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Abstract: In (Bonanno, 2013), a solution concept for extensive-form games, called perfect Bayesian
equilibrium (PBE), was introduced and shown to be a strict refinement of subgame-perfect
equilibrium; it was also shown that, in turn, sequential equilibrium (SE) is a strict refinement
of PBE. In (Bonanno, 2016), the notion of PBE was used to provide a characterization of SE in terms
of a strengthening of the two defining components of PBE (besides sequential rationality), namely
AGM consistency and Bayes consistency. In this paper we explore the gap between PBE and SE by
identifying solution concepts that lie strictly between PBE and SE; these solution concepts embody
a notion of “conservative” belief revision. Furthermore, we provide a method for determining if a
plausibility order on the set of histories is choice measurable, which is a necessary condition for a
PBE to be a SE.

Keywords: plausibility order; minimal belief revision; Bayesian updating; independence;
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1. Introduction

Since its introduction in 1982 [1], sequential equilibrium has been the most widely used solution
concept for extensive-form games. In applications, however, checking the “consistency” requirement
for beliefs has proved to be rather difficult; thus, similarly motivated—but simpler—notions of
equilibrium have been sought. The simplest solution concept is “weak sequential equilibrium” [2,3]
which is defined as an assessment that is sequentially rational and satisfies Bayes’ rule at information
sets that are reached with positive probability by the strategy profile (while no restrictions are imposed
on the beliefs at information sets that have zero probability of being reached). However, this solution
concept is too weak in that it is possible for an assessment (σ, µ) (where σ is a strategy profile and
µ is a system of beliefs) to be a weak sequential equilibrium without σ being a subgame-perfect
equilibrium [4]. Hence the search in the literature for a “simple” (yet sufficiently strong) solution
concept that lies in the gap between subgame-perfect equilibrium and sequential equilibrium.
The minimal desired properties of such a solution concept, which is usually referred to as “perfect
Bayesian equilibrium” (PBE), are sequential rationality and the “persistent” application of Bayes’ rule.
The exact meaning of the latter requirement has not been easy to formalize.

Several attempts have been made in the literature to provide a satisfactory definition of
PBE; they are reviewed in Section 5. In this paper we continue the study of one such notion,
introduced in [5], where it is shown that (a) the proposed solution concept is a strict refinement
of subgame-perfect equilibrium; and (b) in general, the set of sequential equilibria is a proper subset
of the set of perfect Bayesian equilibria. This definition of PBE is based on two notions (besides
sequential rationality): (1) the qualitative property of AGM-consistency relative to a plausibility
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order1; and (2) the quantitative property of Bayes consistency. This notion of PBE was further used
in [8] to provide a new characterization of sequential equilibrium, in terms of a strengthening of
both AGM consistency and Bayes consistency. In this paper we explore the gap between PBE and
sequential equilibrium, by identifying solution concepts that lie strictly between PBE and sequential
equilibrium. These solution concepts capture the notion of revising one’s beliefs in a “conservative” or
“minimal” way.

The paper is organized as follows. Section 2 reviews the notation, definitions and main results
of [5,8]. The new material is contained in Sections 3 and 4. In Section 3 we introduce properties
of the plausibility order that can be used to define solution concepts that lie between PBE and
sequential equilibrium; the main result in this section is Proposition 2. In Section 4 we offer
a method (Proposition 3) for determining whether a plausibility order satisfies the property of “choice
measurability”, which is one of the two conditions that, together, are necessary and sufficient for
a PBE to be a sequential equilibrium. Section 5 discusses related literature and Section 6 concludes.
The proofs are given in Appendix A.

2. Perfect Bayesian Equilibrium and Sequential Equilibrium

In this section we review the notation and the main definitions and results of [5,8].

We adopt the history-based definition of extensive-form game (see, for example, [9]). If A is
a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ j ≤ k,
the sequence h′ =

〈
a1, ..., aj

〉
is called a prefix of h; if j < k then we say that h′ is a proper prefix of h.

If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form is a tuple
〈

A, H, N, ι, {≈i}i∈N
〉

whose elements are:

• A finite set of actions A.
• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if h ∈ H and h′ ∈ A∗ is

a prefix of h, then h′ ∈ H). The null history 〈〉 , denoted by ∅, is an element of H and is a prefix
of every history. A history h ∈ H such that, for every a ∈ A, ha /∈ H, is called a terminal history.
The set of terminal histories is denoted by Z. D = H\Z denotes the set of non-terminal or decision
histories. For every history h ∈ H, we denote by A(h) the set of actions available at h, that is,
A(h) = {a ∈ A : ha ∈ H}. Thus A(h) 6= ∅ if and only if h ∈ D. We assume that A =

⋃
h∈D A(h)

(that is, we restrict attention to actions that are available at some decision history).
• A finite set N = {1, ..., n} of players. In some cases there is also an additional, fictitious,

player called chance.
• A function ι : D → N ∪ {chance} that assigns a player to each decision history. Thus ι(h) is the

player who moves at history h. A game is said to be without chance moves if ι(h) ∈ N for every
h ∈ D. For every i ∈ N ∪ {chance}, let Di = ι−1(i) be the set of histories assigned to player i.
Thus {Dchance, D1, ..., Dn} is a partition of D. If history h is assigned to chance, then a probability
distribution over A(h) is given that assigns positive probability to every a ∈ A(h).

• For every player i ∈ N, ≈i is an equivalence relation on Di. The interpretation of h ≈i h′ is
that, when choosing an action at history h, player i does not know whether she is moving at h
or at h′. The equivalence class of h ∈ Di is denoted by Ii(h) and is called an information set of
player i; thus Ii(h) = {h′ ∈ Di : h′ ≈i h}. The following restriction applies: if h′ ∈ Ii(h) then
A(h′) = A(h), that is, the set of actions available to a player is the same at any two histories that
belong to the same information set of that player.

1 The acronym ‘AGM’ stands for ‘Alchourrón-Gärdenfors-Makinson’ who pioneered the literature on belief revision: see [6].
As shown in [7], AGM-consistency can be derived from the primitive concept of a player’s epistemic state, which encodes
the player’s initial beliefs and her disposition to revise those beliefs upon receiving (possibly unexpected) information.
The existence of a plausibility order that rationalizes the epistemic state of each player guarantees that the belief revision
policy of each player satisfies the so-called AGM axioms for rational belief revision, which were introduced in [6].
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• The following property, known as perfect recall, is assumed: for every player i ∈ N, if h1, h2 ∈ Di,
a ∈ A(h1) and h1a is a prefix of h2 then for every h′ ∈ Ii(h2) there exists an h ∈ Ii(h1) such that ha
is a prefix of h′. Intuitively, perfect recall requires a player to remember what she knew in the
past and what actions she took previously.

Given an extensive form, one obtains an extensive game by adding, for every player i ∈ N, a utility
(or payoff ) function Ui : Z → R (where R denotes the set of real numbers).

A total pre-order on the set of histories H is a binary relation - which is complete2 and transitive3.
We write h ∼ h′ as a short-hand for the conjunction: h - h′ and h′ - h, and write h ≺ h′ as a short-hand
for the conjunction: h - h′ and not h′ - h.

Definition 1. Given an extensive form, a plausibility order is a total pre-order - on H that satisfies the
following properties: ∀h ∈ D,

PL1. h - ha, ∀a ∈ A(h),

PL2. (i) ∃a ∈ A(h) such that h ∼ ha,
(ii) ∀a ∈ A(h), if h ∼ ha then, ∀h′ ∈ I(h), h′ ∼ h′a,

PL3. if history h is assigned to chance, then h ∼ ha, ∀a ∈ A(h).

The interpretation of h - h′ is that history h is at least as plausible as history h′; thus h ≺ h′ means
that h is more plausible than h′ and h ∼ h′ means that h is just as plausible as h′4. Property PL1 says that
adding an action to a decision history h cannot yield a more plausible history than h itself. Property PL2
says that at every decision history h there is at least one action a which is “plausibility preserving”
in the sense that adding a to h yields a history which is as plausible as h; furthermore, any such
action a performs the same role with any other history that belongs to the same information set as h.
Property PL3 says that all the actions at a history assigned to chance are plausibility preserving.

An assessment is a pair (σ, µ) where σ is a behavior strategy profile and µ is a system of beliefs5.

Definition 2. Given an extensive-form, an assessment (σ, µ) is AGM-consistent if there exists a plausibility
order - on the set of histories H such that:

(i) the actions that are assigned positive probability by σ are precisely the plausibility-preserving actions:
∀h ∈ D, ∀a ∈ A(h),

σ(a) > 0 if and only if h ∼ ha, (P1)

(ii) the histories that are assigned positive probability by µ are precisely those that are most plausible within the
corresponding information set: ∀h ∈ D,

µ(h) > 0 if and only if h - h′, ∀h′ ∈ I(h). (P2)

If - satisfies properties P1 and P2 with respect to (σ, µ), we say that - rationalizes (σ, µ).

An assessment (σ, µ) is sequentially rational if, for every player i and every information set I
of hers, player i’s expected payoff—given the strategy profile σ and her beliefs at I (as specified by

2 ∀h, h′ ∈ H, either h - h′ or h′ - h.
3 ∀h, h′, h′′ ∈ H, if h - h′ and h′ - h′′ then h - h′′.
4 As in [5] we use the notation h - h′ rather than the, perhaps more natural, notation h % h′, for two reasons: (1) it is the

standard notation in the extensive literature that deals with AGM belief revision (for a recent survey of this literature see the
special issue of the Journal of Philosophical Logic, Vol. 40 (2), April 2011); and (2) when representing the order - numerically
it is convenient to assign lower values to more plausible histories. An alternative reading of h - h′ is “history h (weakly)
precedes h′ in terms of plausibility”.

5 A behavior strategy profile is a list of probability distributions, one for every information set, over the actions available at
that information set. A system of beliefs is a collection of probability distributions, one for every information set, over the
histories in that information set.
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µ)—cannot be increased by unilaterally changing her choice at I and possibly at information sets of
hers that follow I6.

Consider the extensive-form game shown in Figure 17 and the assessment (σ, µ) where σ = (d, e, g)
and µ is the following system of beliefs: µ(a) = 0, µ(b) = 1

3 , µ(c) = 2
3 and µ(a f ) = µ(b f ) = 1

2 .
This assessment is AGM-consistent, since it is rationalized by the following plausibility order8:

most plausible ∅, d
b, c, be, ce

a, ae
a f , b f , c f , a f g, b f g

least plausible a f k, b f k

 (1)
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Figure 1. An extensive-form game.

6 The precise definition is as follows. Let Z denote the set of terminal histories and, for every player i, let Ui : Z → R be
player i’s von Neumann-Morgenstern utility function. Given a decision history h, let Z(h) be the set of terminal histories
that have h as a prefix. Let Ph,σ be the probability distribution over Z(h) induced by the strategy profile σ, starting from
history h

(
that is, if z is a terminal history and z = ha1...am then Ph,σ(z) = ∏m

j=1 σ(aj)
)
. Let I be an information set of player

i and let ui(I|σ, µ) = ∑
h∈I

µ(h) ∑
z∈Z(h)

Ph,σ(z)Ui(z) be player i’s expected utility at I if σ is played, given her beliefs at I (as

specified by µ). We say that player i’s strategy σi is sequentially rational at I if ui(I|(σi , σ−i), µ) ≥ ui(I|(τi , σ−i), µ) for every
strategy τi of player i (where σ−i denotes the strategy profile of the players other than i). An assessment (σ, µ) is sequentially
rational if, for every player i and for every information set I of player i, σi is sequentially rational at I. Note that there
are two definitions of sequential rationality: the weakly local one—which is the one adopted here—according to which at
an information set a player can contemplate changing her choice not only there but possibly also at subsequent information
sets of hers, and a strictly local one, according to which at an information set a player contemplates changing her choice only
there. If the definition of perfect Bayesian equilibrium (Definition 4 below) is modified by using the strictly local definition
of sequential rationality, then an extra condition needs to be added, namely the “pre-consistency” condition identified
in [10,11] as being necessary and sufficient for the equivalence of the two notions. For simplicity we have chosen the weakly
local definition.

7 Rounded rectangles represent information sets and the payoffs are listed in the following order: Player 1’s payoff at the top,
Player 2’s payoff in the middle and Player 3’s payoff at the bottom.

8 We use the following convention to represent a total pre-order: if the row to which history h belongs is above the row
to which h′ belongs, then h ≺ h′ (h is more plausible than h′) and if h and h′ belong to the same row then h ∼ h′ (h is as
plausible as h′). ∅ denotes the empty history, which corresponds to the root of the tree. In (1) the plausibility-preserving
actions are d, e and g; the most plausible histories in the information set {a, b, c} are b and c and the two histories in the
information set {a f , b f } are equally plausible.
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Furthermore (σ, µ) is sequentially rational9. The property of AGM-consistency imposes
restrictions on the support of the behavior strategy σ and on the support of the system of beliefs
µ. The following property imposes constraints on how probabilities can be distributed over
those supports.

Definition 3. Given an extensive form, let - be a plausibility order that rationalizes the assessment (σ, µ).
We say that (σ, µ) is Bayes consistent (or Bayesian) relative to - if, for every equivalence class E of - that
contains some decision history h with µ(h) > 0 [that is, E ∩ D+

µ 6= ∅, where D+
µ = {h ∈ D : µ(h) > 0}],

there exists a probability density function νE : H → [0, 1] (recall that H is a finite set) such that:

B1. νE(h) > 0 if and only if h ∈ E ∩ D+
µ .

B2. If h, h′ ∈ E ∩ D+
µ and h′ = ha1...am (that is, h is a prefix of h′) then

νE(h′) = νE(h)× σ(a1)× ... × σ(am).

B3. If h ∈ E ∩ D+
µ , then, ∀h′ ∈ I(h), µ(h′) = νE (h′ | I(h))

de f
= νE(h′)

∑
h′′∈I(h)

νE(h′′)
.

Property B1 requires that νE(h) > 0 if and only if h ∈ E and µ(h) > 0. Property B2 requires
νE to be consistent with the strategy profile σ in the sense that if h, h′ ∈ E, µ(h) > 0, µ(h′) > 0 and
h′ = ha1...am then the probability that νE assigns to h′ is equal to the probability that νE assigns to h
multiplied by the probabilities (according to σ) of the actions that lead from h to h′10. Property B3
requires the system of beliefs µ to satisfy Bayes’ rule in the sense that if h ∈ E and µ(h) > 0 (so that E
is the equivalence class of the most plausible elements of I(h)) then, for every history h′ ∈ I(h), µ(h′)
(the probability assigned to h′ by µ) coincides with the probability of h′ conditional on I(h) using the
probability density function νE

11.
Consider again the game of Figure 1, and the assessment (σ, µ) where σ = (d, e, g) and

µ(a) = 0, µ(b) = 1
3 , µ(c) = 2

3 and µ(a f ) = µ(b f ) = 1
2 . Let - be the plausibility order (1) given

above, which rationalizes (σ, µ). Then (σ, µ) is Bayes consistent relative to -. In fact, we have that
D+

µ = {∅, b, c, a f , b f } and the equivalence classes of - that have a non-empty intersection with D+
µ are

E1 = {∅, d}, E2 = {b, c, be, ce} and E3 = {a f , b f , c f , a f g, b f g}. Let νE1(∅) = 1, νE2(b) =
1
3 , νE2(c) =

2
3

and νE3(a f ) = νE3(b f ) = 1
2 . Then the three probability density functions νE1 , νE2 and νE3 satisfy the

properties of Definition 3 and hence (σ, µ) is Bayes consistent relative to -.

Definition 4. An assessment (σ, µ) is a perfect Bayesian equilibrium (PBE) if it is sequentially rational, it is
rationalized by a plausibility order on the set of histories and is Bayes consistent relative to it.

We saw above that, for the game illustrated in Figure 1, the assessment (σ, µ) where σ = (d, e, g)
and µ(a) = 0, µ(b) = 1

3 , µ(c) = 2
3 and µ(a f ) = µ(b f ) = 1

2 is sequentially rational, it is rationalized by
the plausibility order (1) and is Bayes consistent relative to it. Thus it is a perfect Bayesian equilibrium.

Remark 1. It is proved in [5] that if (σ, µ) is a perfect Bayesian equilibrium then σ is a subgame-perfect
equilibrium and that every sequential equilibrium is a perfect Bayesian equilibrium. Furthermore, the notion
of PBE is a strict refinement of subgame-perfect equilibrium and sequential equilibrium is a strict refinement
of PBE.

9 Given σ, for Player 1 d yields a payoff of 2 while a and c yield 1 and b yields 2; thus d is sequentially rational. Given σ and µ,
at her information set {a, b, c} with e Player 2 obtains an expected payoff of 4 while with f her expected payoff is 3; thus e is
sequentially rational. Given µ, at his information set {a f , b f }, Player 3’s expected payoff from playing with g is 1.5 while his
expected payoff from playing with k is 1; thus g is sequentially rational.

10 Note that if h, h′ ∈ E and h′ = ha1...am, then σ(aj) > 0, for all j = 1, ..., m. In fact, since h′ ∼ h, every action aj is plausibility
preserving and therefore, by Property P1 of Definition 2, σ(aj) > 0.

11 For an interpretation of the probabilities νE(h) see [8].
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Next we recall the definition of sequential equilibrium [1]. An assessment (σ, µ) is KW-consistent
(KW stands for ‘Kreps-Wilson’) if there is an infinite sequence

〈
σ1, ..., σm, ...

〉
of completely mixed

behavior strategy profiles such that, letting µm be the unique system of beliefs obtained from σm by
applying Bayes’ rule12, limm→∞(σm, µm) = (σ, µ). An assessment (σ, µ) is a sequential equilibrium if
it is KW-consistent and sequentially rational. In [8] it is shown that sequential equilibrium can be
characterized as a strengthening of PBE based on two properties: (1) a property of the plausibility
order that constrains the supports of the belief system; and (2) a strengthening of the notion of Bayes
consistency, that imposes constraints on how the probabilities can be distributed over those supports.
The details are given below.

Given a plausibility order - on the finite set of histories H, a function F : H → N (where N
denotes the set of non-negative integers) is said to be an ordinal integer-valued representation of - if,
for every h, h′ ∈ H,

F(h) ≤ F(h′) if and only if h - h′. (2)

Since H is finite, the set of ordinal integer-valued representations is non-empty. A particular
ordinal integer-valued representation, which we will call canonical and denote by ρ, is defined
as follows.

Definition 5. Let H0 = {h ∈ H : h - x, ∀x ∈ H}, H1 = {h ∈ H \ H0 : h - x, ∀x ∈ H\H0} and,
in general, for every integer k ≥ 1, Hk = {h ∈ H \ H0 ∪ ...∪ Hk−1 : h - x, ∀x ∈ H \ H0 ∪ ...∪ Hk−1}.
Thus H0 is the equivalence class of - containing the most plausible histories, H1 is the equivalence class
containing the most plausible among the histories left after removing those in H0, etc.13 The canonical ordinal
integer-valued representation of -, ρ : H → N, is given by

ρ(h) = k if and only if h ∈ Hk. (3)

We call ρ(h) the rank of history h.

Instead of an ordinal integer-valued representation of the plausibility order one could seek
a cardinal representation which, besides (2), satisfies the following property: if h and h′ belong to the
same information set

(
that is, h′ ∈ I(h)

)
and a ∈ A(h), then

F(h′)− F(h) = F(h′a)− F(ha). (CM)

If we think of F as measuring the “plausibility distance” between histories, then we can interpret
CM as a distance-preserving condition: the plausibility distance between two histories in the same
information set is preserved by the addition of the same action.

Definition 6. A plausibility order - on the set of histories H is choice measurable if it has at least one
integer-valued representation that satisfies property CM.

For example, the plausibility order (1) is not choice measurable, since any integer-valued
representation F of it must be such that F(a)− F(b) > 0 and F(a f )− F(b f ) = 0.

Let (σ, µ) be an assessment which is rationalized by a plausibility order -. As before, let D+
µ be

the set of decision histories to which µ assigns positive probability: D+
µ = {h ∈ D : µ(h) > 0}. Let E+µ

12 That is, for every h ∈ D\{∅}, µm(h) =
∏

a∈Ah
σm(a)

∑
h′∈I(h)

∏
a∈Ah′

σm(a) (where Ah is the set of actions that occur in history h). Since σm is

completely mixed, σm(a) > 0 for every a ∈ A and thus µm(h) > 0 for all h ∈ D\{∅}.
13 Since H is finite, there is an m ∈ N such that {H0, ..., Hm} is a partition of H and, for every j, k ∈ N, with j < k ≤ m, and for

every h, h′ ∈ H, if h ∈ Hj and h′ ∈ Hk then h ≺ h′.
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be the set of equivalence classes of - that have a non-empty intersection with D+
µ . Clearly E+µ is

a non-empty, finite set. Suppose that (σ, µ) is Bayesian relative to - and let {νE}E∈E+µ be a collection
of probability density functions that satisfy the properties of Definition 3. We call a probability
density function ν : D → (0, 1] a full-support common prior of {νE}E∈E+µ if, for every E ∈ E+µ ,

νE(·) = ν(· | E ∩ D+
µ ), that is, for all h ∈ E ∩ D+

µ , νE(h) = ν(h)
∑

h′∈E∩D+
µ

ν(h′) . Note that a full support

common prior assigns positive probability to all decision histories, not only to those in D+
µ .

Definition 7. Consider an extensive form. Let (σ, µ) be an assessment which is rationalized by the plausibility
order - and is Bayesian relative to it and let {νE}E∈E+µ be a collection of probability density functions that
satisfy the properties of Definition 3. We say that (σ, µ) is uniformly Bayesian relative to - if there exists
a full-support common prior ν : D → (0, 1] of {νE}E∈E+µ that satisfies the following properties.

UB1. If a ∈ A(h) and ha ∈ D, then
(i) ν(ha) ≤ ν(h) and, (ii) if σ(a) > 0 then ν(ha) = ν(h)× σ(a).

UB2. If a ∈ A(h), h and h′ belong to the same information set and ha, h′a ∈ D
then ν(h)

ν(h′) =
ν(ha)
ν(h′a) .

We call such a function ν a uniform full-support common prior of {νE}E∈E+µ .

UB1 requires that the common prior ν be consistent with the strategy profile σ, in the sense that
if σ(a) > 0 then ν(ha) = ν(h) × σ(a) (thus extending Property B2 of Definition 3 from D+

µ to D).
UB2 requires that the relative probability, according to the common prior ν, of any two histories that
belong to the same information set remain unchanged by the addition of the same action.

It is shown in [8] that choice measurability and uniform Bayesian consistency are independent
properties. The following proposition is proved in [8].

Proposition 1. (I) and (II) below are equivalent:

(I) (σ, µ) is a perfect Bayesian equilibrium which is rationalized by a choice
measurable plausibility order and is uniformly Bayesian relative to it.

(II) (σ, µ) is a sequential equilibrium.

3. Exploring the Gap between PBE and Sequential Equilibrium

The notion of perfect Bayesian equilibrium (Definition 4) incorporates—through the property of
AGM-consistency—a belief revision policy which can be interpreted either as the epistemic state of
an external observer14 or as a belief revision policy which is shared by all the players15. For example,
the perfect Bayesian equilibrium considered in Section 2 for the game of Figure 1, namely σ = (d, e, g)
and µ(a) = 0, µ(b) = 1

3 , µ(c) = 2
3 , µ(a f ) = µ(b f ) = 1

2 reflects the following belief revision policy:
the initial beliefs are that Player 1 will play d; conditional on learning that Player 1 did not play d,
the observer would become convinced that Player 1 played either b or c (that is, she would judge
a to be less plausible than b and she would consider c to be as plausible as b) and would expect
Player 2 to play e; upon learning that (Player 1 did not play d and) Player 2 played f , the observer
would become convinced that Player 1 played either a or b, hence judging a f to be as plausible as
b f , thereby modifying her earlier judgment that a was less plausible than b. Although such a belief
revision policy does not violate the rationality constraints introduced in [6], it does involve a belief
change that is not “minimal”or “conservative”. Such “non-minimal” belief changes can be ruled out by

14 For example, [12] adopts this interpretation.
15 For such an interpretation see [7].
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imposing the following restriction on the plausibility order: if h and h′ belong to the same information
set
(
that is, h′ ∈ I(h)

)
and a is an action available at h

(
a ∈ A(h)

)
, then

h - h′ if and only if ha - h′a. (IND1)

IND1 says that if h is deemed to be at least as plausible as h′ then the addition of any available
action a must preserve this judgment, in the sense that ha must be deemed to be at least as plausible
as h′a, and vice versa; it can also be viewed as an “independence” condition, in the sense that
observation of a new action cannot lead to a change in the relative plausibility of previous histories16.
Any plausibility order that rationalizes the assessment σ = (d, e, g) and µ(a) = 0, µ(b) = 1

3 , µ(c) = 2
3 ,

µ(a f ) = µ(b f ) = 1
2 for the game of Figure 1 must violate IND1 (since b ≺ a while b f ∼ a f ).

We can obtain a strengthening of the notion of perfect Bayesian equilibrium (Definition 4) by (1)
adding property IND1; and (2) strengthening Bayes consistency (Definition 3) to uniform Bayesian
consistency (Definition 7).

Definition 8. Given an extensive-form game, an assessment (σ,µ) is a weakly independent perfect Bayesian
equilibrium if it is sequentially rational, it is rationalized by a plausibility order that satisfies IND1 and is
uniformly Bayesian relative to that plausibility order.

As an example of a weakly independent PBE consider the game of Figure 2 and the assessment
(σ,µ) where σ = (c, d, g, `)

(
highlighted by double edges in Figure 2

)
and µ(b) = µ(ae) = µ(b f ) = 1

(thus µ(a) = µ(a f ) = µ(be) = 0)
(
the decision histories x such that µ(x) > 0 are shown as black

nodes and the decision histories x such that µ(x) = 0 are shown as gray nodes)
)
. This assessment is

sequentially rational and is rationalized by the following plausibility order:

most plausible ∅, c
b, bd
a, ad
b f , b f `
be, be`
ae, aeg
a f , a f g
b f m
bem
aek

least plausible a f k



(4)

It is straightforward to check that plausibility order (4) satisfies IND1
17. To see that (σ,µ) is

uniformly Bayesian relative to plausibility order (4), note that D+
µ = {∅, b, ae, b f } and thus the only

equivalence classes that have a non-empty intersection with D+
µ are E1 = {∅, c}, E2 = {b, bd},

E3 = {ae, aeg} and E4 = {b f , b f `}. Letting νE1(∅) = 1, νE2(b) = 1, νE3(ae) = 1 and νE4(b f ) = 1, this
collection of probability distributions satisfies the Properties of Definition 3. Let ν be the uniform
distribution over the set of decision histories D = {∅, a, b, ae, a f , be, b f } (thus ν(h) = 1

7 for every
h ∈ D). Then ν is a full support common prior of the collection {νEi}i∈{1,2,3,4} and satisfies Properties
UB1 and UB2 of Definition 7.

16 Note, however, that IND1 is compatible with the following: a ≺ b
(
with b ∈ I(a)

)
and bc ≺ ad

(
with

bc ∈ I(ad), c, d ∈ A(a), c 6= d
)
.

17 We have that (1) b ≺ a, bd ≺ ad, be ≺ ae and b f ≺ a f , (2) ae ≺ a f , aeg ≺ a f g and aek ≺ a f k, (3) b f ≺ be, b f ` ≺ be` and
b f m ≺ bem.
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Note, however, that (σ,µ) is not a sequential equilibrium. This can be established by showing that
(σ,µ) is not KW-consistent; however, we will show it by appealing to the following lemma (proved
in Appendix A) which highlights a property that will motivate a further restriction on belief revision
(property IND2 below).

g k g k m m 

d

e f e f

d
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b

3

2

1

1

a

1
0
0

0
0
0

0
1
0

2
2
0

2
0
1

2
2
1

2
0
0

2
1
1

0
1
0

0
1
0

2
1
1

 

Figure 2

Lemma 1. Let - be a plausibility order over the set H of histories of an extensive-form game and let F : H → N
be an integer-valued representation of - (that is, for all h, h′ ∈ H, F(h) ≤ F(h′) if and only if h - h′). Then the
following are equivalent:

(A) F satisfies Property CM (Definition 6)
(B) F satisfies the following property: for all h, h′ ∈ H and a, b ∈ A(h), if h′ ∈ I(h) then

F(hb)− F(ha) = F(h′b)− F(h′a). (CM′)

Using Lemma 1 we can prove that the assessment (σ,µ) where σ = (c, d, g, `) and
µ(b) = µ(ae) = µ(b f ) = 1, for the game of Figure 2, is not a sequential equilibrium. By Proposition 1
it will be sufficient to show that (σ,µ) cannot be rationalized by a choice measurable plausibility order
(Definition 6). Let - be a plausibility order that rationalizes (σ,µ) and let F be an integer-valued
representation of -. Then, by (P2) of Definition 2, it must be that ae ≺ a f (because µ(ae) > 0
and µ(a f ) = 0) and b f ≺ be (because µ(b f ) > 0 and µ(be) = 0); thus F(ae) − F(a f ) < 0 and
F(be)− F(b f ) > 0, so that F violates property CM′; hence, by Lemma 1, F violates property CM and
thus - is not choice measurable.

The ordinal counterpart to Property CM′ is Property IND2 below, which can be viewed as another
“independence” condition: it says that if action a is implicitly judged to be at least as plausible as action
b, conditional on history h (that is, ha - hb), then the same judgment must be made conditional on any
other history that belongs to the same information set as h: if h′ ∈ I(h) and a, b ∈ A(h), then

ha - hb if and only if h′a - h′b. (IND2)

Note that Properties IND1 and IND2 are independent. An example of a plausibility order that
violates IND1 but satisfies IND2 is plausibility order (1) for the game of Figure 1: IND1 is violated
because b ≺ a but b f ∼ a f and IND2 is satisfied because at every non-singleton information set
there are only two choices, one of which is plausibility preserving and the other is not. An example
of a plausibility order that satisfies IND1 but violates IND2 is plausibility order (4) for the game of
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Figure 218. Adding Property IND2 to the properties given in Definition 8 we obtain a refinement of

the notion of weakly independent perfect Bayesian equilibrium.

Definition 9. Given an extensive-form game, an assessment (σ,µ) is a strongly independent perfect Bayesian
equilibrium if it is sequentially rational, it is rationalized by a plausibility order that satisfies Properties IND1

and IND2, and is uniformly Bayesian relative to that plausibility order.

The following proposition states that the notions of weakly/strongly independent PBE identify
two (nested) solution concepts that lie strictly in the gap between PBE and sequential equilibrium.
The proof of the first part of Proposition 2 is given in Appendix A, while the example of Figure 3
establishes the second part.
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Figure 3

Proposition 2. Consider an extensive-form game and an assessment (σ,µ). If (σ,µ) is a sequential equilibrium
then it is a strongly independent perfect Bayesian equilibrium (PBE). Furthermore, there are games where there
is a strongly independent PBE which is not a sequential equilibrium.

To see that the notion of strongly independent PBE is weaker than sequential equilibrium,
consider the game of Figure 3 (which is based on an example discussed in [12–14]) and the assessment
(σ, µ) where σ = (M, `, a, c, e)

(
highlighted by double edges

)
, µ(x) = 1 for x ∈ {∅, M, Mr, Lm, R`}

and µ(x) = 0 for every other decision history x
(
the decision histories x such that µ(x) > 0 are

18 That IND1 is satisfied was shown in Footnote 17. IND2 is violated because b ∈ I(a) and b f ≺ be but ae ≺ a f .
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shown as black nodes and the decision histories x such that µ(x) = 0 are shown as gray nodes
)
. This

assessment is rationalized by the following plausibility order:

most plausible ∅, M, M`

R, R`, R`e
Mm, Mme
Mr, Mra
L, L`, L`a

Rm
Lm, Lmc
Rr, Rrc

Lr
R` f

Mm f
Lmd
Rrd
Mrb

least plausible L`b



(5)

It is straightforward to check that plausibility order (5) satisfies Properties IND1
19 and IND2

20.
Furthermore (σ,µ) is trivially uniformly Bayesian relative to plausibility order (5)21. Thus (σ,µ) is
a strongly independent PBE. Next we show that (σ,µ) is not a sequential equilibrium, by appealing to
Proposition 1 and showing that any plausibility order that rationalizes (σ,µ) is not choice measurable22.
Let - be a plausibility order that rationalizes (σ, µ); then it must satisfy the following properties:

• Lm ≺ Rr (because they belong to the same information set and µ(Lm) > 0 while µ(Rr) = 0).
Thus if F is any integer-valued representation of - it must be that

F(Lm) < F(Rr). (6)

• Mr ≺ L` ∼ L (because Mr and L` belong to the same information set and µ(Mr) > 0 while
µ(L`) = 0; furthermore, ` is a plausibility-preserving action since σ(`) > 0). Thus if F is any
integer-valued representation of - it must be that

F(Mr) < F(L). (7)

• R ∼ R` ≺ Mm (because ` is a plausibility-preserving action, R` and Mm belong to the same
information set and µ(R`) > 0 while µ(Mm) = 0). Thus if F is any integer-valued representation
of - it must be that

F(R) < F(Mm). (8)

19 In fact, (1) M ≺ L and Mx ≺ Lx for every x ∈ {`, m, r}; (2) M ≺ R and Mx ≺ Rx for every x ∈ {`, m, r}; (3) R ≺ L and
Rx ≺ Lx for every x ∈ {`, m, r}; (4) Mr ≺ L` and Mrx ≺ L`x for every x ∈ {a, b}; (5) Lm ≺ Rr and Lmx ≺ Rrx for every
x ∈ {c, d}; and (6) R` ≺ Mm and R`x ≺ Mmx for every x ∈ {e, f }.

20 This is easily verified: the important observation is that Mm ≺ Mr and Lm ≺ Lr and Rm ≺ Rr. The other comparisons
involve a plausibility-preserving action versus a non-plausibility-preserving action and thus IND2 is trivially satisfied.

21 As uniform full support common prior one can take, for example, the uniform distribution over the set of decision histories.
Note that, for every equivalence class E of the order, E ∩ D+

µ is either empty or a singleton.
22 To prove that (σ, µ) is not a sequential equilibrium it is not sufficient to show that plausibility order (5) is not choice

measurable, because there could be another plausibility order which is choice measurable and rationalizes (σ, µ).
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Suppose that - is choice measurable and let F be an integer-valued representation of it that
satisfies Property CM. From (6) and (7) we get that

F(Lm)− F(L) < F(Rr)− F(Mr) (9)

and by Property CM it must be that

F(Rr)− F(Mr) = F(R)− F(M). (10)

It follows from (9) and (10) that

F(Lm)− F(L) < F(R)− F(M). (11)

Subtracting F(M) from both sides of (8) we obtain

F(R)− F(M) < F(Mm)− F(M). (12)

It follows from (11) and (12) that F(Lm) − F(L) < F(Mm) − F(M), which can be written as
F(M) − F(L) < F(Mm) − F(Lm), yielding a contradiction, because Property CM requires that
F(M)− F(L) = F(Mm)− F(Lm).

Are the notions of weakly/strongly independent PBE “better” or “more natural” than the basic
notion of PBE? This issue will be discussed briefly in Section 6.

4. How to Determine if a Plausibility Order Is Choice Measurable

In this section we provide a method for determining if a plausibility order is choice measurable.
More generally, we provide a necessary and sufficient condition that applies not only to plausibility
orders over sets of histories in a game but to a more general class of structures.

Let S be an arbitrary finite set and let - be a total pre-order on S. Let S\∼ be the set of
--equivalence classes of S. If s ∈ S, the equivalence class of s is denoted by [s] = {t ∈ S : s ∼ t}
(where, as before, s ∼ t is a short-hand for “s - t and t - s ”); thus S\∼ = {[s] : s ∈ S}. Let .

=

be an equivalence relation on S\∼ × S\∼. The interpretation of ([s1] , [s2])
.
= ([t1] , [t2]) is that the

distance between the equivalence classes [s1] and [s2] is required to be equal to the distance between
the equivalence classes [t1] and [t2].

Remark 2. In the special case of a plausibility order - on the set of histories H of a game, we shall be interested
in the following equivalence relation .

= on H\∼ × H\∼, which is meant to capture property CM above: if E1,
E2, F1 and F2 are equivalence classes of - then (E1, E2)

.
= (F1, F2) if and only if there exist two decision histories

h, h′ ∈ H that belong to the same information set [h′ ∈ I(h)] and a non-plausibility-preserving action a ∈ A(h)
such that h ∈ E1, h′ ∈ E2, ha ∈ F1 and h′a ∈ F2 (or ha ∈ E1, h′a ∈ E2, h ∈ F1 and h′ ∈ F2).

The general problem that we are addressing is the following.

Problem 1. Given a pair (-, .
=), where - is a total pre-order on a finite set S and .

= is an equivalence relation
on the set of pairs of equivalence classes of -, determine whether there exists a function F : S→ N such that,
for all s, t, x, y ∈ S, (1) F(s) ≤ F(t) if and only if s - t and (2) if ([s], [t]) .

= ([x], [y]), with s ≺ t and x ≺ y,
then F(t)− F(s) = F(y)− F(x).

Instead of expressing the equivalence relation .
= in terms of pairs of elements of S\∼, we shall

express it in terms of pairs of numbers (j, k) obtained by using the canonical ordinal representation
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ρ of -23. That is, if s1, s2, t1, t2 ∈ S and ([s1] , [s2])
.
= ([t1] , [t2]) then we shall write this as

(ρ(s1), ρ(s2))
.
= (ρ(t1), ρ(t2)). For example, let S = {a, b, c, d, e, f , g, h, `, m} and let - be as shown

in (13) below, together with the corresponding canonical representation ρ24:

- : ρ :

a 0
b, c 1
d 2
e 3

f , g 4
h, ` 5
m 6


(13)

If the equivalence relation .
= contains the following pairs25:

([a], [b]) .
= ([h], [m])

([a], [b]) .
= ([e], [ f ])

([a], [d]) .
= ([ f ], [m])

([b], [e]) .
= ([e], [ f ])

([b], [e]) .
= ([ f ], [m])

then we express them (using ρ) as

(0, 1) .
= (5, 6)

(0, 1) .
= (3, 4)

(0, 2) .
= (4, 6)

(1, 3) .
= (3, 4)

(1, 3) .
= (4, 6)

(14)

A bag (or multiset) is a generalization of the notion of set in which members are allowed to
appear more than once. An example of a bag is {1, 2, 2, 3, 4, 4, 5, 6}. Given two bags B1 and B2 their
union, denoted by B1 d B2, is the bag that contains those elements that occur in either B1 or B2 and,
furthermore, the number of times that each element occurs in B1 d B2 is equal to the number of times
it occurs in B1 plus the number of times it occurs in B2. For instance, if B1 = {1, 2, 2, 3, 4, 4, 5, 6} and
B2 = {2, 3, 6, 6} then B1 d B2 = {1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6}. We say that B1 is a proper sub-bag of B2,
denoted by B1 @ B2, if B1 6= B2 and each element that occurs in B1 occurs also, and at least as many
times, in B2. For example, {1, 2, 4, 4, 5, 6} @ {1, 1, 2, 4, 4, 5, 5, 6} .

Given a pair (i, j) with i < j, we associate with it the set B(i,j) = {i + 1, i + 2, ..., j}. For example,
B(2,5) = {3, 4, 5}. Given a set of pairs P = {(i1, j1), (i2, j2), ..., (im, jm)} (with ik < jk, for every
k = 1, ..., m) we associate with it the bag BP = B(i1,j1) d B(i2,j2) d ... d B(im ,jm). For example,
if P = {(0, 2), (1, 4), (2, 5)} then BP = {1, 2}d {2, 3, 4}d {3, 4, 5} = {1, 2, 2, 3, 3, 4, 4, 5}.

Definition 10. For every element of .
=, expressed (using the canonical representation ρ) as (i, j) .

= (k, `) (with
i < j and k < `), the equation corresponding to it is xi+1 + xi+2 + ...+ xj = xk+1 + xk+2 + ...+ x`. By the
system of equations corresponding to .

= we mean the set of all such equations26.

For example, consider the total pre-order given in (13) and the following equivalence relation .
=

(expressed in terms of ρ and omitting the reflexive pairs):

{(0, 3) .
= (2, 4), (2, 4) .

= (0, 3), (2, 4) .
= (3, 5), (3, 5) .

= (2, 4), (0, 3) .
= (3, 5), (3, 5) .

= (0, 3)}

23 As in Definition 5, let S0 = {s ∈ S : s - t, ∀t ∈ S}, and, for every integer k ≥ 1, Sk = {h ∈ S \ S0 ∪ ...∪ Sk−1 : s - t, ∀t ∈
S \ S0 ∪ ...∪ Sk−1}. The canonical ordinal integer-valued representation of -, ρ : S→ N, is given by ρ(s) = k if and only if
s ∈ Sk .

24 Thus a ≺ x for every x ∈ S\{a}, [b] = {b, c}, b ≺ d, etc.
25 For example, .

= is the smallest reflexive, symmetric and transitive relation that contains the pairs given in (14).
26 The system of linear equations of Definition 10 is somewhat related to the system of multiplicative equations considered

in [13] (Theorem 5.1). A direct comparison is beyond the scope of this paper and is not straightforward, because the
structures considered in Definition 10 are more general than those considered in [13].
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Then the corresponding system of equations is given by:

x1 + x2 + x3 = x3 + x4
x3 + x4 = x1 + x2 + x3

x3 + x4 = x4 + x5

x4 + x5 = x3 + x4
x1 + x2 + x3 = x4 + x5

x4 + x5 = x1 + x2 + x3

(15)

We are now ready to state the solution to Problem 1. The proof is given in Appendix A.

Proposition 3. Given a pair (-, .
=), where - is a total pre-order on a finite set S and .

= is an equivalence
relation on the set of pairs of equivalence classes of -, (A), (B) and (C) below are equivalent.

(A) There is a function F : S→ N such that, for all s, t, x, y ∈ S, (1) F(s) ≤ F(t) if and only if s - t; and (2)
if ([s], [t]) .

= ([x], [y]), with s ≺ t and x ≺ y, then F(t)− F(s) = F(y)− F(x),
(B) The system of equations corresponding to .

= (Definition 10) has a solution consisting of positive integers.
(C) There is no sequence 〈((i1, j1)

.
= (k1, `1)) , ..., ((im, jm)

.
= (km, `m))〉 in .

= (expressed
in terms of the canonical representation ρ of - ) such that Ble f t @ Bright where
Ble f t = B(i1,j1) d ... d B(im ,jm) and Bright = B(k1,`1)

d ... d B(km ,`m).

As an application of Proposition 3 consider again the game of Figure 3 and plausibility order (5)
which rationalizes the assessment σ = (M, `, a, c, e), µ(x) = 1 for x ∈ {∅, M, Mr, Lm, R`} and
µ(x) = 0 for every other decision history x; the order is reproduced below together with the canonical
integer-valued representation ρ:

- : ρ :

most plausible ∅, M, M` 0
R, R`, R`e 1
Mm, Mme 2
Mr, Mra 3
L, L`, L`a 4

Rm 5
Lm, Lmc 6
Rr, Rrc 7

Lr 8
R` f 9

Mm f 10
Lmd 11
Rrd 12
Mrb 13

least plausible L`b 14



(16)

By Remark 2, two elements of .
= are ([M], [R]) .

= ([Mr], [Rr]) and ([Mm], [Lm])
.
= ([M], [L]),

which—expressed in terms of the canonical ordinal representation ρ—can be written as

(0, 1) .
= (3, 7)

(2, 6) .
= (0, 4)

Then Ble f t = {1}d{3, 4, 5, 6} = {1, 3, 4, 5, 6} and Bright = {4, 5, 6, 7)d{1, 2, 3, 4} = {1, 2, 3, 4, 4, 5, 6, 7}.
Thus, since Ble f t @ Bright, by Part (C) of Proposition 3 - is not choice measurable.

As a further application of Proposition 3 consider the total pre-order - given in (13) together
with the subset of the equivalence relation .

= given in (14). Then there is no cardinal representation of
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- that satisfies the constraints expressed by .
=, because of Part (C) of the above proposition and the

following sequence27:

〈((0, 1) .
= (3, 4)) , ((1, 3) .

= (4, 6)) , ((3, 4) .
= (1, 3)) , ((4, 6) .

= (0, 2))〉

where Ble f t = {1} d {2, 3} d {4} d {5, 6} = {1, 2, 3, 4, 5, 6} @ Bright = {4} d {5, 6} d {2, 3} d {1, 2} =
{1, 2, 2, 3, 4, 5, 6}.

In fact, the above sequence corresponds to the following system of equations:

x1 = x4 corresponding to (0, 1) .
= (3, 4)

x2 + x3 = x5 + x6 corresponding to (1, 3) .
= (4, 6)

x4 = x2 + x3 corresponding to (3, 4) .
= (1, 3)

x5 + x6 = x1 + x2 corresponding to (4, 6) .
= (0, 2)

Adding the four equations we get x1 + x2 + x3 + x4 + x5 + x6 = x1 + 2x2 + x3 + x4 + x5 + x6

which simplifies to 0 = x2, which is incompatible with a positive solution.

Remark 3. In [15] an algorithm is provided for determining whether a system of linear equations has a positive
solution and for calculating such a solution if one exists. Furthermore, if the coefficients of the equations are
integers and a positive solution exists, then the algorithm yields a solution consisting of positive integers.

5. Related Literature

As noted in Section 1, the quest in the literature for a “simple” solution concept intermediate
between subgame-perfect equilibrium and sequential equilibrium has produced several attempts to
provide a general definition of perfect Bayesian equilibrium.

In [16] a notion of perfect Bayesian equilibrium was provided for a small subset of extensive-form
games (namely the class of multi-stage games with observed actions and independent types),
but extending that notion to arbitrary games proved to be problematic28.

In [14] a notion of perfect Bayesian equilibrium is provided that can be applied to general
extensive-form games (although it was defined only for games without chance moves); however,
the proposed definition is in terms of a more complex object, namely a “tree-extended assessment”
(ν, σ, µ) where ν is a conditional probability system on the set of terminal nodes. The main idea
underlying the notion of perfect Bayesian equilibrium proposed in [14] is what the author calls
“strategic independence”: when forming beliefs, the strategic choices of different players should be
regarded as independent events.

Several more recent contributions [5,17,18] have re-addressed the issue of providing a definition
of perfect Bayesian equilibrium that applies to general extensive-form games. Since [5] has been the
focus of this paper, here we shall briefly discuss [17,18]. In [17] the notion of “simple perfect Bayesian
equilibrium” is introduced and it is shown to lie strictly between subgame-perfect equilibrium and
sequential equilibrium. This notion is based on an extension of the definition of sub-tree, called “quasi
sub-tree”, which consists of an information set I together with all the histories that are successors of
histories in I (that is, ΓI is a quasi-subtree that starts at I if h′ ∈ ΓI if and only if there exists an h ∈ I
such that h is a prefix of h′). A quasi sub-tree ΓI is called regular if it satisfies the following property:
if h ∈ ΓI and h′ ∈ I(h) then h′ ∈ ΓI (that is, every information set that has a non-empty intersection
with ΓI is entirely included in ΓI). An information set I is called regular if the quasi-subtree that
starts at I is regular. For example, in the game of Figure 4, the singleton information set {b} of

27 By symmetry of .
=, we can express the third and fourth constraints as (4, 6) .

= (0, 2) and (3, 4) .
= (1, 3) instead of

(0, 2) .
= (4, 6) and (1, 3) .

= (3, 4), respectively.
28 The main element of the notion of PBE put forward in [16] is the “no signaling what you don’t know” condition on beliefs.

For example, if Player 2 observes Player 1’s action and Player 1 has observed nothing about a particular move of Nature,
then Player 2 should not update her beliefs about Nature’s choice based on Player 1’s action.
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Player 2 is not regular. An assessment (σ, µ) is defined to be a “simple perfect Bayesian equilibrium”
if it is sequentially rational and, for every regular quasi-subtree ΓI , Bayes’ rule is satisfied at every
information set that is reached with positive probability by σ in ΓI (in other words, if the restriction of
(σ, µ) to every regular quasi-subtree is a weak sequential equilibrium of the quasi-subtree). This notion
of perfect Bayesian equilibrium is weaker than the notion considered in this paper (Definition 4).
For example, in the game of Figure 4, the pure-strategy profile σ = (c, d, f ) (highlighted by double
edges), together with the system of beliefs µ(a) = µ(bd) = 0, µ(be) = 1, is a simple perfect Bayesian
equilibrium, while (as shown in [5]) there is no system of beliefs µ′ such that (σ, µ′) is a perfect
Bayesian equilibrium. A fortiori, the notion of simple perfect Bayesian equilibrium is weaker than the
refinements of PBE discussed in the Section 3.
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Figure 4

In [18], the author proposes a definition of perfect Bayesian equilibrium which is framed not
in terms of assessments but in terms of “appraisals”. Each player is assumed to have a (possibly
artificial) information set representing the beginning of the game and an appraisal for player i is a
map that associates with every information set of player i a probability distribution over the set of
pure-strategy profiles that reach that information set. Thus an appraisal for player i captures, for
every information set of hers, her conjecture about how the information set was reached and what
will happen from this point in the game. An appraisal system is defined to be “plainly consistent”
if, whenever an information set of player i has a product structure (each information set is identified
with the set of pure-strategy profiles that reach that information set), the player’s appraisal at that
information set satisfies independence29. A strategy profile σ is defined to be a perfect Bayesian
equilibrium if there is a plainly consistent appraisal system P that satisfies sequential rationality and is
such that at their “initial” information sets all the players assign probability 1 to σ; in [18] (p. 15), the
author summarizes the notion of PBE as being based on “a simple foundation: sequential rationality
and preservation of independence and Bayesian updating where applicable” (that is, on subsets of
strategy profiles that have the appropriate product structure and independence property). Despite
the fact that the notion of PBE suggested in [18] incorporates a notion of independence, it can be
weaker than the notion of PBE discussed in Section 2 (Definition 4) and thus, a fortiori, weaker than
the notion of weakly independent PBE (Definition 8, Section 3). This can be seen from the game of
Figure 5, which essentially reproduces an example given in [18]. The strategy profile σ = (b, d, e)
(highlighted by double edges), together with any system of beliefs µ such that µ(ac) > 0 cannot be a

29 Intuitively, on consecutive information sets, a player does not change her beliefs about the actions of other players, if she
has not received information about those actions.
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PBE according to Definition 4 (Section 2). In fact, since σ(d) > 0 while σ(c) = 0, any plausibility order
that rationalizes (σ, µ) must be such that a ∼ ad ≺ ac, which implies that µ(ac) = 0 (because ac cannot
be most plausible in the set {ac, ad, bc}). On the other hand, σ can be a PBE according to the definition
given in [18] (p. 15), since the information set of Player 3 does not have a product structure so that
Player 3 is not able to separate the actions of Players 1 and 2. For example, consider the appraisal
system P where, initially, all the players assign probability 1 to σ and, at his information set, Player 2
assigns probability 1 to the strategy profile (b, e) of Players 1 and 3 and, at her information set, Player
3 assigns probability 1

3 to each of the strategy profiles (a, c), (a, d) and (b, c) of Players 1 and 2. Then P
is plainly consistent and sequentially rational, so that σ is a PBE as defined in [18].

Thus, a fortiori, the notion of perfect Bayesian equilibrium given in [18] can be weaker than the
notions of weakly/strongly independent PBE introduced in Section 3.
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Figure 5

6. Conclusions

Besides sequential rationality, the notion of perfect Bayesian equilibrium (Definition 4) introduced
in [5] is based on two elements: (1) rationalizability of the assessment by a plausibility order
(Definition 2); and (2) the notion of Bayesian consistency relative to the plausibility order.
The first property identifies the set of decision histories that can be assigned positive conditional
probability by the system of beliefs, while the second property imposes constraints on how conditional
probabilities can be distributed over that set in order to guarantee “Bayesian updating as long as
possible”30. In [8] it was shown that by strengthening these two conditions one obtains a “limit
free” characterization of sequential equilibrium. The strengthening of the first condition is that the
plausibility order that rationalizes the given assessment be choice measurable, that it, that there be
a cardinal representation of it (which can be interpreted as measuring the plausibility distance between
histories in a way that is preserved by the addition of a common action). The strengthening of the
second condition imposes “uniform consistency” on the conditional probability density functions on
the equivalence classes of the plausibility order, by requiring that there be a full-support common prior

30 By “Bayesian updating as long as possible” we mean the following: (1) when information causes no surprises, because
the play of the game is consistent with the most plausible play(s) (that is, when information sets are reached that have
positive prior probability), then beliefs should be updated using Bayes’ rule; and (2) when information is surprising (that is,
when an information set is reached that had zero prior probability) then new beliefs can be formed in an arbitrary way,
but from then on Bayes’ rule should be used to update those new beliefs, whenever further information is received that is
consistent with those beliefs.
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that preserves the relative probabilities of two decision histories in the same information set when
a common action is added. There is a “substantial” gap between the notion of PBE and that of sequential
equilibrium. In this paper we identified two solution concepts that lie in this gap. The first notion,
weakly independent PBE (Definition 8), is obtained by adding a restriction on the belief revision policy
encoded in the plausibility order that rationalizes the given assessment (together with strengthening
Bayes consistency to uniform Bayes consistency). This restriction says that observation of a new action
at an information set should not alter the relative plausibility of any two histories in that information
set (condition IND1); it can be interpreted as an “independence” or “conservative” principle, in the
sense that observation of a new action should not lead to a reversal of judgment of plausibility
concerning past histories. The second notion, strongly independent PBE (Definition 9), is obtained by
adding to the first notion a further restriction, according to which the implicit plausibility ranking of
two actions available at the same information set should be independent of the history at which the
actions are taken.

A further contribution of this paper has been to provide a method for determining if a plausibility
order is choice measurable, which is one of the two conditions that, together, are necessary and
sufficient for a PBE to be a sequential equilibrium.

This paper highlights the need to conceptualize refinements of subgame-perfect equilibrium in
extensive form games in terms of principles of belief revision. Through the notion of plausibility
order and AGM-consistency we have appealed to the principles of belief revision that underlie the
so-called AGM theory [6]. However, in a dynamic game, beliefs typically need to be revised several
times in a sequence as new information sets are reached. Thus the relevant notion of belief revision
is iterated belief revision. There is an extensive literature on the topic of iterated belief revision (see,
for example, [19–22] and the special issue of the Journal of Philosophical Logic, Vol. 40 (2), April 2011).
An exploration of different solution concepts in the gap between PBE and sequential equilibrium,
based on different principles of iterated belief revision, seems to be a promising area of research.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proofs

Proof of Lemma 1. Let - be a plausibility order on the set of histories H and let F : H → N be
an integer-valued representation of -. We want to show that properties CM and CM′ below are
equivalent (for arbitrary h, h′ ∈ H, with h′ ∈ I(h), and a, b ∈ A(h))

F(h′)− F(h) = F(h′a)− F(ha). (CM)

F(hb)− F(ha) = F(h′b)− F(h′a). (CM′)

First of all, note that, without loss of generality, we can assume that F(∅) = 031.
First we show that CM⇒ CM′. Let F be an integer-valued representation of - that satisfies CM.

For every decision history h and action a ∈ A(h), define

λ(a) = F(ha)− F(h). (A1)

The function λ : A → N is well defined, since, by CM, h′ ∈ I(h) implies that
F(h′a)− F(h′) = F(ha)− F(h). Then, for every history h = 〈a1, a2, ..., am〉, F(h) = ∑m

i=1 λ(ai). In fact,

λ(a1) + λ(a2) + ... + λ(am) =

= (F(a1)− F(∅)) + (F(a1a2)− F(a1)) + ... + (F(a1a2...am)− F(a1a2...am−1)) =

= F(a1a2...am) = F(h) (recall the hypothesis that F(∅) = 0).

31 It is straightforward to check that if F′ : H → N is an integer-valued representation of - then so is F : H → N defined by
F(h) = F′(h)− F′(∅); furthermore if F′ satisfies property CM (CM‘) then so does F.
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Thus, for every h ∈ D and a ∈ A(h), F(ha) = F(h) + λ(a). Hence, F(hb) − F(ha) = F(h) +
λ(b)− F(h)− λ(a) = λ(b)− λ(a) and F(h′b)− F(h′a) = F(h′) + λ(b)− F(h′)− λ(a) = λ(b)− λ(a)
and, therefore, F(hb)− F(ha) = F(h′b)− F(h′a).

Next we show that CM‘ ⇒ CM. Let - be a plausibility order and let F : H → N be
an integer-valued representation that satisfies CM′. Select arbitrary h′ ∈ I(h) and a ∈ A(h).
Let b ∈ A(h) be a plausibility-preserving action at h (there must be at least one such action:
see Definition 1); then, h ∼ hb and h′ ∼ h′b. Hence, since F is a representation of -, F(hb) = F(h) and
F(h′b) = F(h′) and thus

F(h′)− F(h) = F(h′b)− F(hb). (A2)

By CM′, F(h′b) − F(hb) = F(h′a) − F(ha). From this and (A2) it follows that F(h′) − F(h) =

F(h′a)− F(ha).

Proof of Proposition 2. Let (σ, µ) be a sequential equilibrium. We want to show that (σ, µ) is a strongly
independent PBE (Definition 9). By Proposition 1, it is sufficient to show that (σ, µ) is rationalized
by a plausibility order - that satisfies Properties IND1 and IND2. By Proposition 1 there is a choice
measurable plausibility order - that rationalizes (σ, µ). Let F be an integer-valued representation of -
that satisfies Property CM. Let h and h′ be decision histories that belong to the same information set
and let a ∈ A(h). Then, by CM,

F(h)− F(h′) = F(ha)− F(h′a). (A3)

If h - h′ then F(h) ≤ F(h′); by (A3), it follows that F(ha) ≤ F(h′a) and thus ha - h′a. Conversely,
if ha - h′a then F(ha) ≤ F(h′a) and thus, by (A3), F(h) ≤ F(h′) so that h - h′. Hence - satisfies IND1.

Let h and h′ be decision histories that belong to the same information set and let a, b ∈ A(h).
We want to show that IND2 holds, that is, that ha - hb if and only if h′a - h′b. Let F be an
integer-valued representation of - that satisfies Property CM. By Lemma 1 F satisfies Property CM′,
that is,

F(ha)− F(hb) = F(h′a)− F(h′b). (A4)

If ha - hb then F(ha) ≤ F(hb) and thus, by (A4), F(h′a) ≤ F(h′b), that is, h′a - h′b. Conversely,
if h′a - h′b then F(h′a) ≤ F(h′b) and thus, by (A4), F(ha) ≤ F(hb), so that ha - hb.

Proof of Proposition 3. (A) ⇒ (B). Let F′ : S → N satisfy the properties of Part (A).
Select an arbitrary s0 ∈ S0 = {s ∈ S : s - t, ∀t ∈ S} and define F : S → N by F(s) = F′(s)− F′(s0).
Then F is also a function that satisfies the properties of Part (A) (note that since, for all s ∈ S,
F′(s0) ≤ F′(s), F(s) ∈ N; furthermore, F(s′) = 0 for all s′ ∈ S0). Let K = {k ∈ N : k = ρ(s) for some
s ∈ S} (where ρ is the canonical ordinal representation of -: see Footnote 23). For every k ∈ K, define

x̂0 = 0
and, for k > 0,
x̂k = F(t)− F(s) for some s, t ∈ S such that ρ(t) = k and ρ(s) = k− 1.

(A5)

Thus x̂k is the distance, as measured by F, between the equivalence class of some t such that
ρ(t) = k and the immediately preceding equivalence class (that is, the equivalence class of some s
such that ρ(s) = k− 1)32. Note that x̂k is well defined since, if x, y ∈ S are such that ρ(y) = k and
ρ(x) = k− 1, then x ∼ s and y ∼ t and thus, by (1) of Property (A), F(x) = F(s) and F(y) = F(t).
Note also that, for all k ∈ K\{0}, x̂k is a positive integer, since ρ(t) = k and ρ(s) = k− 1 imply that s ≺ t

32 For example, if S = {a, b, c, d, e, f } and - is given by a ∼ b ≺ c ≺ d ∼ e ≺ f then ρ(a) = ρ(b) = 0, ρ(c) = 1, ρ(d) = ρ(e) = 2
and ρ( f ) = 3; if F is given by F(a) = F(b) = 0, F(c) = 3, F(d) = F(e) = 5 and F( f ) = 9 then x̂0 = 0, x̂1 = 3, x̂2 = 2 and
x̂3 = 4.
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and thus, by (1) of Property (A), F(s) < F(t). We want to show that the values {x̂k}k∈K\{0} defined in
(A5) provide a solution to the system of equations corresponding to .

= (Definition 10). Select an arbitrary
element of .

=, ([s1], [s2])
.
= ([t1], [t2]) (with s1 ≺ s2 and t1 ≺ t2) and express it, using the

canonical ordinal representation ρ (see Footnote 23), as (i1, i2)
.
= (j1, j2) (thus i1 = ρ(s1), i2 = ρ(s2),

j1 = ρ(t1), j2 = ρ(t2), i1 < i2 and j1 < j2). Then the corresponding equation (see Definition 10) is:
xi1+1 + xi1+2 + ... + xi2 = xj1+1 + xj1+2 + ... + xj2 . By (2) of Property (A),

F(s2)− F(s1) = F(t2)− F(t1) (A6)

Using (A5), F(s2) − F(s1) = x̂i1+1 + x̂i1+2 + ... + x̂i2 . To see this, for every
k ∈ {i1 + 1, i1 + 2, ..., i2 − 1}, select an arbitrary rk ∈ S such that ρ(rk) = k; then, by (A5),

F(s2)− F(s1) = x̂i1+1︸ ︷︷ ︸
=F(ri1+1)−F(s1)

+ x̂i2+2︸ ︷︷ ︸
=F(ri1+2)−F(ri1+1)

+ ... + x̂i2︸︷︷︸ .

=F(s2)−F(ri2−1)

Similarly, F(t2) − F(t1) = x̂j1+1 + x̂j1+2 + ... + x̂j2 . Thus, by (A6), x̂i1+1 + x̂i1+2 + ... + x̂i2 =

x̂j1+1 + x̂j1+2 + ... + x̂j2 .
(B)⇒ (A). Assume that the system of equations corresponding to .

= has a solution consisting
of positive integers x̂1, ..., x̂m. Define F : S → N as follows: if ρ(s) = 0 (equivalently, s ∈ S0) then
F(s) = 0 and if ρ(s) = k > 0 (equivalently, s ∈ Sk for k > 0) then F(s) = x̂1 + x̂2 + ... + x̂k (where ρ

and the sets Sk are as defined in Footnote 23). We need to show that F satisfies the properties of Part
(A). Select arbitrary s, t ∈ S with s - t. Then ρ(s) ≤ ρ(t) and thus F(s) = x̂1 + x̂2 + ...+ x̂ρ(s) ≤ F(t) =
x̂1 + x̂2 + ... + x̂ρ(s) + x̂ρ(s)+1 + ... + x̂ρ(t). Conversely, suppose that s, t ∈ S are such that F(s) ≤ F(t).
Then x̂1 + x̂2 + ...+ x̂ρ(s) ≤ x̂1 + x̂2 + ...+ x̂ρ(t) and thus ρ(s) ≤ ρ(t), so that s - t. Thus Property (1) of
Part (A) is satisfied. Now let s, t, x, y ∈ S be such that s ≺ t, x ≺ y and ([s], [t]) .

= ([x], [y]) . Let ρ(s) = i,
ρ(t) = j, ρ(x) = k and ρ(y) = ` (thus i < j and k < `). Then, by (A5), F(t)− F(s) = x̂i+1 + x̂i+2 + ... +
x̂j and F(y)− F(x) = x̂k+1 + x̂k+2 + ... + x̂`. Since xi+1 + xi+2 + ... + xj = xk+1 + xk+2 + ... + x` is the
equation corresponding to ([s], [t]) .

= ([x], [y]) (which - using ρ - can be expressed as (i, j) .
= (k, `)),

by our hypothesis x̂i+1 + x̂i+2 + ... + x̂j = x̂k+1 + x̂k+2 + ... + x̂` and thus F(t)− F(s) = F(y)− F(x),
so that (2) of Property (A) is satisfied.

not (B) ⇒ not (C). Suppose that there is a sequence in .
= (expressed in terms of the canonical

representation ρ of -) 〈((i1, j1)
.
= (k1, `1)) , ..., ((im, jm)

.
= (km, `m))〉 such that

Ble f t @ Bright (A7)

where Ble f t = B(i1,j1) d ... d B(im ,jm) and Bright = B(k1,`1)
d ... d B(km ,`m). Let E = {E1, ..., Em} be

the system of equations corresponding to the above sequence (for example, E1 is the equation
xi1+1 + xi1+2 + ... + xj1 = xk1+1 + xk1+2 + ... + x`1 ). Let L be the sum of the left-hand-side and R be the
sum of the right-hand-side of the equations E1, ..., Em. Note that for every integer i, nxi is a summand
of L if and only if i appears in Ble f t exactly n times and similarly nxi is a summand of R if and only if i
appears in Bright exactly n times. By (A7), if nxi is a summand of L then mxi is a summand of R with
m ≥ n and, furthermore, L 6= R. Thus there cannot be a positive solution of E, because it would be
incompatible with L = R. Since E is a subset of the system of equations corresponding to .

=, it follows
that the latter cannot have a positive solution either.

It only remains to prove that not (C) ⇒ not (B). We will return to this below after providing
an additional result.

First some notation. Given two vectors x, y ∈ Rm we write (1) x ≤ y if xi ≤ yi, for every i = 1, ..., m;
(2) x < y if x ≤ y and x 6= y; and (3) x � y if xi < yi, for every i = 1, ..., m.

Lemma 2. Let A be the m× n matrix such that the system of equations corresponding to .
= (Definition 10)

can be expressed as Ax = 0 (note that each entry of A is either −1, 0 or 1; furthermore, by symmetry of .
=,
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for each row ai of A there is another row ak such that ak = −ai)33. If the system of equations Ax = 0 does
not have a positive integer solution then there exist r rows of A, ai1 , ..., air with 1 < r ≤ m

2 and r positive
integers α1, ..., αr ∈ N\{0} such that if B is the submatrix of A consisting of the r rows ai1 , ..., air (thus for
every k = 1, ..., r, bk = aik , where bk is the kth row of B) then ∑r

k=1 αkbk < 0.

Proof. By Stiemke’s theorem34 if the system of equations Ax = 0 does not have a positive integer
solution then there exists a y ∈ Zm (where Z denotes the set of integers) such that yA < 0 (that
is, ∑m

i=1 yiai < 0). Let K = {k ∈ Z : yk 6= 0}. Let r be the cardinality of K; then, without loss of
generality, we can assume that r ≤ m

2
35. Furthermore, again without loss of generality, we can assume

that for every k ∈ K, yk > 036. Let B be the r × n submatrix of A consisting of those rows ak of
A such that k ∈ K and for i = 1, ..., r let α = (α1, ..., αr) be the vector corresponding to (yk)k∈K

37.
Then αB = ∑r

j=1 αjbj = yA < 0 and αi ∈ N\{0} for all i = 1, ..., r.

Completion of Proof of Proposition 3. It remains to prove that not (C) ⇒ not (B). Let A be the
m × n matrix such that the system of equations corresponding to .

= can be expressed as Ax = 0
and assume that Ax = 0 does not have a positive integer solution. Let B be the r × n submatrix
of A and α = (α1, ..., αr) the vector of positive integers of Lemma 2 such that αB = ∑r

j=1 αjbj < 0.
Define two r × n matrices C =

(
cij
)

i=1,...,r; j=1,...,n and D =
(
dij
)

i=1,...,r; j=1,...,n as follows (recall that
each entry of B is either −1, 0 or 1):

cij =

{
1 if bij = 1
0 otherwise

and dij =

{
1 if bij = −1
0 otherwise

.

Then, for every i = 1, ..., r, bi = ci − di and thus (since ∑r
i=1 αibi < 0)

∑r
i=1 αici < ∑r

i=1 αidi. (A9)

33 For example, the system of Equation (15) can be written as Ax = 0, where x = (x1, ..., x5) and

A =


1 1 0 −1 0
−1 −1 0 1 0

0 0 1 0 −1
0 0 −1 0 1
1 1 1 −1 −1
−1 −1 −1 1 1

 (A8)

34 See, for example, [23] (p. 216) or [24] (Theorem 1.1, p. 65).
35 Proof. Recall that for each row ai of A there is a row ak such that ai = −ak. If yi 6= 0 and yk 6= 0 for some i and k such that

ai = −ak then

yiai + ykak =



0 if yi = yk
(yk − yi)ak if 0 < yi < yk
(yi − yk)ai if 0 < yk < yi
(|yi|+ yk) ak if yi < 0 < yk
(yi + |yk|) ai if yk < 0 < yi
(|yk| − |yi|) ai if yi < yk < 0
(|yi| − |yk|) ak if yk < yi < 0

where all the multipliers (of ai or ak) are positive. Thus one can set one of the two values of yi and yk to zero and replace the
other value with the relevant of the above values while keeping yA unchanged. For example, if yk < yi < 0 then one can
replace yi with 0 and yk with (|yi | − |yk |) thereby reducing the cardinality of K by one. This process can be repeated until
the multipliers of half of the rows of A have been replaced by zero.

36 Proof. Suppose that yk < 0 for some k ∈ K. Recall that there exists an i such that ak = −ai . By the argument of the previous
footnote, yi = 0. Then replace yk by 0 and replace yi = 0 by ỹi = −yk .

37 For example, if K = {3, 6, 7} and y3 = 2, y6 = 1, y7 = 3, then B is the 3× n matrix where b1 = a3, b2 = a6 and b3 = a7 and
α1 = 2, α2 = 1 and α3 = 3.
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Let C′ be the matrix obtained from C by replacing each row ci of C with αi copies of it and let D′

be constructed from D similarly. Then, letting s = ∑r
i=1 αi, C′ and D′ are s× n matrices whose entries

are either 0 or 1. It follows from (A9) that

∑s
i=1 c′i < ∑s

i=1 d′i. (A10)

Consider the system of equations
C′x = D′x. (A11)

For every j = 1, ..., n, the jth coordinate of ∑s
i=1 c′i is the number of times that the variable xj

appears on the left-hand-side of (A11) and the jth coordinate of ∑s
i=1 d′i is the number of times that

the variable xj appears on the right-hand-side of (A11). Hence, by (A10), for every j = 1, ..., n,
the number of times that the variable xj appears on the left-hand-side of (A11) is less than or equal
to the number of times that it appears on the right-hand-side of (A11) and for at least one j it
is less. Thus, letting 〈((i1, j1)

.
= (k1, `1)) , ..., ((is, js)

.
= (ks, `s))〉 be the sequence of elements of .

=

corresponding to the equations in (A11), we have that Ble f t @ Bright where Ble f t = B(i1,j1) d ... d B(im ,jm)

and Bright = B(k1,`1)
d ... d B(km ,`m).
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