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Abstract: Assuming that cards are dealt with replacement from a single deck and that each
of Player and Banker sees the total of his own two-card hand but not its composition, baccara
is a 2 ⇥ 2

88 matrix game, which was solved by Kemeny and Snell in 1957. Assuming that
cards are dealt without replacement from a d-deck shoe and that Banker sees the composition
of his own two-card hand while Player sees only his own total, baccara is a 2⇥ 2

484 matrix
game, which was solved by Downton and Lockwood in 1975 for d = 1, 2, . . . , 8. Assuming
that cards are dealt without replacement from a d-deck shoe and that each of Player and
Banker sees the composition of his own two-card hand, baccara is a 2

5 ⇥ 2

484 matrix game,
which is solved herein for every positive integer d.
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1. Introduction

The game of baccara chemin de fer (briefly, baccara) played a key role in the development of game
theory. Bertrand’s [1] analysis of whether Player should draw or stand on a two-card total of 5 was
the starting point of Borel’s investigation of strategic games [2]. Borel [3,4] described Bertrand’s study
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as “extremely incomplete” but did not himself contribute to baccara. It is unfortunate that Borel was
unaware of Dormoy’s [5] work, which was less incomplete. Von Neumann [6], after proving the minimax
theorem, remarked that he would analyze baccara in a subsequent paper. But a solution of the game
would have to wait until the dawn of the computer age. Kemeny and Snell [7], assuming that cards are
dealt with replacement from a single deck and that each of Player and Banker sees the total of his own
two-card hand but not its composition, found the unique solution of the resulting 2⇥2

88 matrix game. In
practice, cards are dealt without replacement from a sabot, or shoe, containing six 52-card decks mixed
together. Downton and Lockwood [8], allowing a d-deck shoe dealt without replacement and assuming
that Banker sees the composition of his own two-card hand while Player sees only his own total, found
the unique solution of the resulting 2⇥ 2

484 matrix game for d = 1, 2, . . . , 8. They used an algorithm of
Foster [9].

Our aim in this paper is to solve the game without simplifying assumptions. We allow a d-deck
shoe dealt without replacement and allow each of Player and Banker to see the composition of his
own two-card hand, making baccara a 2

5 ⇥ 2

484 matrix game. We derive optimal Player and Banker
strategies and determine the value of the game, doing so for every positive integer d. We too make use
of Foster’s [9] algorithm. We suspect that these optimal strategies are uniquely optimal, but we do not
have a proof of uniqueness.

It will be convenient for what follows to classify the game-theoretic models of baccara in two ways.
First, we classify them according to how the cards are dealt.

• Model A. Cards are dealt with replacement from a single deck.
• Model B. Cards are dealt without replacement from a d-deck shoe.

Second, we classify them according to the information available to Player and Banker about their own
two-card hands.

• Model 1.Each of Player and Banker sees the total of his own two-card hand but not its composition.
• Model 2.Banker sees the composition of his own two-card hand while Player sees only his

own total.
• Model 3.Each of Player and Banker sees the composition of his own two-card hand.

(We do not consider the fourth possibility.) Thus, Model A1 is the model of Kemeny and Snell [7],
Model B2 is the model of Downton and Lockwood [8], and Model B3 is our primary focus here.
Model A2 was discussed by Downton and Holder [10], but Models A3, B1, and B3 have not been
considered before, as far as we know.

The analysis under Model B applies exactly to the first round, and it also applies exactly to any
subsequent round provided neither Player nor Banker retains knowledge of the cards dealt during
previous rounds. This is a consequence of the exchangeability of a well-shuffled shoe.

Like others before us, we restrict our attention to the classical parlor game of baccara chemin de fer,
in contrast to the modern casino game. (Following Deloche and Oguer [11], we use the authentic French
spelling “baccara” rather than the more conventional “baccarat” to emphasize this.) The rules are as
follows. The role of Banker rotates among the players (counter-clockwise), changing hands after a
Banker loss or when Banker chooses to relinquish his role. Banker announces the amount he is willing
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to risk, and the total amount bet on Player’s hand cannot exceed that amount. After a Banker win, all
winnings must be added to the bank unless Banker chooses to withdraw. Denominations A, 2–9, 10, J,
Q, K have values 1, 2–9, 0, 0, 0, 0, respectively, and suits are irrelevant. The total of a hand, comprising
two or three cards, is the sum of the values of the cards, modulo 10. In other words, only the final digit
of the sum is used to evaluate a hand. Two cards are dealt face down to Player and two face down to
Banker, and each looks only at his own hand. The object of the game is to have the higher total (closer
to 9) at the end of play. Winning bets on Player’s hand are paid by Banker at even odds. Losing bets
on Player’s hand are collected by Banker. Hands of equal total result in a tie or a push (no money is
exchanged). A two-card total of 8 or 9 is a natural. If either hand is a natural, play ends. If neither hand
is a natural, Player then has the option of drawing a third card (but this option is heavily constrained; see
below). If he exercises this option, his third card is dealt face up. Next, Banker, observing Player’s third
card, if any, has the option of drawing a third card. This completes the game. Since several players can
bet on Player’s hand, Player’s strategy is restricted. He must draw on a two-card total of 4 or less and
stand on a two-card total of 6 or 7. When his two-card total is 5, he is free to draw or stand as he chooses.
(The decision is usually made by the player with the largest bet.) It is safe to say that the constraints on
Player’s strategy are in his best interest.1 Banker, on whose hand no one can bet, has no constraints on
his strategy.

In the modern casino game, not only is Banker’s strategy highly constrained but the casino collects
a five percent commission on Banker wins. That makes the game a bimatrix game, which is not
considered here.

In Section 3, we show how to evaluate the payoff matrix. We emphasize Model B3 but treat the other
models as well. In Section 4, we use strict dominance to reduce the payoff matrix under Model B3 to
2

5 ⇥ 2

nd , where nd depends on the number of decks d and satisfies 18  nd  23. We get similar
reductions of the other models. To proceed further, in Section 5 we re-examine the unique solution of
Kemeny and Snell [7] under Model A1 and notice that there are multiple solutions under Models A2
and A3. In Section 6 we derive the unique solution under Model B1 for every positive integer d. Model
B1 is of interest because it shows the price of the “with replacement” assumption more clearly than do
Models B2 and B3. In Section 7 we re-derive the unique solution of Downton and Lockwood [8] under
Model B2, extending it to every positive integer d. These results lead us in Section 8 to a solution under
Model B3 for every positive integer d. The feature of the game that allows this is that, under Model B3,
the kernel is 2⇥2.2 The two Banker pure strategies specified by the kernel are dependent on d, while the

1 Technically, this has not been proved. But the usual argument is that, if Player’s strategy were unconstrained, then, under
Model A1, when drawing on a two-card total of i, the conditional distribution of Player’s three-card total, given that his
third card is not 0-valued, is uniform over the nine other totals; in particular, the three-card total is lower than the two-card
total with conditional probability i/9, otherwise it is higher. This strongly suggests that Player should draw on two-card
totals of 0–3 and stand on two-card totals of 6 and 7. Suppose we allow Player the freedom to draw or stand on two-card
totals of 4 and 5. Then we have a 22 ⇥ 288 matrix game, which can be reduced to 22 ⇥ 211 using Lemma 1 below. We
can then check that the two Player pure strategies in which he stands on a two-card total of 4 are strictly dominated. See
Problem 5.16 of [12].

2 Quoting [13], the Shapley–Snow theorem [14] “states that corresponding to a basic optimal strategy for either player in
any matrix game there is a square submatrix (the kernel) whose associated game has the same value as the given game
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two Player pure strategies specified by the kernel are independent of d. All computations were carried
out in infinite precision using Mathematica.

2. Preliminaries

In this section we present two lemmas that will be key to our analysis. They concern the strategic
form of a certain matrix game, which is best described in extensive form. Player I chooses a pure
strategy i 2 {0, 1, . . . ,m � 1}, where m � 2. Then nature chooses the value of Zi, a random variable
with distribution P(Zi = l) = pi(l) for l = 0, 1, . . . , n, where n � 1. If Zi = 0, play ends and player I’s
expected gain is ai(0). If Zi = l 2 {1, 2, . . . , n}, then player II observes l (but not i) and based on this
information chooses a “move” j 2 {0, 1}. If player II chooses move 1 (respectively, move 0), player I’s
expected gain is ai,1(l) (respetively, ai,0(l)).

If Player II could observe not only l ( 6= 0) but i as well, then he would simply choose the smaller of
ai,1(l) and ai,0(l). Lemma 1 implies that if, having observed l, player II would make the same choice for
every i, then he should make that choice knowing only l. Lemma 2 provides a solution method in the
special case of Lemma 1 in which m = 2 based on the idea that player II’s best response to each mixed
strategy of player I can be readily evaluated.

We can convert the game to strategic form by noticing that player II’s pure strategies can be identified
with subsets T ⇢ {1, 2, . . . , n}, with player II choosing move 1 if Zi 2 T and move 0 if Zi 2 T c.
The following lemma was used implicitly in [7–9] and explicitly in [12].

Lemma 1. Let m � 2 and n � 1 and consider an m ⇥ 2

n matrix game of the following form. Player I
has m pure strategies, labeled 0, 1, . . . ,m � 1. Player II has 2n pure strategies, labeled by the subsets
T ⇢ {1, 2, . . . , n}. For i = 0, 1, . . . ,m� 1, there exist probabilities pi(0) � 0, pi(1) > 0, . . . , pi(n) > 0

with pi(0) + pi(1) + · · · + pi(n) = 1 together with a real number ai(0), and for l = 1, 2, . . . , n, there
exists a real m⇥ 2 matrix

0

B

B

B

B

@

a0,0(l) a0,1(l)

a1,0(l) a1,1(l)
...

...
am�1,0(l) am�1,1(l)

1

C

C

C

C

A

The m⇥ 2

n matrix game has payoff matrix with (i, T ) entry given by

ai,T := pi(0)ai(0) +
X

l2T

pi(l)ai,1(l) +
X

l2T c

pi(l)ai,0(l) (1)

for i 2 {0, 1, . . . ,m� 1} and T ⇢ {1, 2, . . . , n}. Here T c
:= {1, 2, . . . , n}� T .

and which has basic optimal strategies that are optimal in the original game when augmented by zeros in the restored
coordinates.” A basic optimal strategy is an extreme point of the convex set of optimal strategies. In the case of Model
B3 we have not proved that our optimal strategy is basic, but a kernel nevertheless exists.
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We define

T0 := {1  l  n : ai,0(l) < ai,1(l) for i = 0, 1, . . . ,m� 1}
T1 := {1  l  n : ai,0(l) > ai,1(l) for i = 0, 1, . . . ,m� 1}
T⇤ := {1, 2, . . . , n}� T0 � T1

and put n⇤ := |T⇤|. Then, given T ⇢ {1, 2, . . . , n}, player II’s pure strategy T is strictly dominated
unless T1 ⇢ T ⇢ T1[T⇤. Therefore, the m⇥2

n matrix game can be reduced to an m⇥2

n⇤ matrix game.

Remark. With Zi defined as in the first paragraph of this section, the lemma implies that, regardless of
player I’s strategy choice, it is optimal for player II to choose move 1 if Zi 2 T1 and move 0 if Zi 2 T0.

Proof. See [12] for the proof.

We now formalize Foster’s [9] algorithm for solving the 2⇥ 2

n matrix game described in the special
case of Lemma 1 in which m = 2. (See also Foster’s discussion of [15].) Of course, it is well known that
a 2 ⇥ 2

n matrix game can be solved by maximizing the lower envelope of 2n linear functions on [0, 1].
Foster’s algorithm, when it applies, is much more efficient.

Lemma 2. Let n � 1 and consider a 2 ⇥ 2

n matrix game of the following form. Player I has two pure
strategies, labeled 0 and 1. Player II has 2n pure strategies, labeled by the subsets T ⇢ {1, 2, . . . , n}. For
i = 0, 1, there exist probabilities pi(0) � 0, pi(1) > 0, . . . , pi(n) > 0 with pi(0)+pi(1)+ · · ·+pi(n) = 1

together with a real number ai(0), and for l = 1, 2, . . . , n, there exists a real 2⇥ 2 matrix
 

a0,0(l) a0,1(l)

a1,0(l) a1,1(l)

!

The 2⇥ 2

n matrix game has payoff matrix with (i, T ) entry given by

ai,T := pi(0)ai(0) +
X

l2T

pi(l)ai,1(l) +
X

l2T c

pi(l)ai,0(l)

for i 2 {0, 1} and T ⇢ {1, 2, . . . , n}.
We define

T00 := {1  l  n : a0,0(l) < a0,1(l) and a1,0(l) < a1,1(l)}
T01 := {1  l  n : a0,0(l) < a0,1(l) and a1,0(l) > a1,1(l)}
T10 := {1  l  n : a0,0(l) > a0,1(l) and a1,0(l) < a1,1(l)}
T11 := {1  l  n : a0,0(l) > a0,1(l) and a1,0(l) > a1,1(l)}

and assume that T00[T01[T10[T11 = {1, 2, . . . , n}. If player I uses the mixed strategy (1� p, p), then
player II’s best response is

T (p) := T11 [ {l 2 T01 : p(l) < p} [ {l 2 T10 : p(l) > p} (2)

where
p(l) :=

p0(l)[a0,0(l)� a0,1(l)]

p0(l)[a0,0(l)� a0,1(l)] + p1(l)[a1,1(l)� a1,0(l)]
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This player I mixed strategy and player II best response leads to a player I expected gain of

V (p) := (1� p)e0 + p e1 +
X

{l2T01:p(l)<p}[{l2T10:p(l)>p}

[(1� p)p0(l)a0,1(l) + p p1(l)a1,1(l)]

+

X

{l2T01:p(l)�p}[{l2T10:p(l)p}

[(1� p)p0(l)a0,0(l) + p p1(l)a1,0(l)] (3)

where
ei := pi(0)ai(0) +

X

l2T11

pi(l)ai,1(l) +
X

l2T00

pi(l)ai,0(l)

The function p 7! V (p) is the lower envelope of the family of linear functions p 7! (1� p)a0,T + p a1,T ,
where T ranges over T11 ⇢ T ⇢ T11 [ T01 [ T10. Therefore, the value of the game is

V := max

0p1
V (p) = max

⇣

V (0), V (1), max

l2T01[T10

V (p(l))
⌘

= V (p⇤)

If the last equality uniquely determines p⇤ and if p⇤ = p(l⇤) for a unique l⇤ 2 T01 [ T10, then player I’s
unique optimal strategy is (1� p⇤, p⇤) and the two columns of the kernel are uniquely specified as T (p⇤)
and T (p⇤) [ {l⇤}. Their unique optimal mixture (1� q⇤, q⇤) is obtained by solving the 2⇥ 2 kernel.

Proof. Notice that l belongs to T (p) if l 2 T11 or if both l 2 T01 [ T10 and

(1� p)p0(l)a0,1(l) + p p1(l)a1,1(l) < (1� p)p0(l)a0,0(l) + p p1(l)a1,0(l)

implying Equation (2). The function in Equation (3) is continuous and piecewise linear, hence is
maximized at 0, 1, or one of the points p(l) at which its slope changes. The remaining conclusions
of the lemma follow easily.

3. Evaluation of the Payoff Matrix

We begin by considering the game under Model B3. Let X1  X2 be the values of the two
cards dealt to Player and Y1  Y2 the values of the two cards dealt to Banker. Define the function
M : {0, 1, . . .} 7! {0, 1, . . . , 9} by M(i) := Mod(i, 10). Then X := M(X1 +X2) is Player’s two-card
total and Y := M(Y1+Y2) is Banker’s two-card total. On the event {X  7, Y  7}, let X3 denote the
value of Player’s third card if he draws, and let X3 := ? if he stands. Similarly, let Y3 denote the value
of Banker’s third card if he draws, and let Y3 := ? if he stands.

As the rules specify, Player’s pure strategies can be indexed by the sets S satisfying

{(i1, i2) : 0  i1  i2  9, M(i1 + i2)  4}
⇢ S ⇢ {(i1, i2) : 0  i1  i2  9, M(i1 + i2)  5} (4)

Assuming X  7 and Y  7, Player draws if (X1, X2) 2 S and stands otherwise. Since the set of pairs
(i1, i2) satisfying 0  i1  i2  9 and M(i1 + i2) = 5 contains (0, 5), (1, 4), (2, 3), (6, 9), and (7, 8), it
follows that Player has 25 pure strategies.

On the other hand, Banker’s pure strategies can be indexed by the sets T satisfying

T ⇢ {(j1, j2) : 0  j1  j2  9, M(j1 + j2)  7}⇥ {0, 1, 2, . . . , 9,?} (5)
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Assuming X  7 and Y  7, Banker draws if (Y1, Y2, X3) 2 T and stands otherwise. Since there are
44 pairs (j1, j2) satisfying 0  j1  j2  9 and M(j1 + j2)  7, and since 44 ⇥ 11 = 484, it follows
that Banker has 2484 pure strategies.

Thus, baccara is a 2

5 ⇥ 2

484 matrix game. Let us denote by GS,T Player’s profit from a one-unit bet
when he adopts pure strategy S and Banker adopts pure strategy T , so that aS,T := E[GS,T ] is the (S, T )
entry in the payoff matrix. Then

aS,T = E[GS,T ] = P(X 2 {8, 9}, X > Y )� P(Y 2 {8, 9}, Y > X) + E[GS,T 1{X7, Y7}]

= E[GS,T 1{X7, Y7}]

=

X

M(j1+j2)7

9
X

k=0

P((X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

· E[GS,T | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k]

+

X

M(j1+j2)7

P((X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

· E[GS,T | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?] (6)

where Sc
:= {(i1, i2) : 0  i1  i2  9, M(i1 + i2)  7}� S.

Let us now define, for S and T , for (j1, j2) satisfying 0  j1  j2  9 and M(j1 + j2)  7, and for
k 2 {0, 1, . . . , 9},

aS,l(j1, j2, k) := E[GS,T | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k]

aS,l(j1, j2,?) := E[GS,T | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?]

(7)

where l = 1 if (j1, j2, k) (respectively, (j1, j2,?)) belongs to T ; and l = 0 if (j1, j2, k) (respectively,
(j1, j2,?)) belongs to T c (the complement of T relative to the set in Equation (5)). Defining also

pS(j1, j2, k) := P((X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

pS(j1, j2,?) := P((X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

we have, from Equation (6),

aS,T =

X

(j1,j2,k)2T with k 6=?

pS(j1, j2, k)aS,1(j1, j2, k) +
X

(j1,j2,k)2T c with k 6=?

pS(j1, j2, k)aS,0(j1, j2, k)

+

X

(j1,j2,?)2T

pS(j1, j2,?)aS,1(j1, j2,?) +

X

(j1,j2,?)2T c

pS(j1, j2,?)aS,0(j1, j2,?) (8)

To evaluate the conditional expectations in Equation (7), we condition on (X1, X2):

aS,l(j1, j2, k) =
X

(i1,i2)2S

P((X1, X2) = (i1, i2) | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

· E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = k] (9)

if k 6= ? and

aS,l(j1, j2,?) =

X

(i1,i2)2Sc

P((X1, X2) = (i1, i2) | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

· E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = ?] (10)
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To evaluate the conditional expectations in Equations (9) and (10), there are four cases to consider:
Case 1. (i1, i2) 2 S, (j1, j2, k) 2 T with k 6= ? (both Player and Banker draw). Here, for d decks,

E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = k]

=

9
X

l=0

4d(1 + 3�l,0)� �l,i1 � �l,i2 � �l,j1 � �l,j2 � �l,k
52 d� 5

sgn(M(i1 + i2 + k)�M(j1 + j2 + l)) (11)

which converges, as d ! 1, to

9
X

l=0

1 + 3�l,0
13

sgn(M(i1 + i2 + k)�M(j1 + j2 + l)) (12)

Case 2. (i1, i2) 2 S, (j1, j2, k) 2 T c with k 6= ? (Player draws, Banker stands). Regardless of the
number of decks,

E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = k] = sgn(M(i1 + i2 + k)�M(j1 + j2))

Case 3. (i1, i2) 2 Sc, (j1, j2,?) 2 T (Player stands, Banker draws). For d decks,

E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = ?]

=

9
X

l=0

4d(1 + 3�l,0)� �l,i1 � �l,i2 � �l,j1 � �l,j2
52 d� 4

sgn(M(i1 + i2)�M(j1 + j2 + l)) (13)

which converges, as d ! 1, to

9
X

l=0

1 + 3�l,0
13

sgn(M(i1 + i2)�M(j1 + j2 + l)) (14)

Case 4. (i1, i2) 2 Sc, (j1, j2,?) 2 T c (both Player and Banker stand). Regardless of the number
of decks,

E[GS,T | (X1, X2) = (i1, i2), (Y1, Y2) = (j1, j2), X3 = ?] = sgn(M(i1 + i2)�M(j1 + j2))

Next, to evaluate

P((X1, X2) = (i1, i2) | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

we begin with a full d-deck shoe except for three cards, one j1, one j2, and one k, removed. It will
comprise m0 0s, m1 1s, . . . , and m9 9s, where

mr := 4d(1 + 3�r,0)� �r,j1 � �r,j2 � �r,k, r = 0, 1, . . . , 9

The number of equally likely two-card hands is
�

52 d�3
2

�

, and the number of those that belong to S is

m :=

X

(u1,u2)2S

mu1(mu2 � �u2,u1)

1 + �u1,u2
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Then

P((X1, X2) = (i1, i2) | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

=

mi1(mi2 � �i2,i1)

1 + �i1,i2

1S((i1, i2))

m
(15)

and

pS(j1, j2, k) = P((Y1, Y2) = (j1, j2), X3 = k)P((X1, X2) 2 S | (Y1, Y2) = (j1, j2), X3 = k)

=

(2� �j1,j2)4d(1 + 3�j1,0)[4d(1 + 3�j2,0)� �j2,j1 ]

(52 d)(52 d� 1)

· 4d(1 + 3�k,0)� �k,j1 � �k,j2
52 d� 2

m
�

52 d�3
2

� (16)

Finally, to evaluate

P((X1, X2) = (i1, i2) | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

we begin with a full d-deck shoe except for two cards, one j1 and one j2, removed. It will comprise
m0

0 0s, m0
1 1s, . . . , and m0

9 9s, where

m0
r := 4d(1 + 3�r,0)� �r,j1 � �r,j2 , r = 0, 1, . . . , 9

The number of equally likely two-card hands is
�

52 d�2
2

�

, and the number of those that belong to Sc is

m0
:=

X

(u1,u2)2Sc

m0
u1
(m0

u2
� �u2,u1)

1 + �u1,u2

Then

P((X1, X2) = (i1, i2) | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

=

m0
i1(m

0
i2 � �i2,i1)

1 + �i1,i2

1Sc
((i1, i2))

m0 (17)

and

pS(j1, j2,?) = P((Y1, Y2) = (j1, j2), X3 = ?)P((X1, X2) 2 Sc | (Y1, Y2) = (j1, j2), X3 = ?)

=

(2� �j1,j2)4d(1 + 3�j1,0)[4d(1 + 3�j2,0)� �j2,j1 ]

(52 d)(52 d� 1)

m0
�

52 d�2
2

� (18)

This suffices to complete the evaluation of Equations (9) and (10) when cards are dealt without
replacement from a d-deck shoe.

The assumption that cards are dealt with replacement from a single deck can be modeled by letting
d ! 1 in the assumption that cards are dealt without replacement from a d-deck shoe. The formulas
are simpler in this case:

P((X1, X2) = (i1, i2) | (X1, X2) 2 S, (Y1, Y2) = (j1, j2), X3 = k)

=

(2� �i1,i2)(1 + 3�i1,0)(1 + 3�i2,0)1S((i1, i2))

89 + 8 |S \ {(0, 5)}|+ 2 |S \ {(1, 4), (2, 3), (6, 9), (7, 8)}| (19)
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pS(j1, j2, k) =
(2� �j1,j2)(1 + 3�j1,0)(1 + 3�j2,0)

(13)

2

1 + 3�k,0
13

· 89 + 8 |S \ {(0, 5)}|+ 2 |S \ {(1, 4), (2, 3), (6, 9), (7, 8)}|
(13)

2
(20)

P((X1, X2) = (i1, i2) | (X1, X2) 2 Sc, (Y1, Y2) = (j1, j2), X3 = ?)

=

(2� �i1,i2)(1 + 3�i1,0)(1 + 3�i2,0)1Sc
((i1, i2))

32 + 8 |Sc \ {(0, 5)}|+ 2 |Sc \ {(1, 4), (2, 3), (6, 9), (7, 8)}| (21)

pS(j1, j2,?) =

(2� �j1,j2)(1 + 3�j1,0)(1 + 3�j2,0)

(13)

2

· 32 + 8 |Sc \ {(0, 5)}|+ 2 |Sc \ {(1, 4), (2, 3), (6, 9), (7, 8)}|
(13)

2
(22)

Here 89 comes from 25 + 16 + 16 + 16 + 16, where the summands correspond to totals 0, 1, 2, 3, 4;
32 is 16 + 16, corresponding to totals 6 and 7.

In summary, we can evaluate Equation (8) under Model B3 or A3. Restricting S to the two extremes
in Equation (4), we obtain Equation (8) under Model B2 or A2 as a special case. Finally, for Models B1
and A1, we can derive the analogue of Equation (8) from results already obtained. Specifically,

aS�,T �
=

X

(j,k)2T � with k 6=?

pS�
(j, k)aS�,1(j, k) +

X

(j,k)2(T �)c with k 6=?

pS�
(j, k)aS�,0(j, k)

+

X

(j,?)2T �

pS�
(j,?)aS�,1(j,?) +

X

(j,?)2(T �)c

pS�
(j,?)aS�,0(j,?)

where

aS�,l(j, k) := P (GS�,T � | X 2 S�, Y = j, X3 = k)

=

X

M(j1+j2)=j

pS(j1, j2, k)aS,l(j1, j2, k)/pS�
(j, k)

aS�,l(j,?) := P (GS�,T � | X 2 (S�
)

c, Y = j, X3 = ?)

=

X

M(j1+j2)=j

pS(j1, j2,?)aS,l(j1, j2,?)/pS�
(j,?)

pS�
(j, k) = P (X 2 S�, Y = j, X3 = k) =

X

M(j1+j2)=j

pS(j1, j2, k)

and

pS�
(j,?) = P (X 2 (S�

)

c, Y = j, X3 = ?) =

X

M(j1+j2)=j

pS(j1, j2,?)

here S�
= {0, 1, 2, 3, 4} or {0, 1, 2, 3, 4, 5}, (S�

)

c
= {0, 1, . . . , 7} � S�, and T � ⇢ {0, 1, . . . , 7} ⇥

{0, 1, . . . , 9,?}, while S and T are the corresponding subsets of {(i1, i2) : 0  i1  i2  9, M(i1 +

i2)  7} and {(j1, j2) : 0  j1  j2  9, M(j1 + j2)  7}⇥ {0, 1, . . . , 9,?}, respectively.
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4. Banker’s Strictly Dominated Pure Strategies

Our next step is to show that Lemma 1 applies (with Player and Banker playing the roles of player I
and player II, respectively), allowing us to reduce the game to a more manageable size. The payoff matrix
in Equation (8) has the form in Equation (1) with m = 32, n = 484, pi(0) = P(X 2 {8, 9} or Y 2
{8, 9}), and ai(0) = 0. It remains to evaluate T0, T1, and T⇤ of the lemma.

Results are summarized in Table 1. T1 (respectively, T0) is the set of triples (j1, j2, k) for which
aS,1(j1, j2, k) < aS,0(j1, j2, k) (respectively, >) for each of Player’s 25 pure strategies S, indicated by a
D (respectively, S) in the corresponding entry of the table. T⇤ is the remaining set of triples (j1, j2, k),
indicated by a ⇤ in the corresponding entry of the table. Of particular interest is nd := |T⇤|.

Theorem 3. (a) Under Model B3 with the number of decks being a positive integer d, Lemma 1 applies.
The sets T0, T1, and T⇤ of the lemma can be inferred from Table 1, with entries S, D, and ⇤ located at
elements of T0, T1, and T⇤, respectively. In particular, for d = 1, 2, . . . , 10, nd = 23, 21, 20, 19, 19, 18,
21, 23, 23, 23, respectively, and, if d � 11, nd = 22.

(b) Exactly the same conclusions hold under Model B2.
(c) Lemma 1 applies under Models A2 and A3, with the same results as those under Models B2 and

B3 with d � 11.

Proof. It will occasionally be convenient to label the 2

5 choices of S by the integers 0 to 31. Strategy
0 (respectively, strategy 31) denotes Player’s pure strategy of standing (respectively, drawing) on a two-
card total of 5, regardless of its composition. More generally, strategy u 2 {0, 1, . . . , 31} is specified by
the 5-bit binary representation of u. For example, strategy 19 (binary 10011) corresponds to drawing on
(0, 5), standing on (1, 4) and (2, 3), and drawing on (6, 9) and (7, 8).

Table 1 is identical under Models B2 and B3 because, defining

bu(j1, j2, k) := au,1(j1, j2, k)� au,0(j1, j2, k)

for u = 0, 1, . . . , 31, 0  j1  j2  9 with M(j1 + j2)  7, and k = 0, 1, . . . , 9,?, we have, with a
few exceptions,

bu(j1, j2, k) 2 [min{b0(j1, j2, k), b31(j1, j2, k)},max{b0(j1, j2, k), b31(j1, j2, k)}]

for u = 1, 2, . . . , 30. The exceptions occur only when d = 1 and only when (j1, j2, k) = (0, 0, 9),
(5, 5, 9), or (5, 6, 0). (See Section 7 for an explanation of why this is to be expected.)

It follows that, if b0(j1, j2, k) < 0 and b31(j1, j2, k) < 0, then the (j1, j2, k) entry in Table 1 is
D (draw); in 301 of the 484 entries, this property holds for every d � 1. If b0(j1, j2, k) > 0 and
b31(j1, j2, k) > 0, then the (j1, j2, k) entry in Table 1 is S (stand); in 151 of the 484 entries, this
property holds for every d � 1. If b0(j1, j2, k) > 0 > b31(j1, j2, k) or b0(j1, j2, k) < 0 < b31(j1, j2, k),
then the (j1, j2, k) entry in Table 1 is ⇤; in 13 of the 484 entries, this property holds for every d � 1.
This accounts for all but 19 entries in Table 1, those marked with footnotes, in which the sign of
b0(j1, j2, k) or b31(j1, j2, k) depends on d.

For example, one of the 19 is (3, 3, 6). Indeed,

b31(3, 3, 6) = � 2(80 d3 � 832 d2 + 135 d� 2)

(52 d� 5)(840 d2 � 114 d+ 1)

> 0 (respectively, < 0)
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for all d  10 (respectively, d � 11) and

b0(3, 3, 6) = �2(848 d3 � 952 d2 + 135 d� 2)

(52 d� 5)(712 d2 � 102 d+ 1)

< 0

for all d � 1. It follows that the (3, 3, 6) entry of Table 1 is ⇤ if d  10 and D if d � 11. The other 483
cases are analyzed similarly.

Table 1. Banker’s optimal move (preliminary version) under Model B2 or B3 with d = 6,
indicated by D (draw) or S (stand), except in the n6 = 18 cases indicated by ⇤ in which
it depends on Player’s strategy. Adjustments to the table for other positive integers d are
specified by footnotes. Under Model A2 or A3, results are the same as those under Model
B2 or B3 with d � 11.

Banker’s Two-Card Player’s Third Card (? if Player stands)
Total Hand 0 1 2 3 4 5 6 7 8 9 ?
0, 1, 2 D D D D D D D D D D D

3 (0, 3) D D D D D D D D S 2 ⇤ D
3 (1, 2) D D D D D D D D S 1 ⇤ D
3 (4, 9) D D D D D D D D S 5 ⇤ D
3 (5, 8) D D D D D D D D S 3 ⇤ D
3 (6, 7) D D D D D D D D S 3 ⇤ D

4 (0, 4) S S 8 D 1 D D D D D S S D
4 (1, 3) S S 7 D 1 D D D D D S S D
4 (2, 2) S ⇤ 3 D 1 D D D D D S S D
4 (5, 9) S S 7 D 1 D D D D D S S D
4 (6, 8) S ⇤ D D D D D D S S D
4 (7, 7) S ⇤ D D D D D D S S D

5 (0, 5) S S S S ⇤ 1 D D D S S D
5 (1, 4) S S S S S 7 D D D S S D
5 (2, 3) S S S S S 8 D D D S S D
5 (6, 9) S S S S ⇤ 1 D D D S S D
5 (7, 8) S S S S ⇤ 1 D D D S S D

6 (0, 6) S S S S S S D D S S ⇤
6 (1, 5) S S S S S S D D S S ⇤
6 (2, 4) S S S S S S D D S S ⇤
6 (3, 3) S S S S S S ⇤ 11 D S S ⇤
6 (7, 9) S S S S S S D D S S ⇤
6 (8, 8) S S S S S S D D S S ⇤
7 S S S S S S S S S S S

1 Replace S by ⇤ and D by ⇤ and ⇤ by S if d = 1; 2 Replace S by ⇤ if d  2; 3 Replace S by ⇤
and ⇤ by S if d  3; 5 Replace S by ⇤ if d  5; 7 Replace S by ⇤ if d � 7; 8 Replace S by ⇤ if
d � 8; 11 Replace ⇤ by D if d � 11.
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Requiring that Banker make the optimal move in each of the cases that do not depend on Player’s
strategy, we have reduced the game, under Model B3 (respectively, B2), to a 2

5 ⇥ 2

nd (respectively,
2⇥ 2

nd) matrix game, where 18  nd  23.

We have similar results for Model B1. Again, nd := |T⇤|.

Theorem 4. (a) Under Model B1 with the number of decks being a positive integer d, Lemma 1 applies.
The sets T0, T1, and T⇤ of the lemma can be inferred from Table 2, with entries S, D, and ⇤ located at
elements of T0, T1, and T⇤, respectively. In particular, n1 = 4, n2 = 3, and nd = 4 for all d � 3.
(b) Lemma 1 applies under Model A1, with the same results as those under Model B1 with d � 4.

Table 2. Banker’s optimal move (preliminary version) under Model B1 with d = 6, indicated
by D (draw) or S (stand), except in the n6 = 4 cases indicated by ⇤ in which it depends on
Player’s strategy. Adjustments to the table for other positive integers d are specified by
footnotes. Under Model A1, results are the same as those under Model B1 with d � 4.

Banker’s Two-Card Player’s Third Card (? if Player Stands)

Total 0 1 2 3 4 5 6 7 8 9 ?

0, 1, 2 D D D D D D D D D D D
3 D D D D D D D D S3 ⇤ D
4 S ⇤3 D1 D D D D D S S D
5 S S S S ⇤2 D D D S S D
6 S S S S S S D D S S ⇤
7 S S S S S S S S S S S

1 Replace D by ⇤ if d = 1; 2 Replace ⇤ by S if d  2; 3 Replace S by ⇤ and ⇤ by S if d  3.

Proof. Let
bu(j, k) := au,1(j, k)� au,0(j, k)

where u = 0 corresponds to S�
= {0, 1, 2, 3, 4} and u = 1 corresponds to S�

= {0, 1, 2, 3, 4, 5}.
If bu(j, k) < 0 for u = 0, 1, then the (j, k) entry in Table 2 is D; in 54 of the 88 entries, this property
holds for every d � 1. If bu(j, k) > 0 for u = 0, 1, then the (j, k) entry in Table 2 is S; in 28 of the
88 entries, this property holds for every d � 1. If b0(j, k) > 0 > b1(j, k) or b0(j, k) < 0 < b1(j, k),
then the (j, k) entry in Table 1 is ⇤; in two of the 88 entries, namely (3, 9) and (6,?), this property holds
for every d � 1. This accounts for all but four entries in Table 2, those marked with footnotes, in which
the sign of bu(j, k) depends on d for u = 0 or u = 1.

For example, one of the four is (5, 4). Indeed,

b1(5, 4) = �15 360 d4 � 45 184 d3 + 9040 d2 � 588 d+ 13

(52 d� 5)(26 880 d3 � 4680 d2 + 242 d� 3)

< 0 (respectively, > 0)

for d � 3 (respectively, d  2), and

b0(5, 4) =
1024 d4 + 37 248 d3 � 7792 d2 + 492 d� 7

(52 d� 5)(22 784 d3 � 3976 d2 + 194 d� 1)

> 0
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for all d � 1. Therefore, the entry in the (5, 4) position of Table 2 is ⇤ if d � 3 and S if d  2. The other
87 cases are analyzed similarly.

5. Solutions under Models A1, A2, and A3

We recall Kemeny and Snell’s [7] solution of the 2 ⇥ 2

88 matrix game that assumes Model A1. (See
Deloche and Oguer 2007 for an alternative approach based on the extensive, rather than the strategic,
form of the game.) Implicitly using Lemma 1, they reduced the number of Banker pure strategies from
2

88 to just 24 (see Theorem 4). The 2⇥ 2 kernel of the game was determined to be

 

B: S on 6,? B: D on 6,?
P: S on 5 �4564 �2692

P: D on 5 �3705 �4121

!

2

4/(13)6 (23)

implying that the following Player and Banker strategies are uniquely optimal. Player draws on a
two-card total of 5 with probability

p =

9

11

⇡ 0.818182 (24)

and Banker draws on a two-card total of 6, when Player stands, with probability

q =
859

2288

⇡ 0.375437 (25)

The value of the game (to Player) is

v = � 679 568

53 094 899

⇡ �0.0127991 (26)

The fully specified optimal strategy for Banker is given in Table 3 with d � 4 and q as in Equation (25).

Table 3. Banker’s optimal move (final version) under Model B1 with d being a positive
integer, indicated by D (draw) or S (stand), or (S,D) (stand with probability 1� q, draw with
probability q). Here q is as in Equations (33) and (34). Under Model A1, results are the same
as those under Model B1 with d � 4, except that q is as in Equation (25).

Banker’s Two-Card Player’s Third Card (? if Player Stands)
Total 0 1 2 3 4 5 6 7 8 9 ?
0, 1, 2 D D D D D D D D D D D

3 D D D D D D D D S D D
4 S S D D D D D D S S D
5 S S S S ⇤ D D D S S D
6 S S S S S S D D S S (S,D)

7 S S S S S S S S S S S
⇤ D if d � 4, S if d  3.

Let us extend this analysis from Model A1 to Model A3. Again we have a 25⇥ 2

484 matrix game, and
the payoff matrix can be evaluated as in Section 4, using Equations (12), (14), and (19)–(22) in place of
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Equations (11), (13), and (15)–(18). We can apply Lemma 1 and reduce the game to a 2

5 ⇥ 2

22 matrix
game. We obtain the special case of Table 1 in which d � 11.

When we evaluate this 2

5 ⇥ 2

22 payoff matrix, we find that a number of rows are identical. When
several rows are identical, we eliminate duplicates. When we make this reduction and rearrange the
remaining rows in a more natural order, we are left with 9 rows, labeled by 0–8, which have a special
structure. Specifically, row i corresponds to Player’s mixed strategy (under Model A1) of drawing on a
two-card total of 5 with probability i/8. The reason that multiples of 1/8 appear is that, given that Player
has a two-card total of 5, he has (0, 5), (1, 4), (2, 3), (6, 9), or (7, 8) with probabilities 4/8, 1/8, 1/8,
1/8, and 1/8, respectively.

There are also a number of identical columns. When we apply a similar reduction and rearrangement
to the columns, we are left with 9

2
(17)

2
= 23 409 columns, labeled by

{0, 1, . . . , 8}⇥ {0, 1, . . . , 16}⇥ {0, 1, . . . , 8}⇥ {0, 1, . . . , 16}

which have a similar structure. Specifically, column (j1, j2, j3, j4) corresponds to Banker’s mixed
strategy (under Model A1) of drawing on a two-card total of 3, when Player’s third card is 9, with
probability j1/8; of drawing on a two-card total of 4, when Player’s third card is 1, with probability
j2/16; of drawing on a two-card total of 5, when Player’s third card is 4, with probability j3/8; and of
drawing on a two-card total of 6, when Player stands, with probability j4/16. The reason that multiples
of 1/8 or 1/16 appear is that, given that Banker has a two-card total of 3, he has (0, 3), (1, 2), (4, 9), (5, 8),
or (6, 7) with probabilities 4/8, 1/8, 1/8, 1/8, and 1/8, respectively; given that Banker has a two-card
total of 4, he has (0, 4), (1, 3), (2, 2), (5, 9), (6, 8), or (7, 7) with probabilities 8/16, 2/16, 1/16, 2/16,
2/16, and 1/16, respectively; given that Banker has a two-card total of 5, he has (0, 5), (1, 4), (2, 3),
(6, 9), or (7, 8) with probabilities 4/8, 1/8, 1/8, 1/8, and 1/8, respectively; given that Banker has a
two-card total of 6, he has (0, 6), (1, 5), (2, 4), (3, 3), (7, 9), or (8, 8) with probabilities 8/16, 2/16,
2/16, 1/16, 2/16, and 1/16, respectively.

Next, we observe that column (j1, j2, j3, j4) is a mixture of the 2

4 (Model A1) pure strategies of
Banker that remain after application of Lemma 1. By the results for Model A1, optimal strategies for
Banker must satisfy j1 = 8, j2 = 0, and j3 = 8. This reduces the game to a 9⇥ 17 matrix game, whose
columns we relabel as 0–16. Specifically, column j corresponds to Banker’s mixed strategy (under
Model A1) of drawing on a two-card total of 6, when Player stands, with probability j/16.

Finally, what is the solution of the 9⇥ 17 game? We have seen that rows 1–7 (respectively, columns
1–15) are mixtures of rows 0 and 8 (respectively, columns 0 and 16). In particular, rows 1–7 and columns
1–15 are dominated, but not strictly dominated. Eliminating these rows and columns results in a 2 ⇥ 2

matrix game, namely the kernel in Equation (23). But eliminating dominated, but not strictly dominated,
rows and columns may result in a loss of solutions, and it does so in this case. Indeed, there are many
solutions. For Player, given two pure strategies i, i0 2 {0, 1, 2, . . . , 8} with

i

8

<
9

11

<
i0

8

(27)

there is a unique p 2 (0, 1) such that

(1� p)

✓

i

8

◆

+ p

✓

i0

8

◆

=

9

11
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and the (1 � p, p)-mixture of pure strategies i and i0 is optimal for Player. There are 7 choices of i and
2 choices of i0 that satisfy Equation (27), hence 14 pairs (i, i0) that meet this condition.

For Banker, given two pure strategies j, j0 2 {0, 1, 2, . . . , 16} with

j

16

<
859

2288

<
j0

16

(28)

there is a unique q 2 (0, 1) such that

(1� q)

✓

j

16

◆

+ q

✓

j0

16

◆

=

859

2288

and the (1� q, q)-mixture of pure strategies j and j0 is optimal for Banker. There are 7 choices of j and
10 choices of j0 that satisfy Equation (28), hence 70 pairs (j, j0) that meet this condition.

Each such pair (i, i0) can be combined with each such pair (j, j0), so there are 14⇥ 70 = 980 pairs of
optimal strategies of this form. These are the extreme points of the convex set of equilibria. All 980 of
them appear when Savani’s [16] game solver is applied.

Let us single out one of them. Take i = 6 and i0 = 7, getting p = 6/11, and take j = 1 and j0 = 9,
getting q = 179/286. This does not uniquely determine a pair of optimal strategies because of the
duplicate rows and columns that were eliminated, but one pair of optimal mixed strategies to which this
corresponds is shown in Table 4.

Table 4. A pair of optimal mixed strategies in Model A3. For Banker’s fully specified
optimal strategy, see Table 5 with d � 10.

Player’s Two-Card Total is 5

(0, 5), (6, 9), (7, 8) D
(1, 4) (S,D) with (5/11, 6/11)

(2, 3) S

Banker’s Two-Card Total is 6 and Player Stands

(0, 6) (S,D) with (107/286, 179/286)

(1, 5), (2, 4), (3, 3), (7, 9) S
(8, 8) D

As we will see, this pair of optimal mixed strategies is the limiting pair of optimal mixed strategies
under Model B3 as d ! 1.

Foster [9] remarked, “It is an interesting fact that this [optimal Player mixed] strategy is often attained
approximately in practice by standing on the pair 2, 3 and calling [i.e., drawing] on any other combination
adding to 5; this gives approximately the right frequency of calling [i.e., drawing].” Actually, it gives a
drawing probability of 7/8, not the required 9/11. But, as Table 4 suggests, Player should stand also on
(1, 4) with probability 5/11. Then the probability of Player drawing on a two-card total of 5 is

3

4

+

1

8

6

11

=

9

11
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A similar analysis applies under Model A2. Lemma 1 reduces the 2 ⇥ 2

484 matrix game to 2 ⇥ 2

22.
Eliminating duplicate columns reduces the game to 2 ⇥ 9

2
(17)

2, and finally using the optimal solution
under Model A1, we are left with a 2 ⇥ 17 matrix game. This is the game identified in [10]. As above,
there are 70 extremal solutions, and they all appear when Savani’s [16] game solver is applied.

Again, we single out one of them. Player draws on a two-card total of 5 with probability 9/11, and
Banker follows Table 4. As we will see, this pair of optimal mixed strategies is the limiting pair of
optimal mixed strategies under Model B2 as d ! 1.

6. Solution under Model B1

Recall that Table 2 applies under Model B1. See Theorem 4.
In the case d = 6, the 2⇥ 2

4 matrix game has kernel given by

 

B: S on 6,? B: D on 6,?
P: S on 5 �23 256 431 632 �13 884 629 124

P: D on 5 �18 880 657 128 �21 061 456 188

!

/1 525 814 595 305

implying that the following Player and Banker strategies are uniquely optimal. Player draws on a
two-card total of 5 with probability

p6 =
7 631 761

9 407 656

⇡ 0.811229 (29)

and Banker draws on a two-card total of 6, when Player stands, with probability

q6 =
546 971 813

1 444 075 196

⇡ 0.378770 (30)

The value of the game (to Player) is

v6 = � 23 174 205 422 119 131

1 794 292 354 051 081 885

⇡ �0.0129155 (31)

The fully specified optimal strategy for Banker is given in Table 3. Comparing the solution under Model
A1 with that under Model B1 reveals the effect of the “with replacement” assumption. The solutions
are identical except for the three parameters [Equations (24)–(26) vs. Equations (29)–(31)]. For each
parameter, the relative error is less than one percent.

This analysis extends to every positive integer d.

Theorem 5. Under Model B1 with d being a positive integer, the following Player and Banker strategies
are uniquely optimal. Player draws on a two-card total of 5 with probability

pd =
(36 864 d3 � 9312 d2 + 732 d� 23)

8(5632 d3 � 1138 d2 + 69 d� 1)

, d � 1 (32)

and Banker draws on on a two-card total of 6, when Player stands, with probability

qd =
224 000 d4 � 55 712 d3 + 2936 d2 + 163 d� 14

2(52 d� 5)(5632 d3 � 1138 d2 + 69 d� 1)

, 1  d  3 (33)
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or
qd =

439 808 d4 � 107 456 d3 + 5248 d2 + 374 d� 31

4(52 d� 5)(5632 d3 � 1138 d2 + 69 d� 1)

, d � 4 (34)

The value of the game (to Player) is

vd = �32 d2(44 396 707 840 d7 � 18 908 426 240 d6 + 3 279 293 696 d5

� 294 129 728 d4 + 14 418 160 d3 � 407 352 d2 + 9543 d

� 220)/[(5632 d3 � 1138 d2 + 69 d� 1)(52 d)6], 1  d  3

or

vd = �16 d2(89 072 336 896 d7 � 38 873 874 432 d6 + 6 969 345 536 d5

� 655 761 920 d4 + 34 638 784 d3 � 1 090 952 d2 + 26 286 d

� 537)/[(5632 d3 � 1138 d2 + 69 d� 1)(52 d)6], d � 4 (35)

where (52 d)6 := (52 d)(52 d� 1) · · · (52 d� 5). The fully specified optimal strategy for Banker is given
in Table 3.

Proof. For d � 4, the kernel of the 2⇥ 2

4 payoff matrix is given by columns 10 and 11 (when columns
are labeled from 0 to 15), namely

0

B

B

B

B

@

B: S on 6,? B: D on 6,?
P: S on 5 4(1 168 384 d4 � 284 720 d3 2 756 608 d4 � 470 336 d3

+ 22 320 d2 � 446 d� 11) + 4656 d2 + 3072 d� 159

P: D on 5 2(1 896 960 d4 � 461 984 d3 4 219 904 d4 � 954 112 d3

+ 39 392 d2 � 1266 d+ 9) + 68 384 d2 � 852 d� 57

1

C

C

C

C

A

(�64 d2)

(52 d)6

This implies Equation (32) for d � 4 and Equations (34) and (35).
To confirm this, we must show that, with A denoting the 2⇥ 2

4 payoff matrix, we have

(1� pd, pd)A � (vd, vd, . . . , vd)

This involves checking 16 inequalities (of which two are automatic). For example, the eighth and ninth
components of (1� pd, pd)A� (vd, vd, . . . , vd) equal

16 d2(278 921 216 d7 � 1 057 021 952 d6 + 410 758 144 d5 � 67 502 464 d4

+ 5 802 464 d3 � 276 248 d2 + 7200 d� 97)/[(5632 d3 � 1138 d2 + 69 d� 1)(52 d)6]

which is positive for d � 4 and negative for 1  d  3. The 10th and 11th components are 0, of course.
The remaining components are positive for every d � 1.

A similar analysis can then be carried out for 1  d  3, in which case the kernel is given by
columns 8 and 9 (of 0–15).

We notice that the above kernel converges, as d ! 1, to the kernel in Equation (23).
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7. Solution under Model B2

The result that Table 1 is identical under Models B2 and B3 is less surprising than it may first appear
to be. In Section 5 we saw that, under Model A3 with Player’s pure strategies labeled from 0 to 31,
pure strategy u 2 {1, 2, . . . , 30} is a (1� p, p) mixture of pure strategies 0 and 31, where

p =

4u1 + u2 + u3 + u4 + u5

8

2
n

1

8

,
2

8

, . . . ,
7

8

o

(36)

here u1u2u3u4u5 is the binary form of u, that is, u1, u2, u3, u4, u5 2 {0, 1} and u = 16u1 + 8u2 + 4u3 +

2u4 + u5. Consequently,

au,l(j1, j2, k) lies between a0,l(j1, j2, k) and a31,l(j1, j2, k) (37)

for all u 2 {1, 2, . . . , 30}, l = 0, 1, 0  j1  j2  9 with M(j1+ j2)  7, and k = 0, 1, . . . , 9,?. Under
Model B3, the conditional expectations in Equation (37) should not differ much from their Model A3
counterparts, especially for large d, hence we would expect that Equation (37) holds with few exceptions.
In fact, the only exceptions occur when l = 1, M(j1 + j2) = 2, k = 8, and d  7 because in these cases,
a0,l(j1, j2, k) and a31,l(j1, j2, k) are very close. When we consider the differences bu(j1, j2, k), there are
even fewer exceptions, as noted previously.

One might ask why Model B2 was even considered by Downton and Lockwood [8], inasmuch as
its asymmetric assumption about the available information (beyond the asymmetry inherent in the rules)
may seem contrived. The answer, we believe, is that there already existed an algorithm, due to Foster [9],
for solving such games. That algorithm was formalized in Lemma 2 of Section 2.

Let us recall Downton and Lockwood’s [8] solution of the 2⇥ 2

484 matrix game that assumes Model
B2. In the case d = 6, the 2⇥ 2 kernel of the game is found to be

 

B: S on (0, 6),? B: D on (0, 6),?
P: S on 5 �22 721 165 499 �18 033 241 115

P: D on 5 �19 018 265 931 �20 151 297 323

!

/1 525 814 595 305

implying that the following Player and Banker strategies are uniquely optimal. Player draws on a two-
card total of 5 with probability

p6 =
477 191

592 524

⇡ 0.805353

and Banker draws on (0, 6), when Player stands, with probability

q6 =
77 143 741

121 269 912

⇡ 0.636133

The value of the game (to Player) is

v6 = � 974 653 793 197 999

75 340 147 272 374 985

⇡ �0.0129367 (38)

which is less than the value in Equation (31) because Banker has additional options while Player’s
options are unchanged. The fully specified optimal strategy for Banker is given in Table 5.

This analysis extends to every positive integer d. We do not display the kernel, only the solution.
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Table 5. Banker’s optimal move (final version) under Model B2 or B3 with d being a positive
integer, indicated by D (draw), S (stand), or (S,D) (stand with probability 1 � q, draw with
probability q). In Model B2, q is as in Equations (39)–(42), and in Model B3, q is as in
Equations (49)–(52).

Banker’s Two-Card Player’s Third Card (? if Player Stands)

Total 0 1 2 3 4 5 6 7 8 9 ?

0, 1, 2 D D D D D D D D D D D
3 D D D D D D D D S1 D D
4 S S2 D D D D D D S S D
5 S S S S ⇤ D D D S S D
6 S S S S S S D3 D S S †
7 S S S S S S S S S S S

1 Banker’s two-card total is 3 and Player’s third card is 8
(0, 3), (1, 2), (5, 8) S

(4, 9) S if d � 2, D if d = 1

(6, 7) S if d � 1 (Model B2)
S if d � 2, D if d = 1 (Model B3)

2 Banker’s two-card total is 4 and Player’s third card is 1
(0, 4), (1, 3), (2, 2), (5, 9) S

(6, 8), (7, 7) S if d � 3, D if d  2

* Banker’s two-card total is 5 and Player’s third card is 4
(0, 5), (7, 8) D if d � 2, S if d = 1

(1, 4) S if d  7, D if d � 8

(2, 3) S if d  9, D if d � 10 (Model B2)
S if d  8, D if d � 9 (Model B3)

(6, 9) D if d � 3, S if d  2 (Model B2)
D if d � 2, S if d = 1 (Model B3)

3 Banker’s two-card total is 6 and Player’s third card is 6
(0, 6), (1, 5), (2, 4), (7, 9), (8, 8) D

(3, 3) D if d � 4, S if d  3

† Banker’s two-card total is 6 and Player stands
(0, 6) (S,D) (Model B2)

(S,D) if d � 2, S if d = 1 (Model B3)
(1, 5), (2, 4), (3, 3), (7, 9) S

(8, 8) D (Model B2)
D if d � 2, (S,D) if d = 1 (Model B3)
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Theorem 6. Under Model B2 with d being a positive integer, the following Player and Banker strategies
are uniquely optimal. Player draws on a two-card total of 5 with probability

pd =
(8 d� 1)(12 d� 1)(24 d� 1)

2 d(1408 d2 � 220 d+ 9)

, d � 1

and Banker draws on (0, 6), when Player stands, with probability

q1 =
290 383

450 072

, q2 =
2 591 845

4 119 192

, q3 =
9 294 089

14 521 368

(39)

qd =
368 640 d4 � 68 624 d3 � 2168 d2 + 981 d� 48

8 d(52 d� 5)(1408 d2 � 220 d+ 9)

, 4  d  7 (40)

qd =
367 616 d4 � 67 728 d3 � 2416 d2 + 1015 d� 51

8 d(52 d� 5)(1408 d2 � 220 d+ 9)

, d = 8, 9 (41)

or
qd =

366 592 d4 � 67 344 d3 � 2456 d2 + 1017 d� 51

8 d(52 d� 5)(1408 d2 � 220 d+ 9)

, d � 10 (42)

The value of the game (to Player) is

v1 = � 22 932 137

1 666 583 100

, v2 = � 8 220 886 553

620 866 384 425

, v3 = � 210 084 639 838

16 053 072 820 785

vd = �32 d(11 125 325 824 d7 � 4 182 669 312 d6 + 615 333 888 d5 � 43 467 904 d4

+ 1 329 008 d3 + 5040 d2 � 1551 d+ 39)/[(1408 d2 � 220 d+ 9)(52 d)6], 4  d  7

vd = �32 d(11 129 683 968 d7 � 4 218 739 712 d6 + 635 681 024 d5 � 47 725 760 d4

+ 1 738 944 d3 � 14 344 d2 � 1093 d+ 33)/[(1408 d2 � 220 d+ 9)(52 d)6], d = 8, 9

or

vd = �32 d(11 134 042 112 d7 � 4 259 389 440 d6 + 648 152 320 d5 � 49 007 232 d4 (43)

+ 1 788 256 d3 � 14 816 d2 � 1089 d+ 33)/[(1408 d2 � 220 d+ 9)(52 d)6], d � 10

The fully specified optimal strategy for Banker is given in Table 5.

Remark. This is a slightly stronger statement than that of Downton and Lockwood [8].3 The reason for
having different formulas for qd and vd in the six cases d = 1, d = 2, d = 3, 4  d  7, d = 8, 9,
and d � 10 is that Banker’s two pure strategies that determine the kernel do not vary if 4  d  7, if
d = 8, 9, or if d � 10. This is a consequence of Table 5, which comes largely from Table 2a,b of [8].

3 They assumed d  8 and rounded results to four decimal places, but they also allowed d = 1
2 , which we do not. Their

Table 2b, which graphically represents the dependence on d in Banker’s optimal strategy, contains three ambiguities.
Specifically, for (j1, j2, k) = (6, 8, 1) and d = 2, for (j1, j2, k) = (2, 3, 4) and d = 8, and for (j1, j2, k) = (6, 9, 4) and
d = 2, it is uncertain whether D or S was intended. We have confirmed that D, S, and S, respectively, were intended in
these cases. Furthermore, their table seems to suggest that D applies when (j1, j2, k) = (2, 3, 4) and d = 9, which is
incorrect.
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Proof. We apply Lemma 2 for d = 1, 2, . . . , 19. Only (3, 3, 6) belongs to T10 (if d  10). For each choice
of d, the program runtime is about 15 seconds. For d � 20, the 22 points p(l) (l 2 T01 [ T10), relabeled
as p1, p2, . . . , p22, at which Player’s expected payoff is evaluated satisfy p16 < p12 < p15 < p13 < p14 <

p5 < p4 < p1 < p3 < p2 < p22 < p17 < p21 < p18 < p19 < p20 < p11 < p10 < p8 < p7 < p9 < p6,
so the algorithm applies with a variable d. For d � 20, V (p) is maximized at p17 (or p(0, 6,?)). At p22
(or p(8, 8,?)), for example,

V (p22) = �32d(2 783 510 528 d7 � 1 188 571 136 d6 + 203 128 704 d5 � 16 568 896 d4

+ 596 408 d3 � 16 158 d2 + 1855 d� 93)/[(352 d2 � 71 d+ 4)(52 d)6]

and this is less than V (p17) (see Equation (43)) for all d � 20, though the difference tends to 0 as
d ! 1.

8. Solution under Model B3

We have reduced the game to a 2

5 ⇥ 2

nd matrix game, where 18  nd  23. The fact that Table 1
is identical under Models B2 and B3 suggests the existence of a 2 ⇥ 2 kernel under Model B3 whose
column labels are the same as those of the 2⇥ 2 kernel under Model B2 as described in Section 7. Then
the resulting 2

5 ⇥ 2 matrix game will of course have a 2 ⇥ 2 kernel, which is easy to find by graphical
or other methods, and it will remain to confirm that this kernel corresponds to a solution of the 2

5 ⇥ 2

nd

matrix game.
As we will see, this approach works for all positive integers d except 1, 2, and 9. These last three

cases can be treated separately.
Let us begin with the case d = 6. Here the rows of the 32 ⇥ 2 payoff matrix are labeled from 0 to

31 as in Section 4, with the 5-bit binary form of the row number specifying the strategy (1 indicates D
and 0 indicates S, in the five cases (0, 5), (1, 4), (2, 3), (6, 9), and (7, 8)). For example, row 19 (binary
10011) corresponds to drawing on (0, 5), standing on (1, 4) and (2, 3), and drawing on (6, 9) and (7, 8).

We could label the two columns in a similar way but with binary strings of length 18 corresponding
to the asterisks in Table 1, in the specific order (0, 3, 9), (1, 2, 9), (4, 9, 9), (5, 8, 9), (6, 7, 9), (2, 2, 1),
(6, 8, 1), (7, 7, 1), (0, 5, 4), (6, 9, 4), (7, 8, 4), (3, 3, 6), (0, 6,?), (1, 5,?), (2, 4,?), (3, 3,?), (7, 9,?),
(8, 8,?), reading the string left to right. In that case, the two columns would be labeled

111 110 001 111 000 001 and 111 110 001 111 100 001 (44)

The kernel is easily found to be given by rows 19 and 27, so it is equal to

 

B: S on (0, 6),? B: D on (0, 6),?
P: S on (1, 4) �19 769 569 403 �19 425 699 931

P: D on (1, 4) �19 391 857 983 �19 783 609 631

!

/1 525 814 595 305

implying that the following Player and Banker strategies are optimal. Player draws on (1, 4)

with probability

p6 =
35 003

74 880

⇡ 0.467455 (45)
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and Banker draws on (0, 6), when Player stands, with probability

q6 =
18 885 571

36 781 056

⇡ 0.513459 (46)

The value of the game (to Player) is

v6 = � 73 356 216 203 119

5 712 649 844 821 920

⇡ �0.0128410 (47)

which is greater than the value in Equation (38) because Player has additional options while Banker’s
options are unchanged. The fully specified optimal strategies for Player and Banker are given in
Tables 5 and 6.

Table 6. Player’s optimal move under Model B3, indicated by D (draw), S (stand), or (S,D)

(stand with probability 1� p, draw with probability p). Here p is as in Equation (48).

Player’s Two-Card Hand Optimal Move

(0, 5), (6, 9), (7, 8) D
(1, 4) (S,D)

(2, 3) S

This analysis extends to every positive integer d. We do not display the kernel, only the solution.

Theorem 7. Under Model B3 with the number of decks being a positive integer d, the following Player
and Banker strategies are optimal. Player draws on (1, 4) with probability

p1 =
1

19

, pd =
(12 d� 1)(16 d2 � 14 d+ 1)

32 d2(11 d� 1)

, d � 2 (48)

and Banker draws on
8

<

:

(8, 8) if d = 1

(0, 6) if d � 2

when Player stands, with probability

q1 =
4519

10 716

, q2 =
17 431

64 512

, q3 =
4 425 647

11 132 928

(49)

qd =
92 160 d4 � 120 128 d3 + 26 336 d2 � 2000 d+ 47

256 d2(11 d� 1)(52 d� 5)

, 4  d  7 (50)

q8 =
316 815 305

585 842 688

(51)

or
qd =

91 648 d4 � 119 488 d3 + 26 032 d2 � 1932 d+ 41

256 d2(11 d� 1)(52 d� 5)

, d � 9 (52)

The value of the game (to Player) is

v1 = � 3 439 451

25 482 800

, v2 = � 49 424 010 137

3 823 801 581 600

, v3 = � 31 717 439 249

2 461 444 457 472
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vd = �2(1 390 665 728 d7 � 491 115 520 d6 + 50 698 240 d5 + 2 428 032 d4

� 990 512 d3 + 89 192 d2 � 3462 d+ 47)/[(11 d� 1)(52 d)6], 4  d  7

v8 = � 2 789 416 947 665 657

217 430 324 984 396 160

or

vd = �2(1 391 755 264 d7 � 500 535 296 d6 + 54 174 464 d5 + 1 931 136 d4

� 948 816 d3 + 85 792 d2 � 3238 d+ 41)/[(11 d� 1)(52 d)6], d � 9 (53)

The fully specified optimal strategies for Player and Banker are given in Tables 5 and 6.

Remark. We suspect that the solution is unique but do not have a proof. Notice what happens as d ! 1:
pd ! 6/11, qd ! 179/286, and vd ! �679 568/53 094 899, so the optimal mixed strategies approach
those of Table 4.

Proof. Consider the case d = 6. Let A denote the 2

5 ⇥ 2

18 payoff matrix, and let p = (p0, p1, . . . , p31)

and q = (q0, q1, . . . , q262 143) denote the stated optimal strategies. Specifically, with p6 as in
Equation (45) and q6 as in Equation (46),

p27 = 1� p19 = p6 and pi = 0 if i 6= 19, 27

and
q254 945 = 1� q254 913 = q6 and qj = 0 if j 6= 254 913, 254 945

(254 913 and 254 945 are the decimal forms of the binary numbers in Equation (44).) Then, with v6 as in
Equation (47), it suffices to show that

pA � (v6, v6, . . . , v6) (54)

componentwise (218 inequalities), and

AqT  (v6, v6, . . . , v6)
T (55)

componentwise (25 inequalities). Note that it is not necessary to evaluate the 2

23 entries of A.
Equation (54) involves only rows 19 and 27 of A (when rows are labeled 0 to 31), while Equation (55)
involves only columns 254 913 and 254 945 of A (when columns are labeled 0 to 262 143). We
have confirmed Equations (54) and (55) using a Mathematica program. The program is, however,
unnecessarily time-consuming. A more efficient way to proceed is to use Lemma 2 to verify
Equation (54), with rows 19 and 27 (of 0–31) being Player’s two pure strategies. (In that case the
number of exceptional cases is 6, namely (0, 6,?), (1, 5,?), (2, 4,?), (3, 3,?), (7, 9,?), (8, 8,?), not
18. T10 is empty.)

Similar programs give analogous results for every positive integer d. When d is 1, 2, or 9 and we use
the two Banker pure strategies whose mixture is optimal under Model B2, we find that Equation (54)
fails. By determining which components of the vector inequality fail, we can propose and confirm the
correct optimal strategies under Model B3. Specifically, if d = 2 or d = 9, then Equation (54) fails at
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just two components, namely the two that determine Banker’s optimal mixed strategy under Model B3.
If d = 1, then Equation (54) fails at eight components, which include the two optimal ones. Some trial
and error may be required in this case.

We hasten to add that, just as in the case d = 6, there is a more efficient way. The two Player
pure strategies specified by the kernel do not vary with d and are rows 19 and 27 (of 0–31). We again
apply Lemma 2 to establish Equation (54), saving time and avoiding the issue that occurred in the cases
d = 1, 2, 9. We find that, for d = 1, 2, . . . , 9, nd = 7, 9, 8, 9, 6, 6, 6, 7, 7, respectively, and, if d � 10,
nd = 6. In each case, T10 is empty.

More importantly, this last method allows us to treat the cases d � 10 simultaneously, similarly to
what we did in Section 7. For d � 10, the six points p(l) (l 2 {(0, 6,?), (1, 5,?), (2, 4,?), (3, 3,?),
(7, 9,?), (8, 8,?)}), relabeled as p1, p2, . . . , p6, at which Player’s expected payoff is evaluated, satisfy
p6 < p1 < p5 < p3 < p2 < p4, so the algorithm applies with variable d. For d � 10, V (p) is maximized
at p1 (or p(0, 6,?)). At p6 (or p(8, 8,?)), for example,

V (p6) = �8(695 877 632 d7 � 281 198 592 d6 + 34 472 064 d5 + 1 177 024 d4

� 901 592 d3 + 119 896 d2 � 6755 d+ 123)/[(22 d� 3)(52 d)6]

and this is less than V (p1) (see Equation (53)) for all d � 10, though the difference tends to 0 as
d ! 1.

9. Summary

Baccara chemin de fer is a classical card game to which game theory is applicable. We consider six
models, obtained by combining either Model A (cards are dealt with replacement) or Model B (cards are
dealt without replacement from a d-deck shoe) with one of Model 1 (Player and Banker see two-card
totals), Model 2 (Player sees two-card totals, Banker sees two-card composition), or Model 3 (Player and
Banker see two-card composition). The first step in the analysis of these games is to reduce their size
(2⇥ 2

88 for Model 1, 2⇥ 2

484 for Model 2, and 2

5 ⇥ 2

484 for Model 3) using strict dominance. Models
A1, A2, and A3 are relatively simple and closely related. Model B1 is simple as well. Foster’s algorithm
can be applied to Model B2 in a straightforward way.

Model B3 is more challenging. Here we have a 2

5 ⇥ 2

nd matrix game, where 18  nd  23, after
reduction. We guess that there is a 2⇥ 2 kernel whose column labels are the same as those found under
Model B2. We then solve the resulting 2

5 ⇥ 2 game to obtain the two row labels of what we expect
to be the kernel, and finally we confirm that this is indeed the kernel and we have a solution. It turns
out that this method fails if d = 1, 2, or 9. The two Banker pure strategies specified by the kernel are
d-dependent, whereas the two Player pure strategies specified by the kernel are not. Thus, we can derive
a solution for every positive integer d by applying Foster’s algorithm to the 2⇥ 2

nd matrix game whose
row labels are those of the kernel.

As might be expected, the discrepancies between the values of the game under the various models are
quite small. See Table 7.
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Table 7. The value (to Player) of baccara chemin de fer as a function of the number of decks
d under Models B1, B2, and B3, rounded to six significant digits. The values under Models
A1, A2, and A3 are all equal to �0.0127991.

d Model B1 Model B2 Model B3

1 �0.0136323 �0.0137600 �0.0130413

2 �0.0131831 �0.0132410 �0.0129254

3 �0.0130391 �0.0130869 �0.0128857

4 �0.0129745 �0.0130113 �0.0128640

5 �0.0129390 �0.0129665 �0.0128505

6 �0.0129155 �0.0129367 �0.0128410

7 �0.0128988 �0.0129155 �0.0128341

8 �0.0128862 �0.0128998 �0.0128290

9 �0.0128765 �0.0128880 �0.0128254

10 �0.0128687 �0.0128791 �0.0128229

11 �0.0128624 �0.0128718 �0.0128209

12 �0.0128571 �0.0128657 �0.0128192
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