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Abstract: In an agency model with adverse selection, we study how hidden interactions between
agents affect the optimal contract. The principal employs two agents who learn their task envi-
ronments through their involvement. The principal cannot observe the task environments. It is
important to note that hidden interactions, such as acts of sabotage or help between the agents,
have the potential to alter each other’s task environments. Our analysis encompasses two distinct
organizational structures: competition and cooperation. Without hidden interactions, the competitive
structure is optimal because the cooperative structure only provides the agents with more flexibility to
collusively misrepresent their task environments. With hidden interactions, however, the cooperative
structure induces the agents to help each other to improve the task environments while removing
sabotaging incentives at no cost once collusion is deterred. As a result, the cooperative structure can
be optimal in such a case. We discuss the link between production technology and organizational
structure, finding that complementarity in production favors cooperative structures.

Keywords: agency; collusion; help; sabotage; organizational structure

JEL Classification: D82; D86

1. Introduction

Consider a pharmaceutical company conducting clinical trials for a new drug. The
company hires two contract research organizations (CROs) to carry out the trials indepen-
dently. In this case, a competitive structure ensures that each CRO operates autonomously,
without any collaboration or communication. The company maintains control over the
process and can monitor the progress of each CRO individually. Alternatively, a cooper-
ative structure involves the CROs working together, sharing data and resources, while
potentially creating challenges for the company to maintain control over the process.

The choice between a competitive and cooperative organizational structure has been
a long-standing debate. A competitive structure encourages individual subdivisions and
members to outperform each other through increased efficiency or lower costs. Organiza-
tions with competitive structures believe that this approach better serves their objectives.
Conversely, a cooperative structure promotes knowledge sharing and cooperation among
subdivisions and members. Organizations with cooperative structures argue that individ-
ual members in competitive structures prioritize their own objectives over those of the
organization, resulting in gains for one member at the expense of another.

This paper aims to investigate why and under what circumstances a competitive or
cooperative structure better serves an organization’s objectives. Our preliminary findings
suggest that when members within an organization cannot influence each other’s task
environments, a competitive structure is optimal. However, when members can affect each
other’s task environments, a cooperative structure can become more efficient in achieving
the organization’s objectives.
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We employ a simple principal–agent framework in which two agents are hired for pro-
duction. Upon participation, the agents learn their task environments, which the principal
cannot directly observe. At the beginning, the principal can choose between a competitive
and a cooperative structure. In the competitive structure, no coordination between the
agents is possible. While the agents cannot collude to misrepresent their task environments,
they cannot improve each other’s task environments either. In the cooperative structure, the
agents can collusively misrepresent their task environments to increase their information
rents, and can alternatively enhance each other’s task environments through knowledge
transfer. Regardless of the organizational structure, an agent can always sabotage the other
agent’s task environment.

We first examine traditional settings where agents cannot influence each other’s task
environments, where we find that the principal is better off with a competitive structure.
As established in the previous literature, the cooperative structure mainly provides agents
with flexibility in obtaining information rents. Agents can collude to misrepresent their
task environments, thereby maximizing their combined gains.

We then analyze cases where agents can affect each other’s task environment. As
mentioned above, we allow an agent to be able to “sabotage” or “help” the other agent.
Sabotage can deteriorate an agent’s task environment; if it takes place, a good task en-
vironment becomes bad with a strictly positive probability. By contrast, help, such as
knowledge transfer, can improve an agent’s task environment; through help, a bad task
environment becomes good with a strictly positive probability. Our results indicate that
preventing sabotage is costly for the principal in a competitive structure. However, in a
cooperative structure where collusive misrepresentation is deterred, neither preventing
sabotage nor inducing help imposes additional costs on the principal. Therefore, in sce-
narios involving sabotage/help possibilities, the cooperative structure can outperform the
competitive structure.

Our analysis uncovers an interesting relationship between contractual efficiency and
hidden interactions. In the absence of hidden interactions, the cooperative structure
introduces greater output distortion due to the potential for collusion between the agents
to extract more informational rent. This outcome appears to corroborate the commonly
held belief that internal competition cultivates increased efficiency within organizations.
However, when hidden interactions come into play, we observe that output experiences
greater distortion when sabotage is prohibited compared to when it is permitted in the
competitive structure. Furthermore, output distortion is amplified when help is encouraged
in the cooperative structure. This underscores that surface-level managerial efficiency does
not unequivocally signify exemplary performance, just as managerial inefficiency does not
invariably indicate subpar performance.

Finally, our discussion extends to the link between production technology and organi-
zational structure. Our analysis demonstrates that the cooperative structure is favored in the
presence of complementarity in production. Specifically, we show that with complementary
production technology, the principal can deter sabotage and induce help without incurring
costs while simultaneously eliminating the incentive for collusive misrepresentation.

The remainder of this paper is structured as follows. Section 2 encompasses the
literature review and outlines our unique contributions. Section 3 introduces the model
that forms the foundation of our analysis. Moving forward, Section 4 analyzes cases in
which the potential for sabotage or help is absent, followed by Section 5, which delves
into scenarios in which these interactions are incorporated. In Section 6, we broaden our
analysis to investigate the relationship between production technology and organizational
structure. Section 7 provides a discussion, and Section 8 serves as the conclusion. The
Appendix A contains all accompanying proofs.

2. Literature Review

Our paper is related to studies on hidden interactions in organizations, such as help
and sabotage. These dynamics have been predominantly analyzed through two primary
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frameworks. The first is tournament models. Chen (2003) [1] incorporated sabotage
activities in a tournament model and showed a diminished likelihood of promotion for
higher-ability agents. In a similar vein, Kräkel (2005) [2] allowed agents to choose help,
sabotage, or inaction prior to expending effort. Their central finding demonstrated a diverse
array of equilibria, including asymmetrical scenarios in which one player lends aid while
the other resorts to sabotage.

Second, various studies have explored the effects of hidden interactions within moral
hazard models. Itoh (1991) [3] centered the analysis on cooperation within a multi-agent
moral hazard problem in which each agent simultaneously determines their own effort
level and level of helping effort to assist others. The paper characterized the optimal
compensation scheme for the principal, namely, one that incentivizes agents to extend
support to their peers. In contrast, works by Bose, Pal, and Sappington (2010) [4] and Kräkel
and Müller (2012) [5] studied the issue of sabotage within a moral hazard setting. The
former paper contended that compressing transfers nullifies sabotage incentives among
agents, while the latter illustrated that an agent’s sabotage may furnish teammates with
an additional impetus to put forth higher efforts. Ramakrishnan and Thakor (1991) [6]
developed a moral hazard model wherein the principal can choose to structure tasks
competitively or cooperatively, although without explicitly incorporating sabotage or
help. The principal’s optimal choice in this case hinges on the correlation between each
agent’s output.

Diverging from these analyses, our exploration of hidden interactions pivots on the
framework of adverse selection. We demonstrate how these hidden interactions intersect
with the principal’s optimal contract design, which involves the distortion of output.
Consequently, our analysis sheds light on how the potential for help and sabotage influences
the optimal organizational structure.

Another strand of the literature pertinent to our work centers on collusion within
multi-agent models. Itoh (1993) [7] considered a situation in which agents can coordinate
their effort choice in a moral hazard model, showing that the prospect of collusion among
subunits can enhance the organization’s overall welfare. Che (1995) [8] studied potential
collusion between a regulator and a regulated firm, demonstrating that collusion may
serve the interests of the government. Similarly, Olsen and Torsvik (1998) [9] argued that
corruption in the form of collusion between a supervisor and an agent can be beneficial to
a principal in cases with an intertemporal commitment problem.1

While akin to these studies in outlining the potential advantages of collusion, our
work posits a distinct rationale. In our model, collusion among agents acts as an incentive
for preventing sabotage activity and providing mutual assistance, presenting a novel
dimension of this phenomenon.

3. Model

A risk-neutral principal hires two risk-neutral agents for production of output Q ∈ R+.

3.1. Information

Each agent’s task environment (type), respectively denoted as θi and θj, can be either
Good (θG) or Bad (θB), where4θ ≡ θG − θB > 0 and θG < 1. We assume that θi and θj are
identically and independently distributed with Pr(θG) = µG and Pr(θB) = µB = 1− µG.
Each agent learns their own task environment (θi and the other agent’s task environment
θj) after participation; the principal cannot directly observe these environments. The
probability distributions are publicly known.

3.2. Organizational Structure

The principal chooses an organizational structure, denoted by C ∈ {Cm (competitive),
Cc (cooperative)}. Regardless of C ∈ {Cm, Cc}, each agent can sabotage the other agent’s
task environment. If sabotage takes place, then a Good agent (an agent in a Good
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task environment) becomes Bad with probability φB or remains Good with probability
φG = 1− φB.

• In the competitive structure (C = Cm), the agents can only play non-cooperatively,
and collusion between them is impossible. Therefore, the agents cannot coordinate on
reporting their types to the principal to jointly maximize their information rents.

• In the cooperative structure (C = Cc), the agents can engage in collusion; side-
contracting between the agents is possible, and they can coordinate on reporting
their types.2 In the cooperative structure, however, a Good agent can choose to help
a Bad agent through knowledge transfer; with a Good agent’s help, a Bad agent
becomes Good with probability ψG and remains Bad with probability ψB = 1− ψG.

The occurrence of sabotage in both competitive and cooperative contexts (as opposed
to help, which is limited to cooperative scenarios) highlights the inherent possibility of
disrupting or hindering the task environment of the other agent. On the other hand, the act
of knowledge transfer necessitates a coordinated effort with the other agent.

3.3. Report and Production

Before production takes place, each agent reports their task environment (type) to the
principal.3 We follow Martimort (1997) [16] in assuming that, while the agents learn each
other’s types, an agent only reports their own type; this assumption is justified in that true
θi is “soft information”, i.e., no verifiable evidence on an agent’s type can be obtained, and
a court cannot assess it.4). Each agent produces the individual output that corresponds to
their report and sends it to the principal. The output levels are monitored perfectly, i.e.,
the principal receives each individual output separately. We denote by qij the individual
output level assigned to an agent reporting their type as θi (i = G, B) paired with the agent
reporting θj (j = G, B). The total output is

Qij = qij + qji (by symmetry, Qij = Qji).

3.4. Payoffs

We assume that the types of the agents represent both efficiency and quality, and
as such having common values. The principal values Qij by a value function v(Qij, Θk)
that is strictly increasing and concave in Q satisfies the Inada conditions v(0, Θk) = 0,
v′(0, Θk) = ∞, and v′(∞, Θk) = 0,5 where Θk

(
≡ θi + θj

)
∈ {ΘG, ΘM, ΘB} and consequently

ΘG ≡ 2θG > ΘM ≡ θG + θB > ΘB ≡ 2θB.

These conditions ensure that the principal has no incentive to exclude any state. The
value function satisfies the following conditions:

∆v ≡ v(Qij, Θk)− v(Qij, Θk) > 0 and ∆v′ ≡ v′(Qij, Θk)− v′(Qij, Θk) > 0,

where if Θk = ΘG, then Θk = ΘM, while if Θk = ΘM, then Θk = ΘB.
The principal’s ex post payoff is

πij = v(Qij, Θk)− (tij + tji),

where tij (tji) is the transfer to the agent reporting their type as θi (θj) paired with the agent
reporting θj (θi). The cost of producing qij to an agent is provided by (1− θi)qij. Therefore,
each agent’s ex post payoff is

uij = tij − (1− θi)qij.

An agent’s liability is limited in that the reservation payoff, normalized to zero, must
be guaranteed ex post as long as the agent abides by the contract.
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To simplify the notation, we let QG ≡ QGG, QM ≡ QGB, and QB ≡ QBB. In this way,
each agent’s individual output can be expressed in terms of the total output. When the
reported types are the same, both agents produce the same amount in equilibrium; hence 6,

qGG = QG/2 and qBB = QB/2.

When the reported types are different,

qGB = γQM and qBG = (1− γ)QM with 1 ≥ γ ≥ 0,

that is, when the types of the agents are different, the Good agent produces the proportion
γ of QM and the Bad agent produces 1− γ of QM.

The notations are summarized below in Table 1.

Table 1. Summary of Notations.

Notations Descriptions

θi, θj ∈ {θG, θB} the agent’s type
µG, µB the distribution of each type

φB The probabilty that a Good agent becomes Bad due to sabotage
ψB The probabilty that a Bad agent becomes Good due to help
qij individual output level

Qij = qij + qji total output level
QG, QM, QB QG ≡ QGG, QM ≡ QGB, and QB ≡ QBB
v(Qij, Θk) value function

Θk ∈ {ΘG, ΘM, ΘB} ΘG ≡ 2θG, ΘM ≡ θG + θB, ΘB ≡ 2θB
πij The principal’s ex post payoff
tij monetary transfer
γ the proportion of QM produced by the Good agent

3.5. Timing of the Game

Below, we summarize the timing of the game according to each organizational structure.

3.5.1. Competitive Structure (C = Cm)

• The principal offers {Qk, tij, γ}i,j∈{G,B}
k∈{G,M,B} to the agents.

• If the offers are accepted, the agents learn their types.
• Each agent decides whether or not to sabotage the other agent.
• Depending on sabotage, each agent’s type is revised.
• Reports are made to the principal and the contracts are executed.

3.5.2. Cooperative Structure (C = Cc)

• The principal offers {Qk, tij, γ}i,j∈{G,B}
k∈{G,M,B} to the agents.

• If the offers are accepted, the agents learn their types.
• Each agent decides whether or not to sabotage/help the other agent.
• Depending on sabotage/help, each agent’s type is revised.
• The agents decide whether or not to collude.7

• Reports are made to the principal and the contracts are executed.

3.6. The First-Best Outcome

Before moving on to the next section, we look at the optimal outcome under full
information (i.e., the types of the agents and their interactions are publicly observed) as the
benchmark. The first-best outcome is characterized by

v′(Q∗G, ΘG) = 1− θG, v′(Q∗M, ΘM) = 1− θG with γ = 1, v′(Q∗B, ΘB) = 1− θB.
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From the output schedule characterized above, we have Q∗G > Q∗M > Q∗B.8 Notice that
when the types of the agents are different, the efficient allocation is that the Good agent
produces the entire output due to the constant marginal costs.9 Each agent receives zero
rent in any task environment.

In the following section, we proceed to the cases where the agents’ types (task envi-
ronments) are their private information.

4. Without Hidden Interactions

We first discuss those cases in which the types of the agents are private information
and the agents cannot affect each other’s task environment. The optimal outcomes for
the principal in each organizational structure are derived and discussed, followed by
comparison of the two outcomes.

4.1. Optimal Outcome in the Competitive Structure (Cm)

To set out the principal’s maximization problem, we first present the constraints that
the optimal contract offer to the agents must satisfy.

As the revelation principle applies in our model, the principal’s optimal offer to each
agent must be incentive-compatible. To induce a truthful report from each agent, the
optimal contract must satisfy the following incentive constraints:

tGG − (1− θG)QG/2 ≥ tBG − (1− θG)(1− γ)QM, (ICGG)

tGB − (1− θG)γQM ≥ tBB − (1− θG)QB/2, (ICGB)

tBG − (1− θB)(1− γ)QM ≥ tGG − (1− θB)QG/2, (ICBG)

tBB − (1− θB)QB/2 ≥ tGB − (1− θB)γQM. (ICBB)

The LHS and RHS of (ICij), i, j ∈ {G, B} are respectively a type-i agent’s payoff with
a truthful report and the same agent’s payoff with a misreport when paired with a type-j
agent. These constraints assure that an agent’s payoff is higher with a truthful report.

An agent’s liability is limited; hence, the optimal outcome must satisfy the following
ex post participation constraints for each agent:

tGG − (1− θG)QG/2 ≥ 0, (PCGG)

tGB − (1− θG)γQM ≥ 0, (PCGB)

tBG − (1− θB)(1− γ)QM ≥ 0, (PCBG)

tBB − (1− θB)QB/2 ≥ 0. (PCBB)

Without the possibility of sabotage/help, the principal’s problem in the competitive
structure is to maximize their expected payoff

∑i ∑j µiµj
[
v(Qk, Θk)− tij − tji

]
(P)

subject to (ICGG) ∼ (ICBB) and (PCGG) ∼ (PCBB).
The optimal output schedule in the competitive structure is presented in the follow-

ing lemma.

Lemma 1. Without the possibility of sabotage/help, the optimal outcome in the competitive structure
is as follows:

• Qm
G = Q∗G; Qm

M = Q∗M with γ = 1; Qm
B < Q∗B.

• tm
GG = (1− θG)Q∗G/2; tm

GB = (1− θG)Q∗M + ∆θQm
B /2; tm

BG = 0; tm
BB = (1− θB)Qm

B /2.
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• um
GG = 0; um

GB = ∆θQm
B /2; um

BG = um
BB = 0.

As usual, only a Good agent has an incentive to misrepresent their type, and the
output schedule is distorted at the bottom (when both agents are of the Bad type). When
the agents cannot interact with each other, the optimal allocation of production is efficient,
i.e., when the types of the agents are different, the Good agent produces the entire output
(γ = 1). Note that when both agents are Good, they receive zero rent (um

GG = 0). To explain
the intuition, we rewrite the binding (ICGG) and (ICGB) respectively as follows:

tGG − (1− θG)QG/2 = ∆θ(1− γ)QM, (1)

tGB − (1− θG)γQM = ∆θQB/2. (2)

As can be seen from (1), when both agents are of the Good type, the efficient allocation
of production (γ = 1) allows the principal to extract their information rent without distort-
ing QM. As shown in (2), however, when a Good agent is paired with a Bad agent, the only
way to extract the Good agent’s rent is to decrease QB, resulting in downward distortion.

4.2. Optimal Outcome in the Cooperative Structure (Cc)

In the cooperative structure, the agents can engage in collusion to jointly misreporting
their types if this can increase their total rent. Because the agents have extra room for
misrepresentation under collusion, (ICij) may fail to induce truth-telling. In order to
ensure truthful reports, the following coalition incentive constraints must be satisfied:

tGB + tBG − [(1− θG)r + (1− θB)(1− r)]QM ≥ 2tBB − (2−ΘM)QB/2, (CICGB,BB)

2tGG − (1− θG)QG ≥ tGB + tBG − (1− θG)QM, (CICGG,GB)

2tGG − (1− θG)QG ≥ 2tBB − (1− θG)QB (CICGG,BB)

tGB + tBG − [(1− θG)r + (1− θB)(1− r)]QM ≥ 2tGG − (2−ΘM)QG/2, (CICGB,GG)

2tBB − (1− θB)QB ≥ tGB + tBG − (1− θB)QM, (CICBB,GB)

2tBB − (1− θB)QB ≥ 2tGG − (1− θB)QG (CICBB,GG)

The RHS of (CICij,i′ j′), i, j, i′, j′ ∈ {G, B} is the joint payoff of the agents when one or
both misreport their type(s) through side-contracting. Note that this situation is equivalent
to the case in which one agent (whose type can be GG, GB, or BB, that is, (CICij,i′ j′)) can
prevent all combinations of misreporting, thereby encompassing (ICij).

Without the possibility of sabotage/help, the principal’s problem in the cooperative
structure is to maximize their expected payoff in (P) subject to (CICGB,BB) ∼ (CICBB,GG),
(ICGG) ∼ (ICBB), and (PCGG) ∼ (PCBB). The optimal output schedule in the cooperative
structure is presented in the following lemma.

Lemma 2. Without the possibility of sabotage/help, the optimal outcome in the cooperative structure
is as follows:

• Qc
G = Q∗G; Qc

M = Q∗M with γ = 1; Qc
B < Qm

B (< Q∗B).
• tc

GG = (1 − θG)Q∗G/2 + ∆θQc
B/2; tc

GB = (1 − θG)Q∗M + ∆θQc
B/2; tc

BG = 0;
tc
BB = (1− θB)Qc

B/2.
• uc

GG = uc
GB = ∆θQc

B/2; uc
BG = uc

BB = 0.

Compared to the output schedule in the competitive structure, the optimal level of
QB in the cooperative structure is distorted further. As mentioned above, the agents in the
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cooperative structure have more room to manipulate their information. Recall that in the
competitive structure the agents cannot obtain information rents if their task environments
are both Good; as shown in (1), the optimal allocation γ = 1, allows the principal to extract
a Good agent’s information rent in the competitive structure when the agent is paired with
another Good agent (um

GG = 0).
Under collusion, however, such information extraction can no longer be implemented,

as the agents can do better by coordinating their reports. In particular, by jointly misre-
porting that both of their types are Bad, Good agents can reap strictly positive rents, as
expressed by the equation below:

2tGG − (1− θG)QG = ∆θQB. (3)

Equation (3) is implied by binding (CICGG,BB). Preventing collusive misreports re-
quires that the principal provide a strictly positive rent of ∆θQB/2 to each agent when both
agents are of the Good type. As a result, in order to reduce the rent, in the cooperative struc-
ture QB is distorted further downwards from its optimal level in the competitive structure.

We now compare the optimal outcomes in Cm and Cc. The following proposition
presents the optimal choice of organizational structure when an agent cannot sabotage or
help the other agent.

Proposition 1. Without the possibility of sabotage/help between the agents, Cm is optimal.

The result presented above is well known in the literature. As in the standard adverse
selection models, when the agents cannot affect each other’s types, the cooperative structure
only provides the agents with collusion opportunity. Consequently, the principal is better
off in the competitive organizational structure.

In the following section, we analyze the optimal outcome in each organizational
structure when an agent’s task environment can be affected by the other agent.

5. With Hidden Interactions

In this section, we analyze the optimal outcomes in each organizational structure
when an agent’s task environment can be affected by the other agent. As shown here,
new incentives emerge depending on the organizational structure, and as a result the
competitive structure can be dominated.

5.1. Optimal Outcome in the Competitive Structure (Cm)

Recall that φB denotes the probability of an agent’s attempt to sabotage the other agent
succeeding. Comparing the RHS in (1) and (2) with the outcome in Lemma 1, we have

∆θ(1− γ)Qm
M < φB∆θQm

B /2,

where ∆θ(1− γ)Qm
M = 0. Again, it is clear from the expressions in (1) and (2) that with the

optimal output and transfer schedule in Lemma 1 a Good agent receives a strictly positive
rent only when paired with a Bad agent. Therefore, in the competitive structure in which
the agents cannot collude, the above inequality leads to the following claim.

Claim 1. For the output schedule in Lemma 1, an agent has an incentive to sabotage the other
agent when both agents are of the Good type.

When the agents can affect each other’s task environment, the outcome associated
with the Good aggregate environment (Θk = ΘG) cannot be implemented with the same
probability under the output schedule presented in Lemma 1. If sabotage is allowed, the
Good aggregate environment ΘG is realized only with probability µ2

Gφ2
G, that is, only when

both Good agents fail to sabotage the other agent.
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The principal’s expected payoff is then written as follows:

µ2
G ∑i ∑j φiφj

[
v(Qk, Θk)− tij − tji

]
+ ∑i ∑j µiµj η̂

[
v(Qk, Θk)− tij − tji

]
, (P̂)

where η̂ =

{
0 if i = j = G,
1 if otherwise.

The first term of (P̂) is the principal’s expected payoff for the case in which both agents
are Good at the outset, while the second term of (P̂) applies to all other cases.

If the principal allows the agents to sabotage each other’s task environment, the
principal maximizes (P̂) subject to (ICGG) ∼ (ICBB) and (PCGG) ∼ (PCBB). The lemma
below presents the optimal outcome in such a case.

Lemma 3. With the possibility of sabotage/help, the optimal outcome in the competitive structure if
sabotage is allowed is as follows:

• Qm̂
G = Q∗G; Qm̂

M = Q∗M with γ = 1; Qm̂
B < Q∗B.

• tm̂
GG = (1− θG)Q∗G/2; tm̂

GB = (1− θG)Q∗M + ∆θQm̂
B /2; tm̂

BG = 0; tm̂
BB = (1− θB)Qm̂

B /2.
• um̂

GG = 0; um̂
GB = ∆θQm̂

B /2; um̂
BG = um̂

BB = 0.

The reason behind the distortion in QB is the same as in the case where the agents
cannot affect each other’s task environment. Note, however, that the aggregate task
environment is less likely to be Good (ΘG) when sabotage is allowed.

We now discuss the case in which sabotage is deterred. If the principal wants to keep
a Good agent from sabotaging the other agent when both agents are Good, the following
constraint must be satisfied in addition to the incentive and participation constraints:

tGG − (1− θG)QG/2 ≥ φB[tGB − (1− θG)γQM] + φG[tGG − (1− θG)QG/2]. (SC)

The LHS is a Good agent’s payoff without sabotaging the other agent, and the RHS
is the same agent’s payoff when engaging in sabotage. The principal’s problem that
prevents sabotage between the agents maximizes the expected payoff in (P) subject to
(ICGG) ∼ (ICBB), (PCGG) ∼ (PCBB), and (SC).

Lemma 4. With the possibility of sabotage/help, the optimal outcome in the competitive structure if
sabotage is deterred is as follows:

• Qm̃
G = Q∗G; Qm̃

M = Q∗M with γ = 1; Qm̃
B < Qm̂

B (< Q∗B).
• tm̃

GG = (1− θG)Q∗G/2; tm̃
GB = (1− θG)Q∗M + ∆θQm̃

B /2; tm̃
BG = 0; tm̃

BB = (1− θB)Qm̃
B /2.

• um̃
GG = um̃

GB = ∆θQm̃
B /2; um̃

BG = um̃
BB = 0.

Compared to the output schedule when sabotage is allowed, the optimal level of QB
is distorted further here. In addition to inducing truthful reports from the agents, the
principal must prevent sabotage between Good agents, as the sabotage constraint (SC) is
binding in the optimal contract. This implies that the following expression must be satisfied
in the optimal contract:

tGG − (1− θG)QG/2 = tGB − (1− θG)γQM (= ∆θQB/2). (4)

Recall that when sabotage is allowed a Good agent’s rent when paired with another
Good agent is tm̂

GG − (1− θG)Qm̂
G/2 = 0. As shown in (4), preventing sabotage requires that

the principal provide a strictly positive rent of ∆θQB/2 to each agent when both agents are
of the Good type. To reduce this rent, the level of QB is distorted further downwards in the
optimal contract.

As presented in the lemma below, there is a trade-off between allowing and deter-
ring sabotage.
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Lemma 5. In the competitive structure, sabotage is allowed if φB is small enough and deterred
otherwise.

If sabotage is allowed, the aggregate task environment has a small chance of being
Good (ΘG), while the optimal output schedule is distorted by a smaller amount. As a result,
when sabotage is likely to be successful, the principal deters it in the optimal contract;
however, when it is likely to fail, the principal allows it.

Sabotage is a widely recognized problem when members of an organization are
rewarded based on their relative performance. In particular, when a worker’s payoff
decreases due to another worker’s performance, mutual sabotage, as in Claim 1, can
be a natural incentive arising in competitive structures. This is clearly exemplified by
our model’s outcomes, where sabotage occurs when um̂

GB > um̂
GG and is deterred when

um̃
GG = um̃

GB. As shown, it is costly to mitigate sabotage incentives in a competitive structure;
the outcomes in Lemma 2 in the previous section and Lemma 4 here can be compared to see
that, in our model, removing sabotage incentives in the competitive structure is as costly as
preventing collusion in the cooperative structure.

We now proceed to the case in which the agents can be cooperative with each other
under the possibility of sabotage/help.

5.2. Optimal Outcome in the Cooperative Structure (Cc)

Again, the agent in the cooperative structure can engage in collusion to maximize their
joint payoff. As before, the principal’s maximization problem must satisfy the coalition
incentive constraints (CICGB,BB) ∼ (CICBB,GG) presented in the previous section.

Suppose that the principal wants a Good agent to help a Bad agent when they are
paired with each other. Again, with probability ψG, the good agent’s help succeeds, while
it fails with probability ψB. In order for help to take place, the following condition must be
satisfied for the Good agent facing the Bad agent:

ψG[tGG − (1− θG)QG/2] + ψB[tGB − (1− θG)γQM] ≥ tGB − (1− θG)γQM. (HC)

The LHS of (HC) is the Good agent’s expected payoff from helping the Bad agent’s
task environment, and the RHS is the former’s rent without helping the latter. After simple
rearrangements, both (SC) and (HC) reduce to the same inequality:

tGG − (1− θG)QG/2 ≥ tGB − (1− θG)γQM.

Claim 2. In the cooperative structure, both (SC) and (HC) are automatically satisfied.

In the organizational structure in which the agents can collude, inducing truthful
reports automatically induces help between the agents while preventing sabotage. Note
that sabotage deterrence and help inducement are implemented regardless of the principal’s
willingness to deter and/or induce such interactions. The claim above is consistent with
empirical findings in the management context (e.g., Wageman 1995) [17] that cooperative
behaviors in organizations often manifest in members’ willingness to work with others,
even when organizations reward the members for individual performance without formally
demanding cooperative behavior.

In the cooperative structure, the principal’s objective function becomes

∑i µ2
i [v(Qk, Θk)− 2tii] + µGµB ∑i ∑j ψ̃

[
v(Qk, Θk)− tij − tji

]
, (P̃)

where ψ̃ =


ψG if i = j = G,
ψB if i 6= j,
0 if i = j = B.
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The second term in (P̃) reflects the principal’s higher chance of having Θ = G due to
the agents’ helping incentives when their task environments are different. The principal
maximizes (P̃) subject to (CICGB,BB) ∼ (CICBB,GG) and (PCGG) ∼ (PCBB). As claimed
above, (SC) and (HC) are automatically satisfied in the cooperative structure.

The following lemma presents the optimal outcome in the cooperative structure with
the possibility of sabotage/help.

Lemma 6. With the possibility of sabotage/help, the optimal outcome in the cooperative structure
entails

• Qc̃
G = Q∗G; Qc̃

M = Q∗M with γ = 1; Qc̃
B < Qm̃

B < Qm̂
B (< Q∗B).

• tc̃
GG = (1 − θG)Q∗G/2 + ∆θQc̃

B/2; tc̃
GB = (1 − θG)Q∗M + ∆θQc̃

B/2; tc̃
BG = 0;

tc̃
BB = (1− θB)Qc̃

B/2.
• uc̃

GG = uc̃
GB = ∆θQc̃

B/2; uc̃
BG = uc̃

BB = 0.

As in the previous section, in the cooperative structure the optimal output Qc̃
B associ-

ated with Bad task environments is more distorted compared to the optimal output Qm̃
B

in the competitive structure. The reason behind it, however, is different here. Recall that
preventing sabotage in the competitive structure requires providing strictly positive rents
to Good agents paired with each other; the distortion in Qm̃

B is to reduce the amount of
rents. In the cooperative structure, the optimal contract must prevent collusion between the
agents; to this end, the principal must provide the agents with positive rents when they are
both of the Good type. In the cooperative structure, however, when collusion is deterred, a
Good agent has an incentive to improve a Bad agent’s task environment. Therefore, the
chance of both agents working in Good environments is higher, which means that the
chance of agents receiving rents is higher in the cooperative structure. As a result, the
principal reduces the distortion in QB even further to reduce the rents to the agents.

The remaining task in this section is to compare the optimal outcomes in Cm and Cc

when an agent can affect the other agent’s task environment. The following proposition
presents the optimal choice of organizational structure depending on ∆v.

Proposition 2. With the possibility of sabotage/help between the agents, the optimal organizational
structure is as follows:

• When ∆v is small, Cm is optimal.

• When ∆v is intermediate,
{

Cm is optimal if φB and/or ψG is small.
Cc is optimal if φB and ψG are large.

• When ∆v is large, Cc is optimal.

The fact that the cooperative structure confers a higher chance of the Good aggregate
task environment at the cost of larger distortion in the output schedule leads to the result
above. When the principal’s valuation of the project environment is low, helping between
the agents to improve the aggregate task environment is not worth a larger distortion
in the output schedule. As a result, the principal prefers the competitive structure. In
contrast when the principal’s valuation of the project environment is high, the trade-off
shifts in the other direction. In such a case, the principal chooses the cooperative structure,
thereby sacrificing efficiency in the output schedule for improvement in the aggregate
task environment.

When the principal’s valuation of the task environment is intermediate, the optimal
structure of the organization depends on how likely an agent’s attempt to affect the other
agent’s task environment is to succeed. If both sabotaging and helping the other agent are
likely to succeed, then the cooperative structure is the principal’s optimal choice. Otherwise,
the competitive structure prevails.

In standard models, in which the agents cannot engage in sabotage or helping, the
principal is worse off in the cooperative structure where the agents can collusively misrep-
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resent their types. Provided that an agent cannot affect another agent’s task environments,
our result is in line with the conventional result that it is optimal for the organization to
build a competitive structure. When the agents can affect each other’s types, however, our
result suggests that the principal’s preference can be reversed; in this case, a cooperative
structure can help the organization to achieve its objective more efficiently.

Proposition 2, coupled with the shifts in the optimal output outlined in Lemma 6
(where Qc̃

B < Qm̃
B < Qm̂

B ), yields a significant implication. The output experiences the
least distortion when sabotage is permissible in the competitive structure, while it is most
distorted when help is encouraged in the cooperative structure. It appears that competition
generally leads to improved efficiency in output, whereas cooperation tends to have the
opposite effect. Nevertheless, it is important to note that output efficiency alone does not
necessarily ensure optimal organizational performance.

6. Production Technology and Organizational Structure

Thus far, we have looked at the cases where the outputs produced by the agents are
substitutes. In practice, organizations often employ complementary production technology.
A clear benefit of complementarity in operation consists of gains from specialization.
As demonstrated below, complementary production is more friendly to the cooperative
structure than substitutive production. In our model, when production is complementary,
the principal is able to deter sabotage and induce helping without cost while removing
incentives for collusive misrepresentation, again at no cost.

With complementary technology, each agent’s contribution in equilibrium is

qij = qji = qk,

where i, j ∈ {G, B} and k ∈ {G, M, B}.
The first-best output schedule under full information is characterized by

v′(q∗k , Θk) = 2−Θk, k ∈ {G, M, B}.

Suppose that the agents cannot affect each other’s task environment, i.e., there is no
possibility of sabotage or help. In the cooperative structure in which the agents can jointly
misrepresent their types, the principal’s problem is to maximize

∑i ∑j µiµj
[
v(qk, Θk)− tij − tji

]
subject to

tij + tji − (2−Θk)qk ≥ ti′ j′ + tj′i′ − (2−Θk)qk′ , (CICij,i′ j′ )

tij − (1− θi)qk ≥ ti′ j′ − (1− θi)qk′ , (ICij)

tij − (1− θi)qk ≥ 0, i, j ∈ {G, B}, (PCij)

where i, j, i′, j′ ∈ {G, B} and k, k′ ∈ {G, M, B}.
The following lemma presents the optimal outcome in the principal’s problem above.

Lemma 7. Suppose contributions from the agents are complements. Without the possibility of
sabotage or help, the optimal outcome in the competitive structure entails the following:

• qm
G = q∗G; qm

M < q∗M; qm
B < q∗B.

• tm
GG = (1− θG)q∗G/2 + ∆θqm

M; tm
GB = (1− θG)q∗M + ∆θqm

B ; tm
BG = tm

BB = (1− θB)qm
B /2.

• um
GG = ∆θqm

M; um
GB = ∆θqm

B ; um
BG = um

BB = 0.

According to the optimal outcome in Lemma 5, an agent’s ex post rents are ranked
as follows:

um
GG > um

GB > um
BG = um

BB. (5)
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The ranking exhibited in (5) implies that if the agents can affect each other’s task envi-
ronment, then the optimal outcome in Lemma 5 is both sabotage-proof and help-inducing.
Furthermore, as the following claim formally states, the optimal outcome prevents collusion
between the agents at no cost.

Claim 3. The optimal outcome without (CICij,i′ j′) is the same as the one in Lemma 7.

Recall from the previous sections that when the contributions from the agents are
substitutive, the competitive structure dominates the cooperative structure without the
possibility of sabotage/help; the cooperative structure is costlier to the principal, as they
have to prevent the agents from collectively manipulating their private information. When
the contributions from the agents are complementary to each other, the competitive struc-
ture cannot dominate the cooperative structure, as collusion between the agents is not
impactful. Our exploration of complementarity vividly elucidates our decision to base our
main model on substitutability. This particular scenario presents the most formidable task
in illustrating the advantages of the cooperative structure. Our discussion in this section is
summarized in the following Proposition.

Proposition 3. Complementarity in operation favors the cooperative structure.

The above proposition suggests that complementarity in cooperative structures makes
it easier for organizations to induce help among their individual members. As Brynjolfsson
and Milgrom (2013) [18] reported, a united and cooperative organizational structure is
especially important to companies that engage in frequent acquisitions, such as Cisco
Systems. In the case of Cisco Systems, the company employs complementarity in its
operations by implementing an explicit process for changing all acquired firms’ operational
processes to match Cisco’s. In addition, the company has employed a director of structure
who issues “structure badges” to all employees in recognition of the complementarity of
structure to the functioning of the rest of their systems. Our result in the proposition above
supports such organizational behaviors. A number of early studies, such as Alchian and
Demsetz (1972) [19] and Marschak and Radner (1972) [20], emphasized complementarity in
team production for cooperative behaviors.10 In these papers, the authors have argued that
complementarity is a fundamental feature determining cooperation among team members
in an organization. Our finding in this section echoes these arguments.

7. Discussion

We make a couple of remarks here on robustness. First, as mentioned earlier, we
employed a constant marginal cost for each agent’s production for expositional purposes.
Suppose instead that each agent’s marginal cost is increasing in the output, e.g., a cost
function is provided by α(qij, θi) with αq(qij, θi) > 0, αqq(qij, θi) > 0, αθ(qij, θi) < 0 and
αqθ(qij, θi) < 0. Then, the common value is not needed in the model, as in such a case the
principal’s value function can be provided by v(Qij) instead of v(Qij, Θk). The assumption
of constant marginal costs in our paper requires a common value of the agents’ task
environments, i.e., θi and θj directly enter the principal’s value function along with each
agent’s cost function. This is because it is necessary to break the tie between the optimal
outcomes for ΘG and ΘM when the marginal costs are constant.

Second, our qualitative result are not altered when the agents’ types are correlated
unless their types are perfectly correlated. Under perfect correlation (positive or negative),
however, there are no hidden interactions between the agents, i.e., the principal can directly
enforce an interaction between them. For example, if the agents’ types are perfectly
positively correlated, when one agent’s type is Good, the other agent’s type must be Good
as well. Thus, whenever the agent’s types are different, the principal knows that the Bad
agent has been sabotaged. Likewise, if the types are perfectly negatively correlated, the
principal can directly enforce help by requiring that both types be Good.
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8. Conclusions

Organizational structure affects how individual members or subdivisions of an organi-
zation interact with each other.11 Such interactions, however, are typically hard to observe
and verify. It is often impossible for top management to identify whether or not a worker
has helped or sabotaged another worker. In this paper, we have compared a competitive
structure and a cooperative structure to show where one structure may serve organizations
to achieve their objectives better than the other in the presence of unverifiable interactions.

According to our results, when there is no possibility of hidden interactions, the tra-
ditional result in the agency theory literature holds, that is, organizations benefit from a
competitive structure because a cooperative structure only provides their individual mem-
bers with more opportunity to collusively misrepresent their task environments. When
individual members can interact to affect each other’s task environment, however, a cooper-
ative structure allows organizations to remove incentives towards sabotage while inducing
helping incentives at no cost as long as collusive misrepresentations are deterred. As a
result, a cooperative structure can be optimal for organizations encountering the prospect
of hidden interactions. As an extension, we have demonstrated that complementarity in
operation favors cooperative structures.
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Appendix A

Proof of Lemma 1. As the objective function is concave and the constraints are convex
sets, the solution of the problem is unique. Therefore, we show that the incentive con-
straints (ICGG) and (ICGB) associated with a Good agent and the participation constraints
(PCBG) and (PCBB) associated with a Bad agent are binding in the optimal contract. It
is straightforward to show that the remaining constraints are satisfied in our solution
without them.

The Lagrangian of the principal’s problem is written as follows:

L = ∑i ∑j µiµj
[
v(Qk, Θk)− tij − tji

]
+ λ1[tGG − (1− θG)QG/2− tBG + (1− θG)(1− γ)QM]

+ λ2[tGB − (1− θG)γQM − tBB + (1− θG)QB/2]

+ λ3[tBG − (1− θB)(1− γ)QM]

+ λ4[tBB − (1− θB)QB/2],

with γ ∈ [0, 1]. The first-order conditions with respect to the transfers are as follows:

∂L
∂tGG

= −2µ2
G + λ1 = 0, (A1)

∂L
∂tGB

= −2µGµB + λ2 = 0, (A2)
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∂L
∂tBG

= −2µGµB − λ1 + λ3 = 0, (A3)

∂L
∂tBB

= −2µ2
B − λ2 + λ4 = 0. (A4)

From (A1) and (A2), we have λ1 = 2µ2
G > 0 and λ2 = 2µGµB, respectively; thus,

(ICGG) and (ICGB) are binding. With the values of λ1 and λ2, (A3) and (A4) respectively
provide λ3 = 2µG > 0 and λ4 = 2µB > 0, implying that (PCBG) and (PCBB) are binding.
From the binding constraints, we have

tGG = (1− θG)QG/2 + ∆θ(1− γ)QM, tGB = (1− θG)γQM + ∆θQB/2,
tBG = (1− θB)(1− γ)QM, tBB = (1− θB)QB/2.

(A5)

Substituting for the transfers in the objective function and optimizing with respect to
γ results in

2(µ2
G + µGµB)∆θQM > 0,

implying that γ = 1 in the optimal contract. With γ = 1, (A5) provides the expressions for
an agent’s ex post rent in Lemma 1. Replacing the transfers with their values, optimization
in the output levels yields:

v′(Qm
G , ΘG) = 1− θG, v′(Qm

M, ΘM) = 1− θG, v′(Qm
B , ΘB) = 1− θB +

µG
µB

∆θ,

implying that Qm
G = Q∗G, Qm

M = Q∗M and Qm
B < Q∗B.

Proof of Lemma 2. As before, we show that two incentive constraints (CICGG,BB) and
(ICGB) associated with a Good agent, and the participation constraints (PCBG) and (PCBB)
associated with a Bad agent are binding in the optimal contract. Again, it can be easily
shown that the other constraints are satisfied in our solution without them.

The Lagrangian of the principal’s problem is written as follows:

L = ∑i ∑j µiµj
[
v(Qk, Θk)− tij − tji

]
+ λ5[2tGG − (1− θG)QG − 2tBB + (1− θG)QB]

+ λ6[tGB − (1− θG)γQM − tBB + (1− θG)QB/2]

+ λ7[tBG − (1− θB)(1− γ)QM]

+ λ8[tBB − (1− θB)QB/2],

with γ ∈ [0, 1]. The first-order conditions with respect to the transfers are as follows:

∂L
∂tGG

= −2µ2
G + 2λ5 = 0, (A6)

∂L
∂tGB

= −2µGµB + λ6 = 0, (A7)

∂L
∂tBG

= −2µGµB + λ7 = 0, (A8)

∂L
∂tBB

= −2µ2
B − 2λ5 − λ6 + λ8 = 0. (A9)
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From (A6)–(A8), we have λ5 > 0 and λ6 = λ7 > 0, respectively; thus, (CICGG,BB),
(ICGB) and (PCBG) are binding. With the values of λ5 and λ6, (A9) provides λ8 > 0,
implying that (PCBB) is binding. From the binding constraints, we have

tGG = (1− θG)QG/2 + ∆θQB/2, tGB = (1− θG)γQM + ∆θQB/2,
tBG = (1− θB)(1− γ)QM, tBB = (1− θB)QB/2.

(A10)

Substituting for the transfers in the objective function and optimizing with respect to
γ results in

2µGµB∆θQM > 0,

implying that γ = 1 in the optimal contract. With γ = 1, (A10) provides the expressions for
an agent’s ex post rent in Lemma 2. Replacing the transfers with their values, optimization
in the output levels yields

v′(Qc
G, ΘG) = 1− θG, v′(Qc

M, ΘM) = 1− θG, v′(Qc
B, ΘB) = 1− θB +

µG
µB

(
1 +

µG
µB

)
∆θ,

implying that Qc
G = Q∗G, Qc

M = Q∗M and Qc
B < Qm

B (< Q∗B).

Proof of Proposition 1. The proof is direct, as the problem in Cc simply has additional
constraints (CICij,i′ j′).

Proof of Claim 1. Claim 1 directly follows from the discussion.

Proof of Lemma 3. The only difference from the principal’s problem when the agents
cannot affect each other’s type is that when sabotage is allowed, the probability distribution
for k ∈ {G, M, B} is redistributed more in favor of M and B. Therefore, the constraints that
are binding remain the same as those in the Proof of Lemma 1, and the binding constraints
provide the expressions for the transfers:

tGG = (1− θG)QG/2 + ∆θ(1− γ)QM, tGB = (1− θG)γQM + ∆θQB/2,
tBG = (1− θB)(1− γ)QM, tBB = (1− θB)QB/2.

(A11)

Substituting for the transfers in the objective function and optimizing with respect to
γ results in

2µG(µGφG + µB)∆θQM > 0,

implying that γ = 1 in the optimal contract. With γ = 1, (A15) provides the expressions for
an agent’s ex post rent in Lemma 3. Replacing the transfers with their values, optimization
in the output levels yields

v′(Qm̂
G , ΘG) = 1− θG, v′(Qm̂

M, ΘM) = 1− θG, v′(Qm̂
B , ΘB) = 1− θB +

µ2
GφGφB + µGµB

µ2
Gφ2

B + µ2
B

∆θ,

implying that Qm̂
G = Q∗G, Qm̂

M = Q∗M and Qm̂
B < Q∗B.

Proof of Lemma 4. We show that (SC), (ICGB), (PCBG), and (PCBB) are binding in the
optimal contract. It is straightforward to show that the other constraints are satisfied in our
solution without them.

The Lagrangian of the principal’s problem is written as follows:

L = ∑i ∑j µiµj
[
v(Qk, Θk)− tij − tji

]
+ τ5[tGG − (1− θG)QG/2− tGB + (1− θG)γQM]

+ τ6[tGB − (1− θG)γQM − tBB + (1− θG)QB/2]

+ τ7[tBG − (1− θB)(1− γ)QM]

+ τ8[tBB − (1− θB)QB/2],
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with γ ∈ [0, 1]. The first-order conditions with respect to the transfers are as follows:

∂L
∂tGG

= −2µ2
G + τ5 = 0, (A12)

∂L
∂tGB

= −2µGµB − τ5 + τ6 = 0, (A13)

∂L
∂tBG

= −2µGµB + τ7 = 0, (A14)

∂L
∂tBB

= −2µ2
B − τ6 + τ8 = 0. (A15)

From (A12), we have τ5 = 2µ2
G > 0; thus, (SC) is binding. With τ5 = 2µ2

G, (A13)
provides τ6 = 2µG > 0, implying that (ICGB) binds. From (A14), τ7 = 2µGµB > 0, and
from (A15), with τ6 = 2µG, we have τ8 = 2(µ2

B + µG) > 0. Thus, (PCBG) and (PCBB) are
binding. From the binding constraints, we have

tGG = (1− θG)QG/2 + ∆θQB/2, tGB = (1− θG)γQM + ∆θQB/2,
tBG = (1− θB)(1− γ)QM, tBB = (1− θB)QB/2.

(A16)

Substituting for the transfers in the objective function and optimizing with respect to
γ results in

2µGµB∆θQM > 0,

implying that γ = 1 in the optimal contract. With γ = 1, (A16) provides the expressions for
an agent’s ex post rent in Lemma 4. Replacing the transfers with their values, optimization
in the output levels yields

v′(Qm̃
G , ΘG) = 1− θG, v′(Qm̃

M, ΘM) = 1− θG, v′(Qm̃
B , ΘB) = 1− θB +

µG
µB

(
1 +

µG
µB

)
∆θ,

implying that Qm̃
G = Q∗G, Qm̃

M = Q∗M and Qm̃
B < Qm

B (< Q∗B).

Proof of Lemma 5. The principal’s optimal payoffs when allowing and deterring sabotage
are, respectively,

πallow
comp = µ2

Gφ2
Gπ∗G + 2(µ2

GφGφB + µGµB)[π
∗
M − ∆θQm̂

B /2] (A17)

+ (µ2
Gφ2

B + µ2
B)[v(Q

m̂
B , ΘG)− (1− θG)Qm̂

B ] and

πdeter
comp = µ2

G[π
∗
G − ∆θQm̃

B ] + 2µGµB[π
∗
M − ∆θQm̃

B /2] (A18)

+ µ2
B[v(Q

m̃
B , ΘG)− (1− θG)Qm̃

B ],

where π∗G ≡ v(Q∗G, ΘG)− (1− θG)Q∗G and π∗M ≡ v(Q∗M, ΘM)− (1− θG)Q∗M. Recall that

v′(Qm̂
B , ΘB) = 1− θB +

µ2
GφGφB+µGµB

µ2
Gφ2

B+µ2
B

∆θ from the Proof of Lemma 3. Therefore, as φB −→ 0

(or φG −→ 1), we have Qm̂
B −→ Qm

B and πallow
comp in (A21) approaches the payoff resulting

from the outcome in Lemma 1. This implies that as φB decreases, πallow
comp becomes more

attractive, and that πallow
comp > πdeter

comp for small enough φB. As φB −→ 1 (or φG −→ 0),
we have

πallow
comp −→ 2µGµB[π

∗
M − ∆θQm̂

B /2]

+ (µ2
G + µ2

B)[v(Q
m̂
B , ΘG)− (1− θG)Qm̂

B ],
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implying that if µG is not too small, then πdeter
comp becomes more attractive as φB increases,

and that πdeter
comp > πallow

comp for large enough φB.

Proof of Claim 2 and Lemma 6. Again, we first consider (CICGG,BB), (ICGB), (PCBG), and
(PCBB) without the other constraints, as it can be easily shown that the other constraints
are satisfied in our solution without them.

The Lagrangian of the principal’s problem is written as follows:

L = ∑i µ2
i [v(Qk, Θk)− 2tii] + µGµB ∑i ∑j ψ̃

[
v(Qk, Θk)− tij − tji

]
+ τ9[2tGG − (1− θG)QG − 2tBB + (1− θG)QB]

+ τ10[tGB − (1− θG)γQM − tBB + (1− θG)QB/2]

+ τ11[tBG − (1− θB)(1− γ)QM]

+ τ12[tBB − (1− θB)QB/2],

where γ ∈ [0, 1] and ψ̃ =


ψG if i = j = G,
ψB if i 6= j,
0 if i = j = B.

The first-order conditions with respect to the transfers are as follows:

∂L
∂tGG

= −2µ2
G − 2µGµBψG + τ9 = 0, (A19)

∂L
∂tGB

= −2µGµBψB + τ10 = 0, (A20)

∂L
∂tBG

= −2µGµBψB + τ11 = 0, (A21)

∂L
∂tBB

= −2µ2
B − 2τ5 − τ10 + τ12 = 0. (A22)

From (A19)–(A21), we have τ9 > 0 and τ10 = τ11 > 0, respectively; thus, (CICGG,BB),
(ICGB) and (PCBG) are binding. With the values of τ9 and τ10, (A22) provides τ12 > 0,
implying that (PCBB) is binding. From the binding constraints, we have

tGG = (1− θG)QG/2 + ∆θQB/2, tGB = (1− θG)γQM + ∆θQB/2,
tBG = (1− θB)(1− γ)QM, tBB = (1− θB)QB/2.

(A23)

Substituting for the transfers in the objective function and optimizing with respect to
γ results in

2µGµBψB∆θQM > 0,

implying that γ = 1 in the optimal contract. With γ = 1, (A23) provides the expressions for
an agent’s ex post rent in Lemma 6. Replacing the transfers with their values, optimization
in the output levels yields

v′(Qc̃
G, ΘG) = 1− θG, v′(Qc̃

M, ΘM) = 1− θG, v′(Qc̃
B, ΘB) = 1− θB +

µG
µB

(
1 + ψG +

µG
µB

)
∆θ,

implying that Qc̃
G = Q∗G, Qc̃

M = Q∗M and Qc̃
B < Qm̃

B (< Q∗B).
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Proof of Proposition 2. The principal’s optimal expected payoff in the cooperative struc-
ture is

πcoop = (µ2
G + 2µGµBψG)[π

∗
G − ∆θQc̃

B] + 2µGµBψB[π
∗
M − ∆θQc̃

B/2]

+ µ2
B[v(Q

c̃
B, ΘG)− (1− θG)Qc̃

B],

where π∗G ≡ v(Q∗G, ΘG) − (1 − θG)Q∗G and π∗M ≡ v(Q∗M, ΘM) − (1 − θG)Q∗M. We can
compare this with πallow

comp in (A18) and πdeter
comp in (A18). Suppose that ∆v is sufficiently small;

then, the state G is not much valued by the principal, while the optimal outcome for state
B suffers a larger distortion in the cooperative structure than in the competitive structure.
Thus, πcoop < min{πallow

comp, πdeter
comp} in such cases. Suppose that ∆v is sufficiently large; then,

because k = G takes place with a higher probability in the cooperative structure than in the
competitive structure, πcoop > max{πallow

comp, πdeter
comp}.

Suppose that vΘ is neither sufficiently small nor sufficiently large. We define ψ−G and
φ−B following equation πcoop(ψ

−
G )− πallow

comp(φ
−
B ) = 0. It then follows that, for a given ψ−G ,

πcoop ≷ πallow
comp if φB ≷ φ−B . If φB is sufficiently small, we have πallow

comp > πdeter
comp from Lemma 5;

hence, πallow
comp dominates. Likewise, for a given φ−B , πcoop ≷ πallow

comp if ψG ≷ ψ−G . We define ψ+
G

based on πcoop(ψ
+
G )− πallow

comp = 0. It follows that πcoop ≷ πdeter
comp if ψG ≷ ψ+

G . Thus, if ψG and
φB are sufficiently large, then Cc dominates Cm for sufficiently large ∆v.

Proof of Lemma 7. We consider (ICGG), (ICGB), (PCBG) and (PCBB) here, as the remain-
ing constraints can be shown to be satisfied by the solution without them. The Lagrangian
of the principal’s problem is written as follows:

L = ∑i ∑j µiµj
[
v(qk, Θk)− tij − tji

]
+ ω1[tGG − (1− θG)qG − tBG + (1− θG)qM]

+ ω2[tGB − (1− θG)qM − tBB + (1− θG)qB]

+ ω3[tBG − (1− θB)qM]

+ ω4[tBB − (1− θB)qB],

The first-order conditions with respect to the transfers are as follows:

∂L
∂tGG

= −2µ2
G + ω1 = 0, (A24)

∂L
∂tGB

= −2µGµB + ω2 = 0, (A25)

∂L
∂tBG

= −2µGµB −ω1 + ω3 = 0, (A26)

∂L
∂tBB

= −2µ2
B −ω2 + ω4 = 0. (A27)

From (A24 ) and (A25), we have ω1 > 0 and ω2 > 0, respectively; thus, (ICGG) and
(ICGB) are binding. With the values of ω1 and ω2, (A26) and (A27) respectively provide
ω3 > 0 and ω4 > 0, implying that (PCBG) and (PCBB) are binding. From the binding
constraints, we have an agent’s ex post rent in Lemma 7. Substituting for the transfers in
the objective function and optimizing with respect to the output levels yields

v′(qm
G , ΘG) = 2−ΘG, v′(qm

M, ΘM) = 2−ΘM +
µG
µB

∆θ, v′(qm
B , ΘB) = 2−ΘB +

2µG
µB

∆θ,

implying that qm
G = q∗G, qm

M < q∗M and qm
B < q∗B.
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Proof of Claim 3. The proof follows directly from the Proof of Lemma 7.

Proof of Proposition 3. The proof follows directly from the discussion.

Notes
1 In traditional principal–agent models, the possibility of collusion among agents limits the principal’s welfare (e.g., Tirole 1986 [10];

Kofman and Lawarrée 1993 [11]; Laffont and Martimort 1997 [12], 1998 [13]; Khalil and Lawarrée 2006 [14]). The possibility of
collusion in the traditional models corresponds to the integrated organizational structure in our model, in which the agents
cannot affect each other’s task environment.

2 This is a standard assumption; see Tirole (1992) [15] for a discussion of enforceability of side-contracts.
3 In our model, an agent only reports their updated type. If an agent reports both their initial type and the updated type, then there

is no hidden interaction. When reporting both the initial and the updated type, it is necessary to impose a random shock in our
model (i.e., the agent’s task environment can be changed by chance) to generate the prospect of hidden interactions; such a model
adds more cases to our current setting without changing the qualitative result.

4 Thus, we assume that an agent has a right to protest the other agent’s report in court if an agent’s type is reported by the other
agent, and that resolution is prohibitively costly. Suppose that an agent can acquire hard evidence on the other agent’s type with
a strictly positive probability. Then, the principal can achieve the first-best outcome if the penalty applied to a misreporting agent
can be unlimited.

5 Due to the Inada conditions, Qij is strictly positive at the optimum.
6

7 The result will be the same as long as the agents can collude after learning their types and before reporting them.
8 The strictly decreasing schedule, in particular Q∗G > Q∗M, is due to the fact that Θk enters the value function (common value). We

discuss the robustness related to this issue later.
9 Constant marginal costs are adopted for expositional purposes; this allows us to exaggerate the intuition. We discuss this issue at

greater length in the concluding section.
10 See Winter (2009) [21], who showed that, in a team production context, rewards may affect performance in a nonmonotonic way,

i.e., a higher reward in the case of success may reduce agents’ incentives to exert effort.
11 See Daft (2009) [22] for an example.
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