction using data reported in one study using groups of three players 

and three studies using groups of five players [56,59–61]. In all studies, the pool size was 500 points. 

The resulting predictions (using Equation (26) and a pool size of 500), together with the experimental 

results, are depicted Figure 3. As shown in the figure, the match between the theoretical prediction, 

and the experimental results is impressive, particularly for n = 3 (see Figure 3a). For the three, and 

five  players’  games,  Kolmogorov–Smirnov  tests  revealed  that  the  difference  between  the 

distributions of the theoretical and observed requests are non‐significant (p = 1 and p = 0.975, for the 

three and five players’ games, respectively). 

 

Games 2017, 8, 2  10 of 15 

 

 

Figure 3. Empirical and predicted mean of  requests  in a  sequential common pool  resource  (CPR) 

Dilemma with resource size = 500 for three players (a); and five players (b). 

4. Summary and Concluding Remarks 

Previous  theories of cooperation and  fairness  in strategic  interactions  in  the short  term have 

usually attempted to account for the observed cooperation in zero‐some and mixed‐motive games, 

by  adding  an  other‐regarding  component  in  the  players’  utility  functions  (e.g.,  [11,12]).  In  the 

proposed Economic Harmony  theory, we  retained  the  rationality principle, but altered  the utility 

function by defining the players’ utilities as the ratio between their actual payoffs and their aspired 

payoffs. Instead of looking at points of equilibrium, we looked at the point of harmony in a given 

interaction, at which the subjective utilities (satisfaction levels) of all players are equal.   

For the two games discussed in this article, the Golden Ratio emerged as the point of harmony. 

Notably, for the two‐person ultimatum game, the same result was obtained independently in [62] 

using the method of infinite continued fractions and the Fibonacci numbers. The derived solution 

prescribes that a rational proposer should offer a fair division of about (0.618, 0.382) to himself/herself, 

and  the  responder,  respectively.  The  emergence  of  the Golden Ratio  as  a  point  of  harmony,  or 

homeostasis in economic interactions, adds to its numerous appearances in all fields of sciences [63–

67]. It is not unreasonable to conjecture that the Golden Ratio is a point of homeostasis in physical, 

biological, and socioeconomic systems. Moreover, the fact that the Golden Ratio plays a key role in 

human aesthetics and beauty [51,68] suggests that humans’ taste for fairness and beauty are neutrally 

correlated. A recent fMRI (functional magnetic resonance imaging) study [69] lends support to our 

conjecture,  by  demonstrating  that  participants  who  performed  evaluations  of  facial  beauty 

(beautiful/common), and morality  in scenes describing social situations  (moral/neutral), exhibited 

common involvement of the orbitofrontal cortex (OFC), inferior temporal gyrus, and medial superior 

frontal gyrus.   

Figure 3. Empirical and predicted mean of requests in a sequential common pool resource (CPR)
Dilemma with resource size = 500 for three players (a); and five players (b).

4. Summary and Concluding Remarks

Previous theories of cooperation and fairness in strategic interactions in the short term have
usually attempted to account for the observed cooperation in zero-some and mixed-motive games,
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by adding an other-regarding component in the players’ utility functions (e.g., [11,12]). In the proposed
Economic Harmony theory, we retained the rationality principle, but altered the utility function by
defining the players’ utilities as the ratio between their actual payoffs and their aspired payoffs. Instead
of looking at points of equilibrium, we looked at the point of harmony in a given interaction, at which
the subjective utilities (satisfaction levels) of all players are equal.

For the two games discussed in this article, the Golden Ratio emerged as the point of harmony.
Notably, for the two-person ultimatum game, the same result was obtained independently in [62] using
the method of infinite continued fractions and the Fibonacci numbers. The derived solution prescribes
that a rational proposer should offer a fair division of about (0.618, 0.382) to himself/herself, and the
responder, respectively. The emergence of the Golden Ratio as a point of harmony, or homeostasis
in economic interactions, adds to its numerous appearances in all fields of sciences [63–67]. It is not
unreasonable to conjecture that the Golden Ratio is a point of homeostasis in physical, biological, and
socioeconomic systems. Moreover, the fact that the Golden Ratio plays a key role in human aesthetics
and beauty [51,68] suggests that humans’ taste for fairness and beauty are neutrally correlated.
A recent f MRI (functional magnetic resonance imaging) study [69] lends support to our conjecture,
by demonstrating that participants who performed evaluations of facial beauty (beautiful/common),
and morality in scenes describing social situations (moral/neutral), exhibited common involvement of
the orbitofrontal cortex (OFC), inferior temporal gyrus, and medial superior frontal gyrus.

It is worth emphasizing that in the discussed games, fairness is predicted by the theory, and not
presupposed by it, as in ERC and inequality aversion theories. Notwithstanding, the predicted fairness
(at the Golden Ratio) was shown to account quite nicely for the levels of fairness observed in many
ultimatum and CPR games. We have also shown elsewhere [70] that the theory is successful in
predicting the results of several variants of the ultimatum game, including a three-person ultimatum
game with uncertainty regarding the identity of the responder [14], a modified ultimatum game with
varying veto power [7], and an ultimatum game with one-sided uncertainty about the “pie” size [71].
In addition, the theory was shown to yield good predicting of the players’ decisions in the prisoner’s
dilemma game and in the public goods game with punishment (see [72]).

In deriving the analytic solutions for the discussed games’ points of harmony, we relied on
rational reasoning to conjecture about the aspiration levels of the interacting players. In reality, it is
likely that different individuals might adhere to different rules and anchor their aspiration levels
on different reference points. Accounting for such epistemic variability could be undertaken by an
empirical assessment of each individual’s aspiration level, given the game structure and the player’s
position in the game. When measurement of the individuals’ aspiration levels is unreliable, costly,
or difficult to perform, the predictability power of the proposed theory could be enhanced by assuming
that the players’ aspiration levels are sampled from a theoretical probability distribution. An example
for using an underlying probability distribution of aspiration levels to infer about offers was briefly
attended to in Section 3.1.3, in which we assumed that the proposers’ aspiration levels are in the range
between 1 (perfect rationality), and 1 − α (a bounded rationality), where α is a uniformly distributed
“security” factor.

We view the proposed theory as one step towards a more general theory of rational
fairness-economics. An interesting inquiry, which we hope to address in future research, concerns
the dynamic aspects of aspirations. By using repeated experimental games or computer simulations,
we can test the dynamics of players’ aspirations in strategic games, including the two games treated in
the present paper. In particular, we would like to investigate the co-evolution process of aspirations
and decisions in repeated and evolutionary games and to test whether the predicted points of harmony
for each game will emerge as attractors for the behavioral dynamics. An insightful explanation of
the process in which players in such games might update their aspiration levels was provided in [73].
Using analytical solutions and computer simulations, the study demonstrated that when individuals
could obtain some information on which offers have been accepted by others in previous encounters,
responders in the game learn to maintain high aspiration levels. As explained by the authors of
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the aforementioned study, responders who lower their aspiration levels (low demands), increase
the chance of receiving reduced offers in subsequent encounters. In contrast, by maintaining high
aspiration levels (high demands), although costly, they gain a reputation as individuals who insist on
a fair offer. The authors summarize their findings by stating that “when reputation is included in the
ultimatum game, adaptation favors fairness over reason . . . information on the co-player fosters the
emergence of strategies that are non-rational, but promote economic exchange” [73].

Several other studies on evolutionary ultimatum games [74,75], using various updating rules,
reveal that, in general, the dynamics in the investigated ultimatum game were similar to the one
reported in [73]. In general, proposers’ demands and responders’ acceptance thresholds converge to
a relatively steady-state which is far away from the predicted equilibrium. Remarkably, the mean
proposers’ demands converged to levels that were strictly above the equal split, while the mean
responders’ demands converged to much lower levels, implying that above-equal demands were
accepted. In [74], the rate of proposers’ demands (p) and the rate of responders’ acceptance thresholds
(q) were co-evolved with an underlying network typology containing 1500 individuals. The results
of many simulations run for two million steps showed that at the beginning of the simulation,
p and q underwent a fast decrease from p = q = 0.5 (equal split) to about p = 0.38 and q = 0.19, after
which the decrease in both demands was very slow, till the simulations’ termination after 2 million
steps. A similar result was reported in [75], using a learning-mutation process. The study found that
the mean offer increased if it was smaller than 0.4, and oscillated between 0.4 and 0.5.

Interestingly, convergence to a stable mean offer of about 0.4 is also evident in simulated games
played in the intermediate term using reinforcement learning models [76,77]. The findings in [76] show
that in many simulations, starting from initial conditions drawn randomly from a uniform distribution
over the integers 1–9, the simulated proposers started by demanding 5 out of 9, but increased their
demand in the progression of the simulation to 6. Interestingly, the mean proposers’ demands remained
in the range between 6 and 7, and did not increase further, since strategies higher than 7 died out in
the course of the simulated game. These dynamics are explained by the difference in the speed at
which the proposer and the responder update their demands. This explanation is confirmed in [78],
which demonstrated that “proposers learn not to make small offers faster than responders learn not to
reject them” [78].

The findings described above share several features: (1) the proposers’ mean demands in the
relatively steady states reached in all the aforementioned simulation studies are much lower than
the predicted (sub-game) equilibrium; (2) the mean demands increase steeply from 0.5 at the initial
phase of the game, reaching a ratio of about 0.6 at the final simulation trials; (3) the proposers’ mean
acceptance threshold decreases from 0.5, at the initial phase of the game, to low levels of about 0.2–0.3
at the final simulation trials. While the aforementioned common features seem to agree with Economic
Harmony predictions, the question of whether the mean demands in these and in similar games
converge to the Golden Ratio or to a different nearby point is left to future research.
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