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Abstract: Awareness and human factors are becoming ever more important in cybersecurity, partic-
ularly in the context of small companies that may need more resources to deal with cybersecurity
effectively. This paper introduces a theoretical framework for game analysis of the role of awareness
in strategic interactions between the manager and a hacker. A computable approach is proposed
based on Bayesian updating to model awareness in a cybersecurity context. The process of gaining
awareness considers the manager’s perception of the properties of the hacker’s actions, game history,
and common knowledge. The role of awareness in strategy choices and outcomes is analyzed and
simulated, providing insights into decision-making processes for managers and highlighting the
need to consider probabilistic assessments of threats and the effectiveness of countermeasures. The
accuracy of the initial frequencies plays a significant role in the manager’s success, with aligned
frequencies leading to optimal results. Inaccurate information on prior frequencies still outperforms
complete uncertainty, emphasizing the value of any available intelligence. However, the results
suggest that other awareness modeling approaches are necessary to enhance the manager’s agility
and adaptiveness when the prior frequencies do not reflect the immediate attacker’s type, indicating
the need for improved intelligence about cyber-attacks and examinations of different awareness
modeling approaches.
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1. Introduction

The transition to the digital era has brought unprecedented opportunities for small-
and medium-sized enterprises (SMEs) and significantly increased their exposure to cyber
threats. As digitalization becomes increasingly integral to business operations, SMEs,
which often lack the robust cybersecurity infrastructure of larger corporations, find them-
selves particularly vulnerable. This paper proposes a game-theory framework to enhance
managerial awareness of cybersecurity threats, offering insights into strategic decision-
making in the face of evolving cyber risks. In an age where cybercrime’s economic impact
is measured in trillions of dollars [1] and the COVID-19 pandemic has further accelerated
digital dependency [2], SMEs’ need to strengthen their cyber defenses has never been
more critical.

The array of cybersecurity threats that SMEs face is vast and varied, encompassing ev-
erything from the psychological manipulations of social engineering to the technical exploits
of software vulnerabilities and the overwhelming assaults of distributed denial of service
(DDoS) attacks [3–5]. Each type of threat demands a tailored strategic response, highlight-
ing the paramount importance of human factors—particularly managerial awareness—in
successfully identifying, preventing, and mitigating cyber threats.

As cybersecurity threats evolve and increase in complexity, small- and medium-sized
enterprises (SMEs) find themselves particularly vulnerable due to resource constraints
and often limited cybersecurity expertise. While modern organizations’ cybersecurity
challenges are vast and varied, this paper specifically addresses the problem of dynamic

Games 2024, 15, 13. https://doi.org/10.3390/g15020013 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g15020013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0002-7107-1696
https://doi.org/10.3390/g15020013
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g15020013?type=check_update&version=1


Games 2024, 15, 13 2 of 28

awareness and strategic adaptation to cybersecurity threats within SMEs. The importance
of this problem lies in the critical role that awareness and strategic decision-making play in
preempting and mitigating cyber-attacks. With SMEs contributing significantly to economic
growth and innovation, ensuring their resilience against cyber threats is not only vital
for the survival of these enterprises but also for broader economic security. Therefore,
this paper introduces a game-theory framework to enhance the managerial awareness of
cybersecurity threats, offering insights into strategic decision-making that can fortify SMEs
against evolving cyber risks. This targeted focus addresses a gap in the literature and
provides a novel approach to understanding and improving cybersecurity management in
a context where it is most needed.

This emphasis on human factors is crucial; cybersecurity is not solely a technical
challenge but also a human one. Managers and decision-makers play an important role
in shaping an organization’s cybersecurity posture, from setting policies and allocating
resources to fostering a culture of awareness and resilience among all staff members.
Despite the complexity of the cyber threat landscape, the human element remains both a
potential vulnerability and a powerful asset in cybersecurity defense.

By intertwining the domains of game theory, behavioral science, and cybersecurity,
this paper aims to address these multifaceted challenges. It proposes a model designed to
deepen the understanding of managerial cybersecurity awareness within SMEs, thereby
enhancing their capability to navigate the myriad of cyber threats. This approach seeks to
bolster SMEs’ cybersecurity infrastructure and empower their human resources—managers
and employees alike—with the awareness and strategic insight necessary to anticipate,
recognize, and effectively respond to cyber threats.

In doing so, we acknowledge the dual nature of cybersecurity as a field that requires
both advanced technological tools and sophisticated human insight. The integration of
game theory and behavioral science into cybersecurity strategies offers a pathway to the
future development of more holistic and effective defenses, underpinning the critical
role of human factors in securing the digital age. Through this exploration, we aim to
contribute to the broader discourse on cybersecurity, emphasizing the indispensable role
of human awareness and decision-making in safeguarding digital enterprises against the
ever-evolving threats they face.

The goal is to introduce a game-theory framework to analyze dynamic awareness in
cybersecurity by using a computable approach with Bayesian updating to model strategic
choices in interactions between managers and hackers. Its usefulness is demonstrated
through simulated scenarios, highlighting its practical implications for SMEs.

2. Theoretical Background

A recent review [6] on situation awareness in the Security Operations Center, focus-
ing on cybersecurity, showed that human factors emphasizing situation awareness are
important in understanding and improving human performance in complex systems. An-
other study [7] identified organizational awareness in security management as the most
important factor, along with security controls and supportive top management. Due to
the ongoing digitalization trend, many companies engage in digital businesses without a
complete digital transformation of the company or the formation of a Security Operations
Center. These enterprises often operate with limited resources, making it challenging to
implement comprehensive cybersecurity strategies. In a small company, a person may take
many roles at once—the role of the owner, investor, and manager—but he/she is also likely
to deal with cyber security. Moreover, many small companies lack the resources to handle
cybersecurity appropriately. While they will likely have the basic tools, they might lack
the policies, procedures, and training [1]. In small companies, managers may deal with
cybersecurity by themselves, outsource the issue to external experts if their budget allows it,
or occasionally delegate to expert employees if such employees exist in the company [2,8].

Cybersecurity threats take many forms [2,3], from accidental data leaking to different
forms of social engineering, ransomware, exploiting software vulnerabilities, and dis-
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tributed denial of service attacks (Figure 1). The best company’s strategy against attacks
is a multi-layered approach that includes several activities and practices that encompass
the entire organization and can help reduce the risk of successful attacks and minimize
the impact of any attacks that do occur [4]. While some of these activities can be easily
done by laypeople and multi-tasking managers of small companies (patching and updating
software and setting authentication with strong passwords), others require knowledge and
experience (for example, vulnerability testing or network segmentation). In addition, at
least some of these practices must be taught to employees, even temporarily [5].
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However, companies’ best strategies will depend on the type of attack (Figure 1).
For example, the manager should implement a specific defense strategy to protect the
company from social engineering. Nevertheless, they should first recognize that it is a
social-engineering attack or any other type. They may do that by observing the detectable
attack properties, such as the method of the attack, target, or damage (Figure 1). In the
case of a social-engineering attack, the strategy should include raising awareness and
education, security policies and procedures, technical controls, incident response, and
continuous monitoring and improvement. On the other hand, if a manager wants to defend
the company against a DDoS attack, he/she should change the strategy and implement one
that involves DDoS mitigation solutions, network segmentation, scalable infrastructure, an
incident-response plan, testing and simulation, collaboration, and information sharing (as
in cybersecurity alliances [12]). The best company’s strategy against software vulnerability
exploits may include patching and updating software, vulnerability scanning and testing,
access control and authentication, network segmentation, incident response plan, and
employee training and raising awareness. Different companies’ strategies are required to
counteract each type of attack because the attacks differ in the method of attack, target, and
resulting damage. However, managers must be aware of the attacks and their properties to
do so.

Understanding human factors, particularly the impact of errors and biases, is crucial
in cybersecurity. Leng et al. [13] provide a game-theory model that analytically describes
the strategic interactions between software manufacturers and hackers (ethical and mali-
cious). They explore the relationship between the credibility of white hats and software
information disclosure and the dynamics of information theft by black hats. The study [14]
bridges the gap between theoretical cybersecurity measures and practical, data-driven
defense strategies by modeling cyber threats within a game-theory framework. This model
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considers both attackers’ and defenders’ strategies, offering insights into optimal defense
mechanisms based on real-world data. Moreover, Aggarwal et al. [15] introduce the concept
of using deception as a strategic countermeasure against cyber-attacks. This is the game’s
theoretical discourse on innovative defense mechanisms beyond conventional security
solutions, emphasizing cybersecurity’s psychological and strategic dimensions.

A novel simulation tool, HackIt, was designed to enhance the understanding of human
factors in cybersecurity [16]. It enables the creation of dynamic and realistic cyber-attack
scenarios, offering a platform for studying the behavior of attackers and defenders in
a controlled environment. The HackIt tool’s development and application in studying
deception strategies open avenues for future research on human factors in cybersecurity
game dynamics, suggesting the creation of various cyber scenarios and investigating
different aspects of cybersecurity. Further study regarding HackIt outlines how deception
can mislead attackers, potentially delaying or thwarting cyber-attacks, thus providing
a practical application of theoretical deception strategies within cybersecurity [17]. The
integration between game theory, behavioral science, and cybersecurity practices enables
us to analyze attackers’ probing and attack behaviors, learning patterns, and responses
to deception. It provides a comprehensive framework for understanding adversarial
cognition in cybersecurity contexts, emphasizing the cognitive and behavioral aspects
of cybersecurity.

As a specific human factor possibly expanded by technology, Aggarwal et al. [18]
emphasize the critical role of cyber situational awareness in defending against cyber-attacks.
Cyber situational awareness refers to the ability to identify, process, and comprehend
information about cyber threats. It involves understanding the current cybersecurity
state, potential impacts of threats, and necessary actions to mitigate risks. They discuss
how Intrusion Detection Systems (IDSs) contribute to situational awareness by alerting
defenders about possible threats. IDSs are security technologies that monitor network or
system activities. By analyzing how the presence and accuracy of IDS influence the decision-
making processes of both defenders and adversaries, the paper shows that IDS alerts
significantly affect the sequential defenders’ and adversaries’ decisions across multiple
trials presented in the paper, offering a deeper understanding of how individuals adapt
their strategies over time in response to IDS recommendations. They rely on Instance-Based
Learning Theory (IBLT), a theory of decision-making that explains how individuals make
choices based on their past experiences. In essence, IBLT suggests that when individuals
are faced with a decision, they recall instances from their memory similar to the current
situation and use them to guide their decision. IBLT can be a robust framework for
understanding decision-making in dynamic environments, which is particularly relevant
for computational cognitive modeling and can simulate complex human behaviors in
cybersecurity contexts [19].

The exploration of awareness in strategic interactions, particularly through the lens
of the Prisoner’s Dilemma, reveals profound implications for game theory modeling and
decision-making processes [20]. This inquiry not only enriches our understanding of how
players’ perceptions and levels of awareness influence their strategic choices but also high-
lights the necessity for game-theory models to incorporate cognitive and informational
nuances to reflect real-world dynamics accurately. By offering insights into the deviations
caused by (un)awareness and extending these findings to practical domains such as man-
agement and security operations, this research underscores the critical role of awareness
in shaping strategic outcomes. It bridges a gap in the literature and sets a foundation for
future investigations, thereby providing a link between theoretical insights on awareness in
game theory and their practical applications in strategic decision-making. This is a pivotal
transition to a deeper dive into the role of awareness in game theory within the theoretical
framework, emphasizing its importance in developing more sophisticated and realistic
models of strategic interaction.

Game theory provides a framework to analyze strategic interactions and understand
how players with different awareness and information levels can reach equilibrium out-
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comes. The concept of awareness is central to modeling and analyzing these interactions,
as it allows players to anticipate and respond to each other’s actions strategically. In game
theory, awareness is a key concept in understanding and analyzing strategic interactions
between players. It refers to each player’s knowledge or belief about the game structure,
the possible actions of other players, and the payoffs associated with different outcomes.
Awareness allows players to make decisions based on their understanding of the game and
their expectations of how other players will behave.

Defining and modeling awareness in game theory is still a developing area of research,
but the interest in (un)awareness has been ongoing in various disciplines involving human
actors. For example, given the different areas of research, awareness receives distinctive
adjectives, such as context awareness, situational awareness, space situational awareness,
cyber awareness, temporal awareness, dynamic unawareness, partial awareness, individual
awareness, knowledge awareness, public awareness, environmental awareness, brand
awareness, etc. ([6,21–30]). Given the application, the research spans cyber security,
surveillance, autonomous vehicles, wireless technologies, the Internet of things, intelligence
and software methods, operations research, management, and marketing.

However, the core research on defining and modeling (un)awareness in game theory
is limited. Game (un)awareness is frequently examined from an epistemic game theory
standpoint ([25,31–34]), along with the attempts from the computable and behavioral stand-
point (for example, Refs. [35–39]). While existing research offers different approaches to
modeling (un)awareness, there are still discrepancies. For example, Halpern and Pier-
mont [26] propose partial awareness, where the player values different objects (or different
states of the objects) the same if their properties are the same and can value objects dif-
ferently if they can be distinguished in some way that the individual is aware of; and the
player can base his/her preferences only on the properties that he/she are aware of. Such
an approach implies that an individual must be able to differentiate the properties and
evaluate them to become at least partially aware of them. Similarly, Sadzik [40] assumes
propositionally determined semantic awareness, while unawareness denotes the inability to
differentiate between situations based on certain propositions. These approaches diminish
the vagueness of the (un)awareness concept, as the (un)awareness is often described as a
function denoting a general level of existing (un)awareness in computable versions. The
computable approach to building (un)awareness based on the object or action’s properties
in this way has not been previously attempted. Therefore, this paper examines such an
approach, aiming to contribute to solving the problem of modeling human (un)awareness
in a computable game setting.

These approaches allow for an applicative approach to building awareness. The
information to develop initial awareness of possible attacks may be available to managers
through publicly available reports (for example, Ref. [41]). However, some of the properties
of the attack may be perceivable to the manager only after the attack begins. These
properties, as imperfectly perceived by the manager, and the probabilities assigned to them
may serve as building blocks of awareness.

While a consensus exists that (un)awareness affects players’ behavior, strategies, and
outcomes, the results will heavily depend on how the (un)awareness is modeled and its
place in the model. Different proposals exist regarding how (un)awareness affects strategies
and payoff. For example, (un)awareness can be directly implemented in a payoff function
as a coefficient or a function (for example, as performed by [42,43]), thus moderating
the perceived payoff and, with backward induction, the strategies. Nevertheless, such
an approach does not reflect the intrinsic and probabilistic aspects of (un)awareness and
provides much less opportunity for properties examination. Another possible method is to
build (un)awareness as a function that influences the probabilities of strategy choices based
on the grasped properties of the opponent’s actions. However, that function should be
updated after each stage in a dynamic game. The notion of humans as intuitive Bayesian
statisticians ([44]) can be helpful. Given that the (un)awareness updating in dynamic games
occurs in the same setting, applying Bayes’ rule in the game (un)awareness updating is
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reasonable. However, such an approach calls for examining the role of previous or common
knowledge and game histories. In general, prior knowledge is desirable, especially for the
experts. While the previous knowledge of inexperienced managers will be limited, they
might rely on publicly available reports, which can be referred to as common knowledge
and should serve as a guideline.

This exploration sets the stage for a deeper analysis of game-theory models in enhanc-
ing cybersecurity awareness among managers, particularly in SMEs. This paper aims to
address the issue of a computable approach to modeling a person’s awareness involving
awareness about the opponent strategy’s properties in a cybersecurity framework. The next
section defines a game framework that allows for the further examination of the manager’s
(un)awareness. The role of a manager’s (un)awareness in strategy choices and equilibrium
is further analyzed in the following section.

3. Game Setting

This study employs a dynamic game model to analyze the strategic interactions
between a manager and a hacker, focusing on the iterative Bayesian updating of beliefs
and optimization of current payoffs [44]. This dynamic approach allows us to capture
the evolving nature of cybersecurity threats and the corresponding defensive strategies
employed by managers in SMEs. A dynamic game model is a mathematical representation
of a situation where players (in this context, a manager in the role of defender and a hacker
in the role of the attacker) make a sequence of decisions over time. This approach considers
the evolving nature of interactions and the impact of previous choices on future decisions.

In this paper, we primarily focus on the actions of black-hat hackers who seek to
exploit cybersecurity vulnerabilities for malicious purposes. This approach will allow for
the examination of the most pressing cybersecurity challenges faced by SMEs and the
development of awareness of defensive strategies that are both effective and feasible for
managers with varying levels of cybersecurity expertise [3,4]. However, it is also assumed
that the hacker has a type, which, in this case, presumes a form of specialization. As for
the manager, the term refers to an employee or an owner in a small- or medium-sized
enterprise (SME) who is responsible for making cybersecurity decisions. This role may
encompass a range of responsibilities, from a generalist overseeing multiple aspects of
business operations and security, including cybersecurity, to a more specialized individual
with specific training in IT or cybersecurity management. The framework developed herein
does not presuppose advanced cybersecurity expertise, making it applicable to a broad
spectrum of managerial roles within SMEs [6]. Managerial awareness refers to the knowl-
edge and understanding that managers have about cybersecurity threats and how these
threats can affect their organization. Enhancing managerial awareness involves educating
managers about potential cyber risks, attack vectors, and effective countermeasures.

In the game setting, the Instance-Based Learning Theory (IBLT) plays a role in model-
ing the decision-making processes of players acting as defenders and attackers within a
cybersecurity context [19]. This theoretical framework posits that individuals make deci-
sions based on recollections of similar past instances, including the context, actions taken,
and outcomes. Starting with prior beliefs, players engage with the game over multiple
rounds; they accumulate experiences that enhance common knowledge (for example, from
reports on cybersecurity), forming a database of instances in their memory. These data are
then retrieved and blended to inform decisions in new yet similar situations.

However, they need at least some elements present to compare the situation to their
past experiences. Thus, a rudimentary Intrusion Detection System is presumed to exist,
albeit nascent, which serves as a critical tool for the manager [18]. This system continuously
monitors network traffic and activities, analyzing them for patterns or anomalies that could
indicate malicious intent. By evaluating the data collected by this IDS, the manager can
discern insights into the nature and potential strategies of the hacker, which we refer to here
as the properties of the hacker’s strategy. This information, in turn, shapes the manager’s
beliefs regarding the hacker’s type, specifically the distribution of probabilities over the
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hacker’s strategies. This integration adds a layer of realism but also underscores the pivotal
role of cyber situational awareness in forming strategic defenses against cyber threats.

The game setting is designed to elicit adaptive decision-making behaviors, where the
frequency of specific cyber-attack or defense outcomes significantly influences future ac-
tions [14,20]. IBLT elucidates how participants adapt their strategies based on the outcomes
of their interactions with the game environment and the IDS alerts within the constraints
of their cognitive capacities. Integrating IBLT into this game setting aims to capture the
dynamic and adaptive nature of human decision-making in the complex and evolving land-
scape of cybersecurity threats and defenses, providing insights into how cyber situational
awareness develops and influences behavior over time.

To address the gap between the theoretical payoff structures and their real-world im-
plications in cybersecurity challenges, it is necessary to contextualize the strategic decisions
within the dynamic landscape of cyber threats SMEs face. The model’s payoff matrices
represent abstract gains and losses and mirror the tangible outcomes of cybersecurity
breaches—ranging from financial losses and reputational damage to regulatory penal-
ties [1,6]. In the real world, a defender’s choice of strategy, such as investing in advanced
security infrastructure (represented by strategy M2) or focusing on employee training
to mitigate social engineering attacks (strategy M1), directly impacts the organization’s
vulnerability and resilience to attacks [3,4]. The payoff for a successful defense (negative
payoff for the hacker) encapsulates avoided costs and preserved trust. In contrast, the price
of a breach (positive payoff for the hacker) reflects direct and indirect losses. By illustrating
how each strategic interaction within the model corresponds to these real-world outcomes,
we can better appreciate the practical significance of these theoretical insights.

However, the model of awareness and Bayesian updating stands as a distinctive ap-
proach within the landscape of decision-making models, especially when juxtaposed with
the frameworks presented in papers by [15,18,19]. Unlike Aggarwal et al. [15], who propose
using deception as a strategic countermeasure in cybersecurity, this model emphasizes the
dynamic and iterative process of awareness building through Bayesian updating. This
process allows managers to refine their strategies based on observed actions and adjust
their defense mechanisms in real time, offering a more adaptive response to cybersecurity
threats. In contrast to the model in [18], which underscores the importance of cyber situa-
tional awareness facilitated by Intrusion Detection Systems (IDSs), this framework delves
deeper into the cognitive aspects of decision-making. It captures how managers update
their beliefs and strategies based on historical data and the immediate context of cyber
threats, aligning closely with the Instance-Based Learning Theory (IBLT) described in [19].
This approach, therefore, complements these existing models by exploring how awareness
evolves through Bayesian inference, contributing to the strategic decision-making process
in cybersecurity management. This comparison not only situates this work within the
existing body of knowledge but also highlights its potential to bridge theoretical insights
with practical applications in enhancing cybersecurity defenses.

The insights gained from these studies inform this investigation, underscoring the
need for a nuanced understanding of the dynamic interplay between cybersecurity threats
and managerial strategies. In a dynamic game between the manager and a hacker,

Let Sh = {sh1, . . . , shn } denote the strategy set for the hacker,
Let each strategy, sh1, have a set of properties, {a1, b1, c1}.
Let the manager perceive the hacker’s set of strategies according to its general meaning

derived through the combination of its properties as subsets:
Let T ⊂ Sh such that T = {s1, . . . , sk}.
Let V ⊂ Sh such that V = {sk+1, . . . , sl}.
Let Z ⊂ Sh such that Z = {sl+1, . . . , sn}.
And, for simplicity, observe each subset as a single strategy.
The manager is not aware of how the opponent perceives his/her payoff or all available

strategies in his/her set, Sh, but guesses that the hacker may choose a strategy, shT from the
subset T, shV from the subset V, or shZ from the subset Z.
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To offer a relationship to a realistic situation, let us describe the following hacker’s
strategy subsets and their properties, where, for example, we have the following (simplified):

T refers to social engineering—(a) method of attack, exploiting human weaknesses;
(b) target, individuals; and (c) result, data breaches.

V denotes software vulnerabilities exploit—(a) method of attack, exploiting tech-
nical weaknesses; (b) target, a wide range of systems; and (c) result, data breach or
system damage.

Z denotes DDoS attack—(a) method of attack, exploiting compromised devices or sys-
tems by flooding with traffic; (b) target, a wide range of systems; and (c) result, disruption
to services.

Strategies in subsets T and V partially share property c, and strategies in subsets V
and Z partially share property b. Thus, a strategy subset refers to a group of strategies with
common characteristics or objectives. In cybersecurity, subsets might include various types
of attacks (e.g., social engineering and software vulnerabilities) or defense mechanisms.

Based on the external security reports, the manager starts with the knowledge of the
frequencies of a certain type of attack: F. The manager chooses his/her strategies from a set
of strategies: M = {M1, M2, M3}.

The game is mainly observed from the manager’s perspective. Based on the awareness
of the properties of opponent strategies, the manager weighs them and assigns a probability
to each strategy. The manager chooses his/her strategy based on the assigned probability of
the opponent’s strategy and expected payoffs (Table 1). However, the manager also knows
that his/her best response to the hacker’s choice of strategy T is M1, the best response to
strategy V is M2 and the best response to the hacker’s choice of Z is M3. Strategies M1
and M2 share some of the actions, so M2 can somewhat counteract attack T, and M1 can
partially counteract attack V. Similarly, strategies M2 and M3 overlap in regard to other
actions, so strategy M2 can somewhat thwart attack Z, and strategy M3 can somewhat
resist attack Z. The manager chooses strategy M1 with probability p′M1, strategy M2 with
probability p′M2, and strategy M3 with probability p′M3.

Table 1. Payoff matrix.

M1 M2 M3

T −c, c a, b c, −c
V a, b −c, c a, b
Z c, −c a, b −c, c

Note: |c| > |b| > |a|. While properties are denoted in italics, the payoffs are regular font.

The game unfolds as follows. At the beginning of the game, the manager knows pub-
licly available data on cyber-attacks, F. In the first stage, the manager chooses the strategy
to counter the most common attack. The hacker chooses one of the available strategies
from a strategy set, Sh. Then, the manager observes the properties of the hacker’s strategy
and assigns a probability of occurrence to each property based on his/her understanding
of the detected properties. Then, based on the probabilities assigned to the properties,
the manager updates his/her awareness about a taken strategy. Based on the updated
awareness, the manager updates the probabilities of choosing his/her strategies in the
next stage, aiming for a higher expected payoff. By establishing a comprehensive game-
theory framework, we pave the way for a detailed examination of the strategic interactions
between managers and hackers.

Small- and medium-sized enterprises (SMEs) exhibit unique characteristics that shape
their vulnerability to cyber-attacks and influence the types of attacks they are more likely
to encounter than larger corporations. Among these characteristics are limited financial
resources, less cybersecurity awareness, and often a lack of dedicated IT and cybersecurity
personnel. These constraints mean that SMEs may not have the comprehensive cybersecu-
rity measures typically found in larger organizations, such as advanced Intrusion Detection
Systems, regular cybersecurity audits, and employee training programs. Consequently,
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SMEs may be more susceptible to various cyber threats, from social engineering and phish-
ing attacks aimed at exploiting human errors to direct attacks on unpatched systems or
those without sophisticated defense mechanisms.

Reflecting these realities in our game-theory model required careful consideration of
how SMEs’ constraints influence their strategic choices and capabilities in responding to cy-
ber threats. In the mathematical formulation of our model, these constraints are represented
through the payoff structures and the strategy sets available to the ‘manager’ in our frame-
work. The limited strategy sets capture the restricted cybersecurity measures available to
SMEs. At the same time, the payoff structures are designed to reflect the potentially higher
relative impact of successful attacks on SMEs, given their limited resources to absorb such
shocks. Furthermore, the model accounts for the dynamic nature of SMEs’ cybersecurity
awareness and readiness. Through Bayesian updating, the manager’s (SME’s) awareness
of cyber threats evolves based on observed actions and outcomes, modeling the learning
process SMEs undergo in real time as they encounter and respond to cyber threats with
limited prior cybersecurity knowledge. This modeling approach highlights the specific
vulnerabilities of SMEs in the cyber domain and underscores the importance of adaptive
strategies in managing cyber risks under resource constraints.

4. Building and Updating Awareness

The intricate relationship between awareness, strategy selection, and payoffs forms the
cornerstone of our game-theory approach to cybersecurity management. While awareness
may not directly alter the payoff matrix’s intrinsic values, it critically shapes the decision-
making process, leading to more informed strategy choices that, in turn, significantly
influence expected payoffs.

Awareness, in this context, refers to the manager’s understanding and recognition
of potential cyber threats and the hacker’s likely strategies. This comprehension is built
upon both historical data and real-time observations, and it is continuously refined through
Bayesian updating as the game progresses. Enhanced awareness allows the manager to
assign higher probabilities to the strategies he/she believes the hacker is more likely to
employ based on previous rounds’ observed actions and outcomes.

This probabilistic assessment directly impacts the manager’s strategic choices. For
example, suppose the manager becomes aware, through Bayesian updating, that a hacker
is increasingly employing a particular attack strategy (say, strategy T). In that case, the
manager is more likely to choose a defensive strategy (e.g., M1) that is best suited to
counteract that threat. This strategic alignment is not static but dynamically evolves with
the manager’s growing awareness and understanding of the threat landscape.

The selection of a well-aligned strategy, informed by updated awareness, indirectly
affects the game’s payoffs. A strategic choice that effectively counters the hacker’s actions
can mitigate potential losses, preserve the integrity of digital assets, and maintain organi-
zational reputation. Thus, while awareness does not change the payoffs associated with
each strategy combination directly, as there are always objective consequences and payoffs
regardless of how a person is aware of them ([20,33]), it influences the likelihood of achiev-
ing more favorable outcomes by guiding the manager toward more effective defensive
strategies. Moreover, this relationship highlights the game’s adaptive nature, where the
manager and the hacker are engaged in a continuous loop of action, observation, learning,
and strategy adjustment. The manager’s ability to update his/her awareness and strate-
gically respond to the evolving cyber threat environment underscores the pivotal role of
cognitive and informational elements in shaping strategic outcomes in cybersecurity man-
agement. Therefore, awareness is a critical intermediary that links information acquisition
and processing to strategic decision-making, indirectly influencing the game’s payoffs.

Initially, the manager first assigns probabilities about properties of the subset based
on rudimentary Intrusion Detection Systems’ data:

pTa(t), pTb(t), pTc(t),
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pVa(t), pVb(t), pVc(t),

pZa(t), pZb(t), pZc(t).

At this point, it is important to recall that different attack strategies share some
of the properties. If the hacker chooses strategy T, the manager observes properties
pTa(t), pTb(t), pTc(t) and assigns them a probability in the interval [0.5, 1] each, while
the sum of assigned probabilities to the same property of other strategies is, for example,
pVa(t) + pZa(t) = 1 − pTa(t). The probabilities assigned to other properties’ occurrence,
pVb(t), pVc(t), pZb(t), pZc(t), is assigned similarly. However, if the hacker chooses strategy
V, then the manager assigns probabilities in the interval [0.5, 1] to pVa(t), pVb(t), pVc(t),
and the rest of the beliefs of the properties’ occurrence is calculated similarly to the first
case. Since T and V may have similar properties of their attack method, the manager
could, for example, imperfectly assign a probability of 0.51 to pTa(t), and 0.49 to pVa(t),
creating a high ambiguity. Therefore, this observation serves only as a first step and requires
further assessment.

These probabilities denote the manager’s awareness of the detected properties and
are updated at each stage. Suppose the manager’s awareness update functions describe
the manager’s reflection on the common knowledge, F, about the frequencies of a certain
type of attack, the manager’s awareness in time (t − 1), and the hacker’s strategies in
time (t − 1).

To model awareness update functions, we use Bayesian updating, building on [44].
It is a statistical method that updates the probability as more evidence or information
becomes available. Let M(t−1) denote the manager’s awareness and H(t−1) denote the
hacker’s strategies at the time (t − 1). Let F denote the frequencies of a certain type of
attack in the past that is common knowledge between the manager and the hacker. Let
p(T|H(t−1)) denote the probability that the hacker will choose a strategy from subset T
given his/her strategies at the time (t − 1), and let p(a|T, H(t−1)) denote the probability of
property a being present in a strategy from subset T given the hacker’s strategies at the
time (t − 1). Similarly, we define p(V|H(t−1)), p(Z|H(t−1)), p(b|T, H(t−1)), p(c|T, H(t−1)),
and so on for the other properties and subsets.

The manager’s awareness update functions can then be defined as follows. To calculate
p(Ta|T, M(t−1), H(t−1), F), we use Bayes’ rule:

pTa(t) = p(Ta|T, M(t−1), H(t−1), F)

=
p(a|T,H(t−1))·p(T|M(t−1),H(t−1),F)

p(a|T,H(t−1))·p(T|M(t−1),H(t−1),F)+p(a|V,H(t−1))·p(V|M(t−1),H(t−1),F)+p(a|Z,H(t−1))·p(Z|M(t−1),H(t−1),F)

(1)

where p(a|T, H(t−1)) is the probability of the property a being observed given that the
hacker chose subset T and the manager observed history, H(t−1), p(T|M(t−1), H(t−1), F), is
the probability of the hacker choosing subset T given that the manager chose action M(t−1)
and has full awareness of prior attack frequencies, F; and p(Tb|T, M(t−1), H(t−1), F) and
p(Tc|T, M(t−1), H(t−1), F) are defined similarly.

To calculate p(Va|V, M(t−1), H(t−1), F) and p(Za|Z, M(t−1), H(t−1), F), we use the same
approach:

pVa(t) = p(Va|V, M(t−1), H(t−1), F)

=
p(a|V,H(t−1))·p(V|M(t−1),H(t−1),F)

p(a|T,H(t−1))·p(T|M(t−1),H(t−1),F)+p(a|V,H(t−1))·p(V|M(t−1),H(t−1),F)+p(a|Z,H(t−1))·p(Z|M(t−1),H(t−1),F)

(2)

pZa(t) = p(Za|Z, M(t−1), H(t−1), F)

=
p(a|Z,H(t−1))·p(Z|M(t−1),H(t−1),F)

p(a|T,H(t−1))·p(T|M(t−1),H(t−1),F)+p(a|V,H(t−1))·p(V|M(t−1),H(t−1),F)+p(a|Z,H(t−1))·p(Z|M(t−1),H(t−1),F)

(3)

And p(Vb|T, M(t−1), H(t−1), F), p(Vc|T, M(t−1), H(t−1), F), p(Zb|T, M(t−1), H(t−1), F),
and p(Zc|T, M(t−1), H(t−1), F) are defined similarly.
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While it is assumed that the manager is rational, the manager’s perception of the
properties does not have to be perfect. Moreover, this approach allows for partial aware-
ness [26]. The manager assigns the probability that a certain property occurred and belongs
to a specific strategy, allowing uncertainty about the property or a strategy and even a
misjudgment in the early stages of a game. As the manager’s knowledge of the game’s
history builds over the stages, a misjudgment is less likely to occur. This setting mimics
life-like situations, allowing for learning and gaining awareness during the game.

It is worth noting that if one would like to add some noise in the update function
to depict a human error, bias, or heuristic, small random numbers could be added to
each probability derived as the output from the applied Bayes’ rule. While such an ap-
proach may offer interesting insights, it might also make the game unsolvable and the
behavior unpredictable.

By combining the updates based on the perceived properties described in (1)–(3), we
obtain the following:

p(T|H(t−1)) =
pTa(t) + pTb(t) + pTc(t)

pTa(t) + pTb(t) + pTc(t) + pVa(t) + pVb(t) + pVc(t) + pZa(t) + pZb(t) + pZc(t)
(4)

p(V|H(t−1)) =
pVa(t) + pVb(t) + pVc(t)

pTa(t) + pTb(t) + pTc(t) + pVa(t) + pVb(t) + pVc(t) + pZa(t) + pZb(t) + pZc(t)
(5)

p(Z|H(t−1)) =
pZa(t) + pZb(t) + pZc(t)

pTa(t) + pTb(t) + pTc(t) + pVa(t) + pVb(t) + pVc(t) + pZa(t) + pZb(t) + pZc(t)
(6)

Equations (4)–(6) mimic the guessing of the strategies played based on the observed
properties. For example, suppose most observed properties are assigned to strategy T. In
that case, the ratio of the probabilities assigned to those properties (the numerator in 4) and
the probabilities assigned to all properties belonging to all strategies (the denominator in 4)
will be the highest, and the manager assesses that it is most likely that the hacker played
strategy T. However, while such an update directs the awareness toward one subset of the
hacker’s strategies, signaling his/her type (assuming the hacker’s specialization in a kind
of attack vector), a further update involves knowledge about frequencies of all attack types.
That allows for the assumption that one subset of the hacker’s available strategies may be
most likely without disregarding the other subsets.

The update of the probability of choosing strategy M1 in time t (which is the best
response to the hacker’s choice of strategy T from subset St−1) comprises previous knowl-
edge about frequencies of the attack types, the hacker’s strategy chosen at the previous
stage, and awareness about the likelihood that strategy T has been selected (4) based on the
perceived properties:

pM1(t) = p(M1|Mt, Ht−1, F) = p(T|St−1, Ht−1, F)

= p(T|Ht−1)·p(F|T,Mt−1)
Σa′ p(a′ |T,Ht−1)·p(T|Ht−1)·p(F|T,Mt−1)+Σb′ p(b′ |T,Ht−1)·p(T|Ht−1)·p(F|T,Mt−1)+Σc′ p(c′ |T,Ht−1)·p(T|Ht−1)·p(F|T,Mt−1)

(7)

The update is similarly defined for pM2(t) and pM3(t):

pM2(t) = p(M2|Mt, Ht−1, F) = p(V|St−1, Ht−1, F)

= p(V|Ht−1)·p(F|V,Mt−1)
Σa′ p(a′ |V,Ht−1)·p(V|Ht−1)·p(F|V,Mt−1)+Σb′p(b′ |V,Ht−1)·p(V|Ht−1)·p(F|V,Mt−1)+Σc′ p(c′ |V,Ht−1)·p(V|Ht−1)·p(F|V,Mt−1)

(8)

pM3(t) = p(M3|Mt, Ht−1, F) = p(Z|St−1, Ht−1, F)

= p(Z|Ht−1)·p(F|Z,Mt−1)
Σa′p(a′ |Z,Ht−1)·p(Z|Ht−1)·p(F|Z,Mt−1)+Σb′ p(b′ |Z,Ht−1)·p(Z|Ht−1)·p(F|Z,Mt−1)+Σc′ p(c′ |Z,Ht−1)·p(Z|Ht−1)·p(F|Z,Mt−1)

(9)

where Σa′, Σb′, and Σc′ denote the sum over all possible values of properties a, b, and
c, respectively. F represents the frequencies of a certain type of attack in the past that
is common knowledge between the manager and the hacker, estimated based on public
reports. The final update reflects a manager’s belief about the subset of strategies that the
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hacker used. While this resembles the notion of guessing the hacker’s type, a hacker might
be versatile and mix the applied strategy over the stages.

Equations (7)–(9) further update the probabilities of the manager’s strategy. In that
sense, the manager uses his/her updated awareness about the opponent’s strategy and
extends its meaning to his/her choice of strategy in the next stage. These functions update
the manager’s awareness about the hacker’s strategy and properties based on the previous
awareness, the frequencies of the attack, and the hacker’s strategy at the last stage. The
manager can then use his/her updated awareness to assign probabilities to each strategy
and choose his/her strategy based on expected payoffs.

Including F in the manager’s awareness update functions allows the manager to
incorporate his/her knowledge of the past frequency of attacks into his/her current beliefs
about the hacker’s strategies and properties. It also denotes the minimal awareness that an
attack is possible. This can be particularly important when the manager’s prior beliefs may
be biased or incomplete, and the past frequency of attacks provides additional information
to update the manager’s beliefs. This is also important at the initial stages of the game,
especially if the manager does not have prior experience with cybersecurity. However, it
can be noticed that F will skew the manager’s probabilities of choosing strategies toward
the one that counters the most common type of attack and might hinder his/her ability to
adapt the strategies promptly. This detailed approach to modeling awareness provides a
foundation for exploring the effectiveness of different managerial strategies in the face of
evolving cybersecurity threats.

5. Reasoning about Strategies

First, we need to determine the probability that the hacker will choose a strategy from
each of the subsets, T, V, and Z, given the manager’s awareness at time t. We can use
Bayesian updating to update the manager’s awareness at each stage of the game based on
his/her observations.

Let pT(t), pV(t), and pZ(t) denote the probabilities that the hacker will choose a
strategy from subsets T, V, and Z, respectively, at time t, given the manager’s strategy at
time t − 1. Then, we have the following:

pT(t) = p(T|H(t−1), M(t−1), F) =
p(T|H(t−1)))·p(M(t−1)).|T)·p(F)

ΣT′p(T′|H(t−1)))·p(M(t−1)).|T′)·p(F)
(10)

where p(T|H(t−1))) is the probability that the hacker will choose a strategy from subset T
given his/her strategies at the time t − 1, (p(M(t−1))|T). is the probability that the manager
will chose strategy M1 given the hacker’s choice of subset T at time t − 1, and p(F) is the
probability of observing the frequencies of a certain type of attack in the past.

Similarly, we can define the probabilities pV(t) and pZ(t) as follows:

pV(t) = p(V|H(t−1), M(t−1), F) =
p(V|H(t−1)))·p(M(t−1)).|V)·p(F)

ΣV′p(V′|H(t−1)))·p(M(t−1)).|V′)·p(F)
(11)

pZ(t) = p(Z|H(t−1), M(t−1), F) =
p(Z|H(t−1)))·p(M(t−1)).|Z)·p(F)

ΣZ′p(Z′|H(t−1)))·p(M(t−1)).|Z′)·p(F)
(12)

Additional reasoning about the strategies is introduced to add to the heuristic ap-
proach to model the manager’s choices. The update is further governed by reasoning
about the manager’s strategies, implying a set of rules based on the assumption that
strategies in subsets T and V partially share property c, and strategies in subsets V and
Z partially share property b, as well as the overlaps in the corresponding manager’s best
responses. That reasoning results in probabilities p′M1, p′M2, and p′M3, such that we can
observe the following:

If pTa > pVa and pTa > pZa and pTb > pVb and pTb > pZb and pTc ≥ pVc and
pTc > pZc, then the manager chooses strategy M1 with probability p′M1 = 1.
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If pVa > pTa and pVa > pZa and pVb > pTb and pVb ≥ pZb and pVc ≥ pTc and
pVc > pZc, then the manager chooses strategy M2 with probability p′M2 = 1.

If pZa > pTa and pZa > pVa and pZb > pTb and pZb ≥ pVb and pZc > pTc and
pZc > pVc, then the manager chooses strategy M3 with probability p′M3 = 1.

If pTa > pZa and pVa ≥ pZa and pTb ≥ pZb and pVb ≥ pZb and pTc ≥ pZc and
pVc ≥ pZc, then the manager chooses between strategies M1 and M2 with assigned
probabilities p′M1(t) =

pM1(t)
pM1(t)+pM2(t)

and p′M2(t) =
pM2(t)

pM1(t)+pM2(t)
.

If pTa > pVa and pZa ≥ pVa and pTb ≥ pVb and pZb ≥ pVb and pTc ≥ pVc and
pZc ≥ pVc, then the manager chooses between strategies M1 and M3 with assigned proba-
bilities p′M1(t) =

pM1(t)
pM1(t)+pM3(t)

and p′M3(t) =
pM3(t)

pM1(t)+pM3(t)
.

If pVa > pTa and pZa ≥ pTa and pVb ≥ pTb and pZb ≥ pTb and pVc ≥ pTc and
pZc ≥ pTc, then the manager chooses between strategies M2 and M3 with assigned proba-
bilities p′M2(t) =

pM2(t)
pM2(t)+pM3(t)

and p′M3(t) =
pM3(t)

pM2(t)+pM3(t)
.

Based on the updated probabilities, the manager chooses strategies:
p′M1 = 1 if pTa > pVa and pTa > pZa and pTb > pVb and pTb > pZb and pTc ≥ pVc and

pTc > pZc, or else 0.
p′M2 = 1 if pVa > pTa and pVa > pZa and pVb > pTb and pVb ≥ pZb and pVc ≥ pTc and

pVc > pZc, or else 0
p′M3 = 1 if pZa > pTa and pZa > pVa and pZb > pTb and pZb ≥ pVb and pZc > pTc and

pZc > pVc, or else 0.
The manager’s expected payoff for each strategy can be calculated as follows:

E(M1) = pT(t)·c + pV(t)·b − pz(t)·c (13)

E(M2) = pT(t)·b + pV(t)·c + pZ(t)·b (14)

E(M3) = −pT(t)·c + pZ(t)·b + pZ(t)·c (15)

where the probability of the hacker’s strategy belonging to subset T is pT , to subset V is pV ,
and to subset Z is pZ. However, it can be noticed that the manager’s reasoning is primarily
governed by his/her awareness and reasoning that involves the rules that lead to a higher
payoff, but not the expected payoff itself, thus mimicking the unawareness of the payoff.
However, the manager must be sensitive to a loss and react to it. In addition, let us assume
the manager’s reflective awareness about the relevance of prior frequencies in his/her
probability assignment and his/her control over his/her beliefs. If the manager did not
win at time (t − 1), he/she should rethink the prior probabilities and set them to 0.5 in the
next stage (thus allowing for maximum uncertainty and loosely mimicking the effect of
time [15–17]).

The expected payoff of the hacker for each subset of strategies is as follows:

E(T) = −p′M1(t)·c + p′M2(t)·a + p′M3(t)·c (16)

E(V) = p′M1(t)·a − p′M2(t)·c + p′M3(t)·a (17)

E(Z) = p′M1(t)·c + p′M2(t)·a − p′M3(t)·c (18)

where p′M1, p′M2, and p′M3, are the probabilities that the manager will choose strategies M1,
M2, and M3, respectively.

To maximize their expected payoff, the manager should assign probabilities as follows:
p′M1 = 1 if pTa > pVa and pTa > pZa and pTb > pVb and pTb > pZb and pTc ≥ pVc and

pTc > pZc or if E(M1)t−1 is the highest, or else 0.
p′M2 = 1 if pVa > pTa or if pVa > pZa and pVb > pTb and pVb ≥ pZb and pVc ≥ pTc

and pVc > pZc and if E(M2)t−1 is the highest, or else 0.
p′M3 = 1 if pZa > pTa and pZa > pVa and pZb > pTb and pZb ≥ pVb and pZc > pTc and

pZc > pVc or if E(M3)t−1 is the highest, or else 0.
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The strategic considerations discussed here are instrumental in developing a robust
defense mechanism, guiding managers in SMEs to make informed decisions based on
updated awareness and strategic reasoning.

6. The Role of (Un)Awareness in Equilibrium

The game can be analyzed using the best-response strategies, equilibrium analysis,
and sequential decision-making. An equilibrium analysis examines stable states in a game
where no player can benefit by changing his/her strategy, while the other players keep
theirs unchanged. Identifying equilibrium helps predict the likely outcomes of strategic
interactions. Conversely, sequential decision-making refers to making decisions one after
another, where each decision may depend on the outcome of previous decisions. In
cybersecurity management, this involves adapting defenses based on the evolving threat
landscape and past attack experiences.

Stage 1: The manager chooses the strategy to counter the most common attack. In this
stage, the manager’s best response is to choose M1 if the hacker’s strategy belongs to subset
T, M2 if it belongs to subset V, and M3 if it belongs to subset Z. To maximize his/her
expected payoff, the manager should assign probabilities as described in the previous
chapter.

Stage t (t > 1): The manager updates his/her awareness based on the observed
properties and chooses a strategy. In this stage, the manager updates his/her awareness
by calculating the probabilities, p(T), p(V), and p(Z), based on the observed properties,
using Equations (1)–(3). Using the updated probabilities, the manager then updates the
probabilities assigned to their strategies, pM1(t), pM2(t), and pM3(t), based on the updated
awareness and past frequencies, F (Equations (4)–(6)).

The manager’s expected payoffs for each strategy at this stage are the same as in Stage
1, but with the updated probabilities, p(T), p(V), and p(Z); and the updated probabilities,
p′M1(t), p′M2(t), and p′M3(t) (13)–(15). The manager then chooses the strategy with the
highest expected payoff and continues to the next stage.

Repeat Stage t until convergence or a maximum number of iterations. The manager
repeats Stage t, updating his/her awareness and probabilities and choosing strategies
based on expected payoffs until a convergence point or a maximum number of iterations
is reached. Convergence can be defined based on a predetermined threshold for the
differences between consecutive iterations or by reaching a stable set of probabilities.
Nevertheless, the manager’s goal is anticipating the hacker’s behavior and successful
defense, implying that meaningful convergence occurs only when the manager’s awareness
of the hacker’s strategies distribution aligns with the hacker’s strategies distribution.

Suppose we disregard the reasoning about the strategies by iteratively updating their
awareness and strategy. In that case, the manager should reach a perfect Bayes equilibrium,
where the manager’s strategy maximizes his/her expected payoff, given the probabilities
assigned to the hacker’s strategies and the observed properties. This equilibrium allows the
manager to make informed decisions based on the available information and the historical
frequencies of different strategies and outcomes. If the probabilities reach a convergence, it
can be written in Bayes’ perfect equilibrium formula:

(M∗, S∗) = argmaxM,T p(M, S|H(t−1), F)/
[

p(M|T, H(t−1), F) + p(M|V, H(t−1), F) + p(M|Z, H(t−1), F)
]

(19)

where p(M, S|H(t−1), F) is the joint probability of the manager’s action and the hacker’s
subset being chosen given the history, H(t−1), and the awareness of the prior frequencies
of attacks, F; and p(M|T, H(t−1), F) is the probability of the manager choosing action M
given that the hacker chose subset T and the manager-observed history, H(t−1), with prior
knowledge, F. Moreover, p(M|V, H(t−1), F) and p(M|Z, H(t−1), F) are defined similarly.

The role of the manager’s awareness in the solution is to affect the conditional prob-
abilities, p(M|T, H(t−1), F), p(M|V, H(t−1), F), and p(M|Z, H(t−1), F), which govern the
probability of the manager choosing action M given that the hacker chose subset T, V, or Z,
respectively. The manager’s observed history, H(t−1), leads to gaining full awareness. Until
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reaching full awareness, the manager makes decisions based on his/her best guess about
the situation. That best guess will be determined by the manager’s prior experience (or lack
thereof) or the common knowledge (public reports) he/she relies on initially. Moreover, the
manager can quickly reach convergence if the observed hacker chooses the most common
attack vector repeatedly. However, in any other case, learning and gaining awareness will
take more time.

The manager’s awareness depends on the perceived properties of the attack. To
become aware of the attack, the manager should recognize and identify its properties and
assign those properties to the correct hacker’s strategy. The manager may misjudge a
property or a strategy, especially in the game’s early stages, leading to slower convergence
and more stages with a loss as a payoff.

The manager’s awareness update affects these probabilities because it changes the
manager’s perception of the likelihood of each subset being chosen by the hacker based
on past experiences or knowledge. Therefore, the manager’s awareness can impact the
manager’s strategy by changing the relative weights assigned to each possible action based
on their perceived effectiveness against each subset.

The mathematical modeling constructs a dynamic game between a manager and a
hacker, incorporating the concept of (un)awareness and iterative Bayesian updating to
simulate the manager’s evolving awareness of cybersecurity threats. Through this analysis,
the pivotal role of awareness in achieving equilibrium is demonstrated, offering valuable
insights into the development of adaptive and effective cybersecurity strategies.

7. Algorithm for Strategic Interaction Simulation

Based on the theoretical framework and the game complexity, the Bayesian aware-
ness updating is further assessed through the simulation. The objective is to simulate the
decision-making process of a hacker and a manager over a series of interactions, incorpo-
rating strategy updates based on observed outcomes. Notation is available in Appendix A,
and an outline of the simulation process is presented in Figure 2.

The simulation outlined in Figure 2 unfolds as follows:

Initialization
Input:
Number of simulation rounds, T; initial frequencies; and probabilities.
Define the players and strategies:
Players: P = {Hacker, Manager};
Hacker’s strategies: S = {T, V, Z};
Manager’s strategies: M = {M1, M2, M3};
Payoff matrices: hacker’s payoff, UH(S, M); manager’s payoff, UM(S, M).

• Initial strategy probabilities:

# Hacker’s strategy probabilities: PH = {pHT , pHV , pHZ};
# Manager’s strategy probabilities: PM = {pM1, pM2, pM3}.

• Historical data initialization:

# Historical frequencies of attack types: F = {FT , FV , FZ};
# Probabilities of hacker’s choices based on hacker’s type: H = {HT , HV , HZ}.

• Variables for tracking frequencies:

# Frequencies of strategies: FS = {∑t
k=1 T

t , ∑t
k=1 V

t , ∑t
k=1 Z

t , t};

# Outcomes tracking: O = {OH(t)
maxO , OM(t)

maxO , t};
# Simulation loop (for each iteration t from 1 to T):

Hacker strategy probability determination:

• Calculate the hacker’s strategy probabilities based on the initial hacker’s
strategy probabilities.

Hacker strategy choice:
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• Selection based on max probability: St = argmaxPH(t).

Property observation probability update (awareness update):

• Updated probabilities, Pobs(S, M) based on PH(t) and PM(t); for each prop-
erty p in S: Pobs(p|St, M) = f (PH(t, St), PM(t, M)).

Manager strategy probability update:

• Update based on observed properties, historical data, and outcome of the
previous round: PM(t + 1, M) = g(Pobs(p | St, M), F(S), H(S)).

Manager strategy choice:

• Selection based on max probability: Mt = argmaxPM(t + 1).

Payoff calculation:

• UH(St, Mt) = Lookup(UH , St, Mt).
• UM(St, Mt) = Lookup(UM, St, Mt).

Frequency and history update:

• Update historical frequencies for strategies and types of attacks: FS(St) + 1,
O(UH , UM) = O(UH , UM) + 1.

• Update the historical frequency of the manager’s strategies.

Awareness and strategy correction:

• Adjust probabilities if the payoff is below a certain threshold. That is,
if UM(St, Mt) < thresholdM, adjust PM accordingly.

Store iteration results:

• Store St, Mt, UH , UM, PH(t+1), PM(t+1) for analysis.

Loop continuation check:
If ‘I’ is less than ‘T’, then t = t + 1 and repeat steps in 2.

After loop completion:
Output: A data frame containing the results of each round.

• Collect and format the simulation results from all iterations for analysis.

End of algorithm.

The simulation algorithm outlined here eases our understanding of the complex
dynamics and awareness evolution in the interplay of cybersecurity threats and defenses.
It bridges theoretical models with real-world applicability and allows for examinations of
different settings.
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7.1. An Example of a Use-Case Scenario

To illustrate the application of the game-theory approach in a cybersecurity context,
consider the following hypothetical scenario involving a small company specializing
in cloud-based services for small businesses. The company has recently expanded its
customer base and holds sensitive data in its cloud storage. The company has a basic
cybersecurity infrastructure but lacks a dedicated cybersecurity team. The manager is
aware of the cybersecurity threats but has limited knowledge of anticipating or responding
to sophisticated cyber-attacks.

drawio.com
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One Monday morning, the manager receives an alert from their rudimentary Intrusion
Detection System (IDS) about unusual email activities. The manager recalls the game-
theory framework for cybersecurity decision-making introduced in the company’s recent
cybersecurity-awareness training.

The manager reviews the historical data on cyber-attacks and notices that phishing
attacks (T) have been the most common, followed by software-vulnerability exploits (V)
and DDoS attacks (Z). This prior information forms the basis for the manager’s initial
strategy probabilities.

Using the Bayesian updating approach, the manager considers the properties of the
unusual email activities, such as suspicious attachments and links, which are indicative
of a phishing attack (strategy T in the model), and assigns the highest probability to the
hacker’s strategy T. Based on the Bayesian updating model, the manager recalculates the
probabilities of facing each type of cyber-attack. Given the current alert and historical
data, the likelihood of a phishing attack is deemed highest. The manager decides that
implementing stricter email filtering and enhancing employee awareness (strategy M1)
make for the best immediate response.

The manager initiates a quick cybersecurity briefing for all employees, emphasizing
the signs of phishing emails and the importance of not clicking on unknown links or
attachments. Simultaneously, the manager updates the email filtering rules to catch and
quarantine suspicious emails.

Over the next few days, the manager monitors the situation closely. The number of
suspicious email activities decreases significantly, indicating that the phishing attack has
been successfully mitigated. Based on this successful outcome, the manager updates the
company’s cybersecurity strategy probabilities, enhancing the company’s preparedness for
future attacks.

This use-case scenario demonstrates how a small company without a dedicated cy-
bersecurity team can apply a game-theory framework to make informed decisions and
effectively respond to cybersecurity threats. By incorporating Bayesian updating, the com-
pany can dynamically adjust its strategies based on evolving threats and historical data,
enhancing its cybersecurity posture over time.

7.2. Simulation Data Generation and Assumptions

The dataset for our simulations was generated synthetically to explore the strategic
interactions between managers and hackers within the game-theory framework established
in this study. This approach allowed us to create a controlled environment where the
impact of various strategies and awareness levels could be systematically analyzed.

The primary real-world information integrated into our simulations was the shares
of different types of attacks, as referenced from the CERT annual report 2022 [45]. This
empirical grounding provided a realistic backdrop against the strategic interactions between
hypothetical managers and hackers. Each simulated interaction was predicated on a set of
assumptions reflective of real-world cybersecurity management scenarios and awareness:
managers and hackers choose from a finite set of strategies, with the effectiveness of each
managerial strategy varying according to the assessed type of attack employed by the
hacker. The evolution of managerial awareness and strategic adaptation was modeled
using Bayesian updating, based on the observed outcomes of interactions and informed by
the initial attack type shares from the referenced report.

The simulation environment was custom designed to facilitate this complex interplay
of strategies, outcomes, and learning processes, ensuring a rigorous yet flexible framework
for analyzing our study’s theoretical propositions. The simulation environment parameters,
including the number of rounds and the impact of different strategies on payoffs, were
chosen based on the literature to ensure a balance between realism and analytical tractability.
The results are then compared to similar theoretical models and case studies.
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8. Results and Discussion
8.1. Different Hacker Types

The awareness update is imperfect because the inexperienced manager updates
his/her initial probabilities roughly, considering only the game history and prior frequen-
cies. This is enough when the hacker’s type (or strategy choices, i.e., his/her specialization)
aligns with the initial frequencies and game history (the hacker’s choices are consistent).
That can be seen in the first two graphs in Figure 3.
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Figure 3 illustrates the frequencies with which strategies are chosen by the manager
(left) and hacker (right). Strategies are selected based on the highest probability in each
round, allowing these selections to be interpreted as strategies chosen at each stage. The red
line in each graph represents the cumulative share of wins (calculated only by the rounds
where they achieved the highest payoff). The pairs of figures depicting the frequencies of
strategy choices by both managers and hackers result from various scenarios defined by
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the hacker’s type, specifically those predominantly using strategies T, V, and Z and those
employing a versatile approach, respectively.

The two graphs in the second row in Figure 3 depict a situation where the hacker
predominantly chooses strategy V, and the manager responds with strategies M1 and M2.
That allows the manager to win in approximately half of the interactions, with only a few
successful hacker attacks. The two graphs in the third row in Figure 3 involve a hacker who
predominantly chooses strategy Z, allowing the manager to win 50% of the time and with
the same percentage of completely successful attacks. The reason for this lies in the initial
frequencies, which reinforce the manager’s choice of strategy M1. While the situation may
not seem dire because the manager defends the company in at least 50% of situations, each
loss could be the last one for the company.

The last two graphs in the fourth row in Figure 3 are based on a simulation with a
versatile hacker who chooses each strategy with equal probability. Interestingly, that allows
a higher share of manager’s wins because there are more cases where the role of initial
frequencies points to the optimal choice. Likewise, the hacker’s attacks are completely
successful in approximately 20% of the rounds.

The simulation results highlight the challenges managers face with imperfect aware-
ness in adapting to cybersecurity threats. The initial successes observed in the simulations,
where the manager’s strategies align with the hacker’s predominant choices, underscore the
importance of matching defensive strategies to the most likely attack vectors, as emphasized
by Leng et al. [13] in their exploration of strategic interactions between software manufac-
turers and hackers. This alignment between defensive strategies and attack probabilities
mirrors the game-theory models’ predictions, where the awareness of attack frequencies
informs optimal defensive strategies.

However, the hacker’s versatility, as shown in the remaining graphs of Figure 3, further
demonstrates managers’ need to adapt their strategies beyond historical data. Aggarwal
et al. [15] and their discourse on using deception as a strategic countermeasure support
this concept. This adaptability is crucial for effectively managing the evolving nature of
cyber threats.

Moreover, these findings resonate with the importance of situational awareness in
cybersecurity management, as highlighted by Aggarwal et al. [18], who emphasized the
role of Intrusion Detection Systems (IDSs) in augmenting cyber situational awareness. By
integrating Bayesian updating mechanisms, this model reflects the continuous learning
and adaptation process in response to observed cyber threats, akin to the Instance-Based
Learning Theory (IBLT) discussed by [19]. This approach allows us to model the manager’s
decision-making process as a function of accumulated experiences and the adaptation to
new information, thereby bridging the gap between theoretical constructs and practical
applications in cybersecurity defense strategies.

Furthermore, the simulation results presented through figures underscore the crit-
icality of aligning managerial actions with the probabilistic nature of cyber threats, as
suggested by the equilibrium analysis. This alignment is paramount for crafting effec-
tive defense mechanisms, underpinning the theoretical discourse on innovative defense
strategies beyond traditional security solutions, as explored by [15–17]. By providing a nu-
anced understanding of how managers can leverage their awareness and strategic insights
to counteract diverse cyber threats, this study contributes to the broader cybersecurity
literature, offering empirical evidence to support theoretical assertions and highlighting
the dynamic interplay between attacker strategies and defensive responses within the
cybersecurity domain.

Simplified, an inexperienced manager armed only with a national cybersecurity report
should adopt a strategy of vigilant awareness and adaptive defense. They should start
by understanding and prioritizing threats identified in the report, focusing on the most
common attacks. Implementing fundamental cybersecurity practices and continuously up-
dating their knowledge and strategies in response to new information are crucial steps. The
manager should also actively engage in awareness efforts, tailoring employee training to
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address the specific threats highlighted in the report. This approach, grounded in Bayesian
updating and strategic adaptation, will enable even those with limited cybersecurity exper-
tise to effectively mitigate risks if they face a typical attacker. In other instances, they could
face a loss before their experience allows for the accumulation of enough knowledge. One
way to counteract that is to learn from other people’s experiences. The other possibility
surpasses the scope of this model but can involve a retrospective based primarily on the
recent opponent’s activities [17–19].

While the initial presentation of our game-theory framework illustrates cyber-attacks
through specific examples, such as social engineering, vulnerability exploits, and DDoS
attacks, it is crucial to understand that these categories serve as archetypes to demonstrate
the model’s functionality rather than limit its applicability. Indeed, the nuanced landscape
of cybersecurity threats often sees attacks not as isolated incidents but as components of a
more sophisticated strategy, where one type of attack paves the way for another.

Recognizing this, our framework is designed with the flexibility to model such inter-
dependencies between different attack strategies. Each attack vector—social engineering,
a software vulnerability exploit, or a DDoS attack—can be considered both a standalone
threat and a precursor to or component of a more complex attack pattern within the game’s
dynamics. The changes in the hacker’s type enable exploration of the manager’s updated
awareness and reaction to different attack types. For example, the versatile hacker type
illustrates the possibility of a series of different attack types.

While the game formulation allows for sequential strategies, further research may
explore compound strategies, where the outcome of one move influences the setup and
potential success of subsequent strategies. This may also be achieved by dynamically up-
dating the game’s state based on the actions taken and the outcomes observed, representing
complex attack patterns that reflect real-world cyber threats’ iterative nature. For example,
the transition from a social-engineering attack to a vulnerability exploit and, subsequently,
to a DDoS campaign can be modeled by defining multi-stage strategies within the game,
where the success and detection of each stage affect the probabilities and payoffs of the
following actions.

Additionally, the model may be expanded in future research to include other categories
of cyber-attacks, such as ransomware, which would involve defining the probabilities for
this strategy given the hacker’s type and potential outcomes associated with such an attack
within the game’s structure. This would continue to specify how a ransomware attack
alters the game state, affects the manager’s awareness and strategy choices, and influences
the attacker’s and defender’s payoffs. The modular nature of our game-theory approach
facilitates this expansion, allowing for the inclusion of new attack vectors by defining
their characteristics and integrating them into the existing framework. Such adaptability
underscores the model’s capacity to evolve in response to the ever-changing landscape of
cybersecurity threats.

8.2. Different Prior Frequencies

The results in the previous section were derived using initial frequencies from the
report ([45], 0.7875, 0.1947, and 0.0178). However, the report does not involve only the
companies and refers to the past year, so it might not reflect the real picture. Cybercrime is
quickly evolving, and the frequency of attack types could change rapidly. So, the simulation
is also conducted using altered frequencies, and the hacker’s type is versatile. Similar to the
previous figure, Figure 4 also shows the frequencies of the manager’s (left) and hacker’s
(right) strategy probabilities. The red line in each graph represents the cumulative share
of wins.

Using initial frequencies from past reports [45] as a basis for Bayesian updating in
the simulations reveals the critical role of accurate and timely intelligence in cybersecurity
management. The evolving nature of cyber threats, as indicated by the need to adjust
frequencies in the simulations, aligns with the observations made by Aggarwal et al. [18]
regarding the importance of cyber situational awareness. It is relevant to note a practical
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application of these concepts. A case study from Princeton University highlights the
transformative impact of a security culture through user awareness [46]. This example
shows that prior knowledge, when strategically leveraged through targeted communication
and community engagement, can play a crucial role in addressing cybersecurity threats in
complex organizational environments. This underscores the tangible benefits of informed
strategy choices and the implementation of awareness-driven cybersecurity measures.
Drawing on prior knowledge and awareness has proven critical in various real-world social-
engineering attacks. For instance, notable incidents like the phishing scam that fooled a
Shark Tank judge in 2020, the loss suffered by Toyota Boshoku Corporation due to a business
email compromise attack in 2019, or the Ethereum Classic website hack in 2017 underscore
the necessity of recognizing cybersecurity threats [47,48]. While acquiring knowledge
about cyber-attacks is essential for developing baseline awareness and enhancing defensive
strategies, there is a valid concern that disseminating such information could inadvertently
aid attackers by providing them with insights into vulnerabilities and potential targets [49].
Another venue relies on cyber–physical systems or intrusion detection and prevention
systems [50]. However, the authors [50] highlight the importance of the human factor in
the context of securing IoT ecosystems by emphasizing that as these devices become more
integrated into our daily lives, it is critical to address not just the technical but also the
psychological vulnerabilities associated with human interaction with these systems. They
argue that human psychological flaws are an intrinsic part of the security challenges facing
IoT ecosystems. This perspective acknowledges that, alongside the technical, economic,
and regulatory hurdles, the human element plays a pivotal role in the overall security
posture. These cases highlight the significance of being aware of potential attack vectors, as
it is a baseline for further assessment.
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The graphs in the first row show a situation where the manager initially anticipates
each type of attack with equal probability. That leads to the manager’s winning in about
50% of the cases. The initial frequencies are augmented for the second and third simulation
run but allow the manager to win in approximately 60% of the cases. The comparison of
the graphs shows that even inaccurate information on prior frequencies can be better than
complete uncertainty. However, the accurate initial frequencies, in the sense that they align
with the attacker’s type, lead to the best results for the managers and build their awareness
through Bayesian updating.

Nevertheless, the findings suggest that reliance on outdated or inaccurate frequency
data can hinder the effectiveness of cybersecurity strategies, underscoring the need for on-
going intelligence gathering and analysis. This requirement for accurate threat intelligence
and adaptability in response strategies is further supported by the literature on Intrusion
Detection Systems (IDSs) and their contribution to situational awareness [18]. The simula-
tions demonstrate that even imperfect awareness can lead to improved defensive outcomes
when updated through Bayesian methods. This concept resonates with the Instance-Based
Learning Theory (IBLT) [19] and its application in cybersecurity decision-making.

Future enhancements of the model can aim to incorporate more granular representa-
tions of SME characteristics, such as varying levels of IT competence and resource-allocation
preferences, to refine our understanding of SMEs’ cybersecurity challenges and resilience
strategies further. These refinements could involve other aspects of awareness, such as
response time, threat assessment accuracy, or learning rate.

The findings advocate for a nuanced approach to cybersecurity management, where
ongoing learning, adaptability, and the strategic use of intelligence are paramount. More-
over, they highlight the potential for future research to explore alternative models of
awareness and decision-making that can accommodate the rapid evolution of cyber threats
and the diverse tactics employed by attackers.

The Bayesian awareness updating that involves prior frequencies of the attacks works
well in the cases of the most common attack types. However, it may not allow enough agility
and adaptiveness to the manager when prior frequencies do not reflect the immediate
attacker’s type. While this emphasizes the importance of intelligence about cyber-attacks,
it also calls for other awareness modeling approaches.

To address emerging cyber threats, including AI-driven attacks and sophisticated
phishing schemes, the model could be expanded to incorporate adaptive learning mecha-
nisms that account for the evolving nature of these threats. Specifically, the model could
integrate a machine learning component where the manager’s awareness and strategy
adaptation are not solely based on historical data but also on predictive analytics that
consider trends and patterns in cyber threats. This enhancement would enable the model to
dynamically adjust to new types of attacks, even those that have not been widely observed
in the past. For instance, incorporating a neural network that analyzes patterns in attack
vectors and predicts potential future threats could improve the model’s predictive capa-
bility. This approach would allow SME managers to anticipate and prepare for emerging
threats more effectively, making the cybersecurity management process more proactive
rather than reactive.

8.3. Theoretical Contributions

Our research introduces a novel methodological approach for quantifying the theo-
retical aspect of awareness in game theory in line with theoretical propositions by [23,25],
tailored to the cybersecurity context and leveraging insights by [19]. While this initiative
primarily focuses on methodological innovation in awareness quantification, it naturally
extends its utility to enhancing the understanding of strategic interactions in cybersecurity.

The game captures the dynamic nature of cybersecurity, where the manager contin-
ually adapts his/her strategies based on observed actions and threat landscapes. Based
on Bayesian inference, the manager’s awareness update functions allow the manager to
update his/her beliefs about the hacker’s strategies based on observed properties and prior
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knowledge. The probabilities assigned to the hacker’s strategies by the manager reflect
their subjective assessment of the likelihood of each strategy being chosen by the hacker.

Moreover, the manager’s awareness update functions mimic and simulate the process
of learning and gaining awareness of the hackers’ strategies and their properties over
time. By incorporating information about the frequencies of past attacks, the manager can
update his/her beliefs and assign probabilities to the hacker’s strategies, which reflects the
evolving threat environment.

The manager’s awareness of the hacker’s potential strategies built upon the observed
properties helps him/her make informed decisions about which countermeasures to em-
ploy. Through awareness, the manager can update his/her understanding of the situation
and assign probabilities to different strategies and subsets. The updating process allows
the manager to refine his/her awareness of the hacker’s potential strategies based on the
available information.

The simulations demonstrate how the manager’s awareness and his/her choices of
strategies are influenced by the hacker’s behavior, prior frequencies, and game history, sim-
ilar to the approach of [16,17]. The accuracy of the initial frequencies plays a significant role
in the manager’s success, with aligned frequencies leading to optimal results. Inaccurate
information on prior frequencies still outperforms complete uncertainty, emphasizing the
value of any available knowledge. Based on expected payoffs and updated awareness, the
manager’s strategy choices demonstrate the importance of adaptive defense mechanisms in
cybersecurity. However, the results suggest that other awareness modeling approaches are
necessary to enhance the manager’s agility and adaptiveness when the prior frequencies
do not reflect the immediate attacker’s type, indicating the need for improved intelligence
about cyber-attacks and examinations of different awareness modeling approaches.

This study enhances the existing body of knowledge by elucidating the intricate dy-
namics between managers and hackers through a comprehensive game-theory framework
incorporating Bayesian updating for dynamic awareness. Incorporating Bayesian updating
for dynamic awareness into our model represents a significant departure from traditional
static awareness approaches in cybersecurity, similar to the dynamic game settings dis-
cussed by [23], but specifically tailored to the complex, evolving nature of cyber threats
faced by SMEs. This novel adaptation demonstrates the need for a more nuanced, proactive
response to cybersecurity management, aligning with the continuous learning process
inherent in real-world cybersecurity operations and significantly advancing the theoretical
framework within which cybersecurity strategies are developed and implemented. By
simulating the iterative updating of awareness based on observed outcomes and historical
data, we provide a nuanced understanding of how managers can adjust their strategies to
counteract an ever-changing array of cyber threats.

8.4. Practical Implications and Future Directions

In cybersecurity management, awareness is vital for effectively managing and mitigat-
ing security risks. Cybersecurity threats and attacks are constantly evolving and becoming
more sophisticated. Organizations must keep track of the latest attack vectors, vulnerabili-
ties, and techniques that malicious actors employ. Understanding an attacker’s potential
strategies and capabilities is crucial for designing effective defense mechanisms [8]. When
an attack occurs, recognizing it and categorizing the attacker’s strategies and techniques can
help organizations respond effectively, mitigate the impact, and prevent future incidents.

Investigating the game-theory aspects of cybersecurity awareness and decision-making
highlights significant advancements in comprehending these complex domains. By delving
into the nuanced interplay between hackers and managers, particularly within the context
of SMEs, we not only elucidate the strategic underpinnings of cybersecurity threats but also
chart a path toward more informed and effective defensive strategies. The game provides
insights into decision-making processes for cybersecurity managers, highlighting the need
to consider probabilistic assessments of threats and the effectiveness of countermeasures.
Complementing the conclusions of [6,18], the developed model offers SME managers a the-
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oretical foundation upon which to base their cybersecurity decisions, fostering a proactive
rather than reactive approach to digital threats.

In translating the theoretical insights of our game-theory framework into practical
strategies for SME managers, the actionable steps that can be derived from our findings
must be emphasized. Managers should prioritize the development of a dynamic cyberse-
curity awareness program that educates and continuously updates the team on the latest
cyber threats and defense mechanisms. Managers can leverage the Bayesian updating
approach to refine their cybersecurity strategies based on real-time data and evolving threat
landscapes, ensuring that their defenses are as adaptive and resilient as possible. Further-
more, previous research [46] has already shown that fostering a culture of cybersecurity
awareness within the organization can significantly enhance the collective ability to identify
and mitigate threats. By implementing these strategic measures, SMEs can bolster their
cybersecurity posture, reducing their vulnerability to cyber-attacks and enhancing their
capacity to respond effectively to the complex and ever-changing cyber threat environment.

Applying our model across various industry sectors in future research could unveil
sector-specific strategic interactions and defensive postures, offering a more granular
understanding of cybersecurity challenges and mitigation strategies. Such explorations
would expand our findings’ applicability and contribute to developing more nuanced,
adaptive cybersecurity strategies tailored to different sectors’ unique vulnerabilities and
threat profiles.

Further research should validate the practical usefulness of our game-theory frame-
work for cybersecurity in SMEs in real-world testing and implementation. While rec-
ognizing the complexity of translating theoretical models into actionable cybersecurity
strategies, we propose a phased approach for testing our system in real-world settings.
Initially, this could involve a pilot study with a small group of SMEs willing to integrate our
model into their cybersecurity decision-making processes. The study would monitor the
model’s effectiveness in enhancing the participants’ cybersecurity awareness and strategic
adaptation over time, comparing the incidence and impact of cyber-attacks before and after
implementation. Challenges in this endeavor include accurately capturing the dynamic
nature of cyber threats, ensuring the model’s adaptability to the unique characteristics and
constraints of each participating SME, and measuring the model’s impact on awareness and
cybersecurity outcomes. Qualitative feedback from SME managers and quantitative data
on cyber-attack incidences, response times, and mitigation effectiveness can be employed
to address these. Such findings would provide valuable insights into the model’s relevance
for real-world situations and highlight the areas for improvement. Therefore, a line of
future research may be dedicated to overcoming these challenges, refining the model based
on real-world feedback, and exploring scalable strategies for broader implementation.

9. Conclusions

This analysis underscores the foundational role that the theoretical framework of
awareness in game theory plays in strategic interaction. Delving deeper, it explores the
essential interplay between awareness and strategic decision-making within game theory.
Hence, the primary contribution lies in the utilization of the theoretical foundation of
awareness within the realm of game theory to construct an actionable and quantifiable
framework tailored to cybersecurity. This framework not only facilitates the application
of game theory principles to cybersecurity but also delineates and evaluates the strate-
gic interactions between a manager and a hacker, emphasizing the dynamic process of
awareness evolution and strategy adaptation in the face of cyber threats. Through this dual
contribution, we aim to bridge theoretical insights with practical applications, providing a
novel perspective on managing cybersecurity risks.

By integrating insights from behavioral psychology, information technology manage-
ment, and even data science, further studies could expand the understanding of strategic
decision-making in complex and dynamic threat environments. This cross-disciplinary
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approach could not only enrich the theoretical framework but also offer practical insights
for developing more resilient and adaptive cybersecurity strategies.

The game-theory contribution is limited to analyzing the interaction between a single
defender and an attacker in a dynamic and uncertain environment, while emphasizing the
importance of learning and awareness. Future research could enrich this framework by
integrating the complexities of emerging cyber threats, such as AI-driven attacks, and by
considering multi-attacker scenarios that more accurately reflect the contemporary cyber
threat landscape. Moreover, by identifying key areas where further model exploration is
possible, such as incorporating adaptive learning mechanisms and exploring multi-attacker
scenarios, we pave the way for future studies to enhance the adaptability of cybersecurity
awareness in an ever-evolving digital landscape. One critical area involves exploring the
scalability of the proposed game-theory model and Bayesian updating approach across
different organizational sizes and sectors.
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Appendix A

Notation
P Set of players in the game.
S Set of hacker’s strategies.
M Set of manager’s strategies.
UH Payoff function for the hacker.
UM Payoff function for the manager.
T Total number of iterations in the simulation.
Hacker The adversary attempting to compromise the system.
Manager The defender managing the system’s security.
T A strategy representing a social engineering attack.
V Another strategy representing software vulnerabilities exploit attack.
Z Another strategy representing DDOS attack.

M1, M2, M3
Different strategies available to the manager for defending
against attacks.

PH Initial probability distribution over the hacker’s strategies.
PM Initial probability distribution over the manager’s strategies.

F
Historical frequencies of attack types, indicating how often each type
of attack has been used before the game.

pTa(t), pTb(t), pTc(t),
pVa(t), pVb(t), pVc(t),
pZa(t), pZb(t), pZc(t)

Observed properties of the method (a), target (b), and consequences
(c) of hacker’s strategies T, V, and Z.

H
Historical probabilities of the hacker’s choices, indicating past
decision-making trends within the game.

FS Frequencies of strategies, tracking how often each strategy is chosen.

O
Outcomes tracking, recording the results of interactions for
historical analysis.

PH(t) Probability distribution over the hacker’s strategies at iteration t.
PM(t) Probability distribution over the manager’s strategies at iteration t.
St The hacker’s chosen strategy at iteration t.
Mt The manager’s chosen strategy at iteration t.

Pobs
Probabilities of property observations, reflecting the likelihood of
detecting specific attack properties.

UH(St, Mt) The hacker’s payoff given the chosen strategies at iteration t.
UM(St, Mt) The manager’s payoff given the chosen strategies at iteration t.
FS(t + 1), O(t + 1) Updated frequencies of strategies and outcomes after iteration t.
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