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Abstract: In this paper, we address the problem of fair sharing of the total value of a crowd-sourced
network system between major participants (founders) and minor participants (crowd) using cooper-
ative game theory. We use the framework of a Shapley allocation which is regarded as a fundamental
method of computing the fair share of all participants in a cooperative game when the values of
all possible coalitions could be quantified. To quantify the value of all coalitions, we define a class
of value functions for crowd-sourced systems which capture the contributions of the founders and
the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These
value functions are defined for different scenarios, such as the presence of oligopolies or geographic
spread of the crowd, taking network effects, including Metcalfe’s law, into account. A key result we
obtain is that under quite general conditions, the crowd participants are collectively owed a share
between 1

2 and 2
3 of the total value of the crowd-sourced system. We close with an empirical analysis

demonstrating the consistency of our results with the compensation offered to the crowd participants
in some public internet content sharing companies.

Keywords: fair allocation; cooperative games; shapley value; network effect; social media; value
function

1. Introduction

Many existing and emerging online network systems and services are designed to
work semi-autonomously using cloud hardware and secure software created by a small
group of founders and enabled by the mass participation of crowds. We refer to (the
small number of) the former as major participants and (the large number of) the latter
as minor participants. Without the hardware platform and the associated reliability and
security provided by the software, there would be no platform and service. But without the
participation of the crowd, there would be no data or content to enable the service. Recent
examples of such platforms include Waze [1] and Helium [2] and one can count Google
and Facebook as older and well-established instances of such services.

There is a large body of literature in the computer science community on the design
and operation of such services and a growing number of publications on reliable mech-
anisms that automatically account for and accumulate rewards for participants (see, for
example, [3]). This literature, however, has so far not discussed substantially the concept
of fair allocation of the service’s total value to the crowd participants who by constantly
feeding data and information to the system are key to its success. As described in [3], one
observes a trend toward rewarding crowd participants via automatically counted tokens
based on such measures as the number of queries, messages, or packets each participant
processes, independently of the total value that the network system and service as a whole
generates. This approach particularly obscures the fact that in many such network systems,
crowd participants additionally provide critical local or even private information free of
charge purely as part of participation which is monetized by the service provider, adding
to the total value generated by the service without direct benefit to the participants.
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The lack of value-based allocation to participants in large-scale crowd-sourced systems
is felt keenly by the general public after over two decades since the emergence of these once
novel enterprises (see, for example, [4]), but interestingly, this topic has not been addressed
adequately by the research and networking communities; for notable exceptions, see
recent articles [5,6] and with respect to the narrower Internet Service Provider settlements,
see older articles [7–10]. Motivated by the interest in revisiting the structural aspects of
crowd-sourced systems by the Web 3.0 Foundation (see [11]), and more directly, the new
possibilities offered by the enterprise-sourced systems as part of Industry 4.0/5.0 (see [12]),
this paper aims to help bridge this gap via a novel and formal methodology for fair
allocation of the total value generated by a crowd-sourced system.

Our key result is the derivation of the share of crowd participants as a percentage of
the total value generated by the service platform. It is instructive here to draw an analogy
between this share (of the participants in a crowd-sourced system) and the share of labor as
part of the national income in macroeconomics [13,14]. In the latter, labor is contrasted with
capital, and in the former, crowd with the system. Interestingly, we observe essentially the
same split: our derivation shows a share for the crowd between 1

2 and 2
3 of the total value

and macroeconomic data consistently exhibit a labor share between 50% and 70% of the
national income; see charts in [13,14] and numerous other national statistical surveys. Thus,
additionally, our result may be regarded as a theoretical explanation of the well-known
split of shares between labor and capital in large-scale economic systems.

The paper is organized as follows. In Section 2, we describe the role and requirements
of value functions that are necessary for the computation of the Shapley value in a coopera-
tive game. Our aim is to make these functions as simple as possible while capturing the
key contributions of major and minor participants in crowd-sourced systems.

In Section 3, we consider various models for a single crowd-sourced system consisting
of a major participant or founder, and a large number of minor participants or a crowd.
We derive close-formed expressions for Shapley allocations to both for a general class of
value functions under different regimes. A key result here is that under quite general and
plausible conditions, crowd participants collectively receive a payoff of at least 1

2 of the
total value of the crowd-sourced system.

We next consider a broad extension of our methodology to oligopolies of crowd-
sourced network systems in Section 4 whereby distinct collections of single-founder crowd-
sourced systems agree to cooperate via pair-wise agreements. We show similar results
hold in terms of the fair share of participants. Interestingly, and in contrast to the single
crowd-sourced system, the ratio of the fair share of major to minor participants now
increases with the number of inter-crowd connections each major participant contributes
to. In Section 5, we present a model of geographic crowd-sourced systems and obtain
closed-form expressions for the Shapley allocation to each community which continues to
exhibit the 1

2 to 2
3 allocation to the crowd participants. We close with an empirical study of

crowd-sourced systems whose public financial statements help estimate the actual revenue
share of the crowd which we observe to be consistent with our model’s predictions.

2. Fair Allocation in Cooperative Games

A formal derivation of fair allocation in cooperative games was first introduced by
Shapley [15] and numerous extensions of it have been considered since. A good intro-
duction is found in [16]. To summarize the main concept, we consider the setting where
a group of participants N are cooperating towards a common goal and generate value
ν(N) as a result, and this value needs to be distributed among all the participants in a fair
way. Suppose that there is a value function ν : 2N → R+ that takes any subset S of N as
input and outputs the value that would have been generated by the coalition formed by
only the participants in S, as opposed to all of N. Now, we denote by φi(ν) the payoff that
participant i receives as part of the grand coalition, i.e., when S = N.

Fairness. There are a few natural properties that a fair allocation scheme must satisfy:
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1. ∑
i∈N

φi(ν) = ν(N),

2. ν(S ∪ {i}) = ν(S ∪ {j})) for all S =⇒ φi(ν) = φj(ν),

3. ν(S ∪ {i}) = ν(S) for all S =⇒ φi(ν) = 0,

4. φi(ν1 + ν2) = φi(ν1) + φi(ν2).

(1)

Property (3) above null player states that any player i that adds no value to any coalition
S does not receive any payoff in the grand coalition, while Property (2) symmetry states
that any two players i and j that add the same value to every coalition S should receive
the same payoff. Participants are rewarded only based on the value they add and no other
factors. Property (1) Efficiency states that the total value generated ν(N) is completely
distributed among the participants, and Property (4) linearity says that for two independent
games, the fair payoff to each participant must be the sum of the fair payoffs in each
independent game.

From these conditions, Shapley derives the following expression for the unique payoff
φi(ν) to each participant i:

φi(ν) = ∑
S⊆N−{i}

|S|! (|N| − |S| − 1)!
|N|! (ν(S ∪ {i})− ν(S)). (2)

Here, the expression in brackets on the extreme right hand side is the marginal value
that agent i adds to coalition S and this marginal value is averaged out for all possible
2|N|−1 coalitions. The payoff φi(ν) in (2) is known as the Shapley allocation to participant i.

3. A Single Crowd-Sourced System

We think of a crowd-sourced system (CSS from here on) as a cooperative game in
which one entity (the founder) provides the main infrastructure, which could be physical
(hardware) or virtual (software), of a value-generating service that can only succeed if a
large number of spatio-temporal agents participate to enable local match of supply and
demand for the said infrastructure service. In this setting, we consider a collection of
participants denoted by N = {g, u1, u2, . . ., un} where g is the founder and ui, 1 ≤ i ≤ n are
the crowd member identities. For a complete list of variables, see the Abbreviation section.
There is much symmetry in this setting which we exploit fully in the sequel.

It is assumed that the value ν(S) of any subset S of N is zero unless it includes
the founder, and in the case where the founder is in S, its value is equal to a function
of the size of the crowd. This is a restatement of the notion of a CSS (crowd-sourced
system) in that it offers much credit to a founder for imagining and initiating a distributed
enterprise enabled by a large number of uncoordinated participants who constantly feed
the system. This form of the value function also makes it possible to derive closed-form
expressions for the Shapley payoff of all participants in various settings, as we observe
below. We use a power of the size of the crowd as its value: a linear function corresponds
to standard scaling. The quadratic function has been widely discussed in the networking
literature as Metcalfe’s law Remark 1, and higher, super quadratic, powers are included for
benchmarking purposes.

3.1. Coalition Value Based on Revenue
3.1.1. Case 1 (Identical Participants)

The first situation we consider is one where all the potential participants are identical.
Any coalition that does not contain the major participant g is treated as one with no value,
while the value of a coalition including g grows as a power of its size. The motivation for this
model comes from the network effect, sometimes referred to as Metcalfe’s law, which states
that the value of any network grows proportional to the square of its number of participants.
This empirical law, originally devised in the context of Ethernet networks [17], seems to also
hold remarkably well in many modern situations such as cryptocurrency networks [18] and
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social networks [19]. The model can be formally written as N = {g, u1, . . ., un}, ν : 2N → R
and

ν(S) :=

{
0 if g /∈ S
ρ|S− {g}|k if g ∈ S,

(3)

where ρ is some constant. Metcalfe’s law is simply a special case of our model with k = 2.
Here, we list a few key properties of ν(S) as defined above and explain why we believe

this simple form captures the key aspects of a crowd-sourced system valuation. We observe
that

(1) the founder g plays a critical role in the definition of the value function in that any
subset which does not include it has value 0. It is not hard to show that this value
function ν defined in (3) is supermodular, and the Shapley values derived in the
sequel are stable; see the end of Section 2;

(2) for any specific crowd participant, there is no special incentive to join any of the
numerous coalitions of size S, as the value function only depends on the size of the
coalition and not its constitution. This means that the basic assumption in (2), stating
that all coalitions of size S are equivalent, is met;

(3) the simple form of ν we assume—the linear, quadratic or higher powers—does not
need a saturation effect, since the more crowd participants, the larger the total value
of a coalition. This is in contrast with saturating systems where (say) the first 100
crowd participants provide a higher value than the last 100.

(4) we note that in the analysis in the following pages, relatively small values of S offer
us the asymptotic results with respect to the exponent k, which equals one and two,
corresponding to linear and quadratic value functions.

Our first result characterizes the Shapley value associated with each participant as a
fraction of the value of the total coalition. We now look at a general computation that is
useful later as well.

Lemma 1. Consider the coalition game with the set of agents N = {g, u1, . . ., un} and value ν
given by

ν(S) :=

{
0 if g /∈ S
f (|S|) if g ∈ S.

The Shapley values of the game satisfy

φg(ν) =
1

n + 1

n

∑
s=0

f (s), φui (ν) =
ν(N)− φg(ν)

n
.

Proof. See Appendix A.1.

Theorem 1. Consider the coalition game with the set of agents N = {g, u1, . . ., un} and value ν
given by (3). The associated Shapley values satisfy

φg(ν) =
ρnk

k + 1
+ O(nk−1), φui (ν) =

kρnk−1

k + 1
−O(nk−2) (4)

and

lim
n→∞

φg(ν)

ν(N)
=

1
k + 1

, lim
n→∞

∑n
i=1 φui (ν)

ν(N)
=

k
k + 1

. (5)
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Proof. Applying the results of Lemma 1 to the value (3), we obtain

φg(ν) =
ρ

n + 1

n

∑
s=0

sk =
1

n + 1

ρnk+1 + O
(

nk
)

k + 1

≈ ρnk

k + 1
=

1
k + 1

ν(N) for large n,

nφui (ν) = ν(N)− φg(ν) ≈
ρk

k + 1
ν(N).

Remark 1. The results obtained in Theorem 1 tell us that when k = 1, i.e., when the power of a
network grows proportional to the number of participants, the value of the grand coalition is shared
equally between the major participant and the collection of minor participants. In other words,
φg(ν) ≈ ν(N)

2 and ∑n
i=1 φui (ν) ≈

ν(N)
2 .

In the popular case of Metcalfe’s law where k = 2, the theorem says that the major participant
should receive 1/3 of the value generated while 2/3 should be distributed equally among the minor
participants.

3.1.2. Case 2 (Non-Identical Participants)

The assumption that all participants are (nearly) identical might not hold in many
settings; for example, when some participants contribute significantly more to the value of
the system than others due to their influence in a social network. A slightly more refined
model for the value would be

ν(S) :=

{
0 if g /∈ S

ρ
(
∑i∈S Wα

i
)k if g ∈ S,

(6)

where Wi refers to some notion of the amount of work performed by participant i, e.g., the

number of messages routed by i. We denote by fi := Wα
i

∑j Wα
j

the share of total work performed

by i.

Theorem 2. Consider the coalition game with the set of agents N = {g, u1, . . ., un} and value ν
offered by (6) where k = 2. The associated Shapley values satisfy

lim
n→∞

φg(ν)

ν(N)
=

1
3
+ ∑

i

f 2
i
6

, lim
n→∞

φui (ν)

ν(N)
=

2
3

fi −
f 2
i
6

. (7)

Proof. See Appendix A.1.

Remark 2. The results obtained in Theorem 1 under the identical participant model can be recovered
from the above theorem by assuming Wi = 1. In fact, in the case where the workload is more or less
uniformly distributed and not too concentrated, as formalized by the condition

lim
n→∞ ∑

i
f 2
i = 0,

the above theorem tells us that φg(ν)

ν(N)
≈ 1

3 and
φui (ν)

ν(N)
≈ 2

3 fi, which is equivalent to dividing the
value between the founder and the crowd in the same way as in the identical participant model,
and then dividing the value among the crowd proportional to the share of work performed.
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Remark 3. In Theorem 2, we treated the case k = 2. However, analogous results hold true for
higher values of k as well. It can be shown that

lim
n→∞

φg(ν)

ν(N)
=

1
k + 1

+ O

(
∑

i
f 2
i

)

lim
n→∞

φui (ν)

ν(N)
=

k
k + 1

fi −O
(

f 2
i

)
.

3.2. Coalition Value Based on Profit

A legitimate concern regarding the use of revenue as a proxy for value is that the
founder could be incurring significant costs for infrastructure which the minor participants
do not. In this case, the resulting profit, revenue minus cost, is a more natural proxy for
value. A question which our Shapley allocation derivation answers in the positive is the
observable impact of the large infrastructure cost incurred by the founder compared to the
small cost incurred by the crowd members.

We modify the model to take into account such costs. We assume that each minor
participant incurs a fixed constant cost ku and the major participant pays a cost of Kg per
minor participant with Kg >> Ku. Formalizing all this, we obtain a new value function
ν : 2N → R

ν(S) :=


0 if g /∈ S
ρ|S− {g}|k − Kg|S− {g}|−

ku|S− {g}| if g ∈ S.

(8)

We compute the Shapley values in this case by appealing to Lemma 1 again.

Theorem 3. Consider the coalition game with the set of agents N = {g, u1, . . ., un} and value ν
given by (8). The associated Shapley values satisfy

φg(ν)

ν(N)
≈

ρnk

k+1 − Kg
n
2 − ku

n
2

ρnk − Kgn− kun

∑n
i=1 φui (ν)

ν(N)
≈

ρknk

k+1 − Kg
n
2 − ku

n
2

ρnk − Kgn− kun

(9)

for large values of n.

Proof. Using the results of Lemma 1, the exact same computation in the proof of Theorem 1
delivers this result.

Remark 4. Even though in the limit n→ ∞, the results of Theorem 3 collapse to that of Theorem 1,
the value of Kg might be large enough that the contribution of Kgn cannot be ignored for the
moderately large values of n that typically arise.

Remark 5. In this case, the ratio of the share of the founder to the share of the crowd is

φg(ν)

∑n
i=1 φui (ν)

=

ρnk

k+1 − Kg
n
2 − ku

n
2

ρknk

k+1 − Kg
n
2 − ku

n
2

.

This shows that when k > 1, as the cost of the system infrastructure Kg increases,
the share of the founder compared to the crowd of participants decrease. This may seem at
first counterintuitive or unfair, especially compared to the case of k = 1 where the share is
constant regardless of the cost of the infrastructure. This phenomenon occurs because the
revenue should be divided according to 1

k+1 and k
k+1 between the founder and the crowd,

whereas the total cost is split equally. Thus, the superlinear scaling of revenue and the
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linear scaling of cost offer a decreasing proportional share to the founder even though the
absolute value of the founder share is still increasing.

Another observation regarding (6) is that while the share of the founder φg(ν) is
increasing in k, the founder’s profit decreases as a percentage of the total profit. This again
is a consequence of the revenue of the network growing as a power of its size.

4. Oligopolies of Crowd-Sourced Systems

We now consider the case of multiple crowd-sourced systems where major participants
or founders are willing to cooperate, thus inter-working CSSs for a higher total payoff to
all. Let us assume that each major participant v has nv minor participants in its CSS(v),
crowd-sourced system affiliated with v. The major participants now agree to cooperate
for higher payoff by inter-networking their disparate crowds. This is achieved through
a series of bilateral agreements between pairs of major players. The key consequence of
such cooperation between major participants i and j is joint creation of a payoff which is
proportional to (ni + nj)

2 for the Metcalfe value model we considered previously, in contrast
to n2

i + n2
j for the case i and j do not cooperate. The question we wish to answer is fair

allocation to each CSS, and each major and minor participants in each CSS assuming global
cooperation represented by a graph G as defined below.

4.1. Shapley Value of an Oligopoly: A Coarse Grain Model

We now assume that major participants form a set of pairwise, bilateral agreements
amongst themselves. We represent this by a connected graph G = (V, E) whose vertices
v ∈ V denote CSSs associated with major participants and each edge in E denotes a bilateral
agreement. A natural extension of the notion of Metcalfe value to a graph G is given by

ν(G) = ∑
v∈V

n2
v + ∑

(u,w)∈E
nunw. (10)

Here, n2
v is the Metcalfe law restricted to the system v and each edge (u, w) adds an

additional nunw to the value of G due to the inter-networking between vertices u and w.
We assume that the crowd-sourced systems associated with major participants v ∈ V

form the set of agents of a cooperative game. The value of a subset S ⊂ V is the Metcalfe
value (10) of the subgraph G(S) induced by S. This is the graph consisting of vertices S
and all edges of G, both ends of which lie in S. This is implicitly an aggregate model that
clubs together all the minor participants of a CSS with the major participant, modelling
the scenario where each minor participant has already been bound to its major participant,
perhaps by means of an agreement or due to some external constraints such as geography
that limits the choice of the minor participant. As a result, in the following, φu(ν) denotes
the share of the crowd-sourced system associated with major participant u, and not just the
share of the major participant u in CSS(u) by itself (which is discussed in Remark 7).

The following result characterizes the Shapley value of each CSS.

Theorem 4. Consider a graph G = (V, E) and a cooperative game with set of agents N = V and
value function

ν(S) = ∑
v∈S

n2
v + ∑

(u,w)∈S×S∩E
nunw.

The Shapley value of each vertex u is given by

φu(ν)(≡ φCSS(u)(ν)) = n2
u + ∑

w∈N(u)
nunw. (11)

Proof. See Appendix A.2.

For example, in the oligopoly shown in Figure 1, we can compute the Shapley values
as
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φA(ν) = nA(nA + nB + nC),

φB(ν) = nB(nA + nB + nC + nD),

φC(ν) = nC(nA + nB + nC),

φD(ν) = nD(nB + nD).

nA

nB

nC

nD

Figure 1. Graph of four crowd-sourced systems with four bilateral agreements and their Shapley
allocations (Theorem 4).

Remark 6. In the special case where all major participants have an equal number of minor partici-
pants within their system, i.e., nv = n for all v ∈ V, we obtain

φu(ν) = n2(1 + deg(u)). (12)

Remark 7. If we consider V = {g, u1, . . ., un}, that there is an edge between g and ui for each
i = 1, . . ., n, and that nui = 1 and nug = 1, we obtain a model that is very close to (3) with k = 2.
The only difference here is that the coalitions that do not contain g have a non-zero value that scales
linearly with its size. Unsurprisingly, we obtain

φg(ν) = 1 + deg(g) = 1 + n,

φui (ν) = 2 =⇒ ν(N) = 3n + 1,

=⇒ lim
n→∞

φg(ν)

ν(N)
=

1
3

, lim
n→∞

∑n
i=1 φui (ν)

ν(N)
=

2
3

,

exactly the same as in Theorem 1.

4.2. Shapley Value of an Oligopoly: Fine-Grain Model

Theorem 4 and the Remarks 6 and 7 derive the Shapely value of each crowd-sourced
system (CSS) associated with each vertex in the oligopoly game of graph G. What remains
is to identify the Shapley fair share of each participant in each CSS associated with each
major player v ∈ G. To achieve this, we need to define a new value function on each CSS
which takes its size and sizes of its neighboring CSSs explicitly into account.

To this end, we consider a more fine-grained model here. We consider the set Uv of
minor participants in the CSS associated with major participant v ∈ V as separate agents,
making the total set of agents of the cooperative game

N = ∪v∈VUv ∪V.

A subset S ⊂ N can be partitioned as Sv = S ∩Uv for each v ∈ V and SV = S ∩ V.
The value of the coalition is computed based on two simple principles: each v ∈ SV
contributes |Sv|2 and each e = (v, w) ∈ G(SV) contributes |Sv||Sw| to the value of S. That is,

ξ(S) = ρ

 ∑
v∈SV

|Sv|2 + ∑
(u,w)∈SV×SV∩E

|Su||Sw|

. (13)
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This value function and agent set jointly capture the cooperative game involving all
CSSs and their minor and major participants. For v ∈ V, we denote by nv := |Uv| the size
of its set of minor participants.

Theorem 5. Consider graph G = (V, E) where each node v ∈ V has an associated set Uv, and a
cooperative game with set of agents N = ∪v∈VUv ∪V and value function

ξ(S) = ρ

 ∑
v∈SV

|Sv|2 + ∑
(u,w)∈SV×SV∩E

|Su||Sw|


where SV = S ∩V and Sv = S ∩Uv for each v ∈ V. The Shapley value of each major participant
v ∈ V is the sum of two terms, the intra and inter crowd payoffs, given by

φv(ξ) = ρ

(
n2

v
3
−O(nv)

)
+ ρ

 ∑
w∈N(v)

nvnw

2

. (14)

The Shapley value of each minor participant uv ∈ Uv is also the sum of two terms

φuv(ξ) = ρ

(
2nv

3
+ O(1)

)
+ ρ

 ∑
w∈N(v)

nw

2

. (15)

Proof. See Appendix A.2.

Remark 8. The Shapley share of the major participant u in CSS(u) (vertex u ∈ G of the oligopoly
graph G) can be written as

φv(ξ)

φv(ξ) + ∑uv∈Uv φuv(ξ)
=

n2
v

3 + O(nv) + ∑w∈N(v)
nvnw

2

n2
v + ∑w∈N(v) nvnw

.

For large enough numbers of minor participants nv, this ratio can be simplified as

φv(ξ)

φv(ξ) + ∑uv∈Uv φuv(ξ)
=

nv
3 + ∑w∈N(v)

nw
2

nv + ∑w∈N(v) nw

=
1
3
× nv

nv + ∑w∈N(v) nw
+

1
2
×

∑w∈N(v) nw

nv + ∑w∈N(v) nw
.

This ratio is greater than 1
3 and less than 1

2 , moving closer to 1
2 as the number of minor

participants in the neighbouring CSS grows larger than that in the CSS corresponding to v.

5. Geographic Crowd-Sourced Systems

In this last section, we discuss the extension of the models we have considered so far
by considering CSSs which are geographically distributed. More concretely, we consider a
collection of agents, and for each agent, the region covered by it. For simplicity, we refer to
these regions as “disks”, even though these can be of arbitrary shape. Figure 2 shows five
disks associated with five agents.



Games 2023, 14, 57 10 of 18

n1

n2

n12

n123

n13
n3

n5

n4

n45
n231

5
2

3 4

Figure 2. Geographic CSS with five disks numbered 1 through 5.

In this model, there are m agents M = {1, 2, . . ., m}, and each agent i has a correspond-
ing disk Di. There are also users, set U, served by the agents in M. A user u may be served
by an agent i only if u is in the region Di. Notice that a user in Di may also be in Dj for
one or more j 6= i. We need notation for the number of users in the intersection of disks.
For each subset of agents S ⊂ M, we denote by dS the number of users in the geographic
area exclusively covered by all Di for i ∈ S. For example, in Figure 2, d{1,2} is the number of
users in D1 ∩ D2 that do not belong to any of the other disks, and d{1,2,3} is the number of
users in D1 ∩ D2 ∩ D3, etc. More formally, dS is the number of users in ∩i∈SDi ∩j∈M−S Dc

j .
In this setting, we define the value functions νlin and νMet as follows. For any S ⊂ M,

νlin({i}) = ρ ∑
i∈S⊂M

dS
|S| , νlin(S) = ρ ∑

i∈S
νlin({i}),

νMet(S) = (νlin(S))
2/ρ.

(16)

For example, in the configuration of Figure 2, we have

νlin({1}) = ρ

(
d1 +

d12 + d13

2
+

d123

3

)
,

νlin({2, 3}) = ρ

(
d2 + d3 +

d12 + d13

2
+ d23 +

2d123

3

)
,

etc., and

νMet({1}) = ρ

(
d1 +

d12 + d13

2
+

d123

3

)2
,

νMet({2, 3}) = ρ

(
d2 + d3 +

d12 + d13

2
+ d23 +

2d123

3

)2
,

etc.
With these definitions, the geographic CSS model is equivalent to an oligopoly of

CSSs where the underlying graph G is complete and ni := νlin({i}). The Shapley value
for each agent under the Metcalfe model is therefore given by Theorem 4 while the linear
model is an additive cooperative game where the Shapley value coincides with the value
function, namely

φi(νlin) = νlin(i) = ρni, φi(νMet) = ρni

(
m

∑
i=1

ni

)
.

Geographic Crowd-Sourced Systems with a Founder

As a conclusion to the discussion of geographic crowd-sourced systems, we consider
the contribution of a founder that establishes the infrastructure for the collection of a
geographic crowd-sourced system. For example, the agent that provides the software
for connecting access points in a distributed wireless network, e.g., [2]. Just to set the
notation, we let
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As in Section 3.1, we define a macro value function ξ which quantifies the cooperative
game involving the founder and any subset of agents M ∪ {g}.

ξlin(S) =

{
νlin(S− {g}) if g ∈ S
0 otherwise

(17)

and

ξMet(S) =

{
νMet(S− {g}) if g ∈ S
0 otherwise,

(18)

where νlin and νMet are defined in (16).

Theorem 6. In a geographic crowd-sourced system with value function ξ defined in (17), (18),
the Shapley allocation to the founder and agent i for each i ∈ M is given by

φg(ξlin) = ρ
∑i ni

2
, φi(ξlin) = ρ

ni
2

, (19)

φg(ξMet) = ρ

(
(∑i ni)

2

3
+

∑i n2
i

6

)
,

φi(ξMet) = ρ

(
2(∑i ni)ni

3
−

n2
i

6

)
.

(20)

Proof. Follows from Theorem 2.

As in Remark 2, notice that φg(ξMet)

ξMet(M)
and ∑i φi(ξMet)

ξMet(M)
asymptotically approach 1

3 and 2
3 as

the number of agents increases.

6. Empirical Analysis

Our main thesis in this paper is that many crowd-sourced systems, old or new, do not
compensate their crowd participants, and when they do so, the share is a relatively small
fraction of their total value (revenue). Our goal is to determine what a reasonable share
would be if fair allocation existed. Unfortunately, the information about sharing of the total
value (revenue) with crowd participants, if and when this information exists, is hard to
come by. Often, data or content from the crowd are collected as part of the service-level
agreement signed by the crowd participants in exchange for a service, which may be search,
access to social media platforms, use of navigational maps, access to wireless spectrum and
other services. In public records, it is often hard to carve out compensation paid to crowd
participants directly. In a few instances, however, it is possible to estimate these payouts.
Here, we provide three examples: Spotify, Pandora, and YouTube.

• Spotify compensates audio contributors an average of 0.003–0.005 cents per stream
which amounts to about 2/3 of its total revenues in 2021 (USD 11.4B); see [20,21].

• Pandora pays an average of 0.00133 cents per stream which translates to 70% of its
total revenues to artists and publishers in 2021 (total revenue USD 3.64 B in 2021)) of
which 57% goes to artists or record labels, i.e., 2/5 of the total revenue; see [22].

• YouTube is our third example, and here, it is possible to obtain more detailed informa-
tion from public records which we describe below.

YouTube, an Alphabet subsidiary, has for over a decade awarded its content creators
a large share of its advertising revenue. Since 2019, YouTube has disclosed its payments
to its crowd content creators. Table 1 below shows the breakout of the total revenues
of Alphabet and YouTube in 2017 through 2021. Table 1 offers us the YouTube annual
revenues for 5 recent years. But how much of these were paid to content creators in each
fiscal year? During August 2021, articles in Fortune [23], Barron’s and numerous other
outlets reported that over the previous three years, Alphabet/YouTube paid USD 30B to its
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content creators. Adding the relevant figures from Table 1, this corresponds to a fraction
of 30/(28.8/2 + 19.7 + 15.1 + 11.1/2) = 30/54.75 = 55% share of the total revenues during
the second half of 2018, 2019, 2020, and the first half of 2021 to content creators. A more
recent article [24] puts this ratio at 68%. Other figures in the same range are also mentioned
in various articles in the past 2 years. Putting all of this together, we observe a range of
55–68% of the total YouTube revenues were paid out to content creators in each fiscal year,
which is in close agreement with the

[
1
2 , 2

3

]
range we derived under the Shapley allocation

using the simple value functions discussed above.

Table 1. Annual revenues of Alphabet and YouTube in 2017 to 2021.

Year Revenue (USD B) Revenue (USD B)
Alphabet YouTube

2017 110.8 8.1

2018 136.9 11.1

2019 161.8 15.1

2020 182.5 19.7

2021 257.6 28.8

Other video content crowd-sourced systems, such as TikTok, do not publish corre-
sponding data, although it is believed they also compensate their content creators a substan-
tial share of their revenues. Meta/Facebook has also started compensating its content cre-
ators. (https://www.facebook.com/business/learn/lessons/how-make-money-facebook,
accessed on 13 July 2023).

7. Conclusions and Future Work

In this paper, we defined value functions that succinctly capture the interplay between
the contributions of a small number of infrastructure providers, founders, and a large
number of contributors, crowd participants, in cooperative value-generating settings such
as crowd-sourced service platforms. We derived closed-form expressions for fair allocation
of the total value of such systems between the founders and the crowd participants using
the Shapley allocation. We showed that the Shapley allocation offers the crowd participants
one half to two third share of the total payoff for the cases of linear and quadratic growth of
revenue as a function of crowd size. We further showed that similar results hold in cases of
oligopolies of such network systems characterized by bilateral agreements between pairs of
independent crowd-sourced systems. We showed that the same holds true for geographic
crowd-sourced systems. These results are consistent with the observed share of labor in
the setting of the national income but are in contrast to the current practices of numerous
existing and emerging crowd-sourced systems whereby participants are awarded tokens
of limited value compared to the total payoff of the full system but are in agreement with
the practices of a small number of platforms, some of which we documented. A natural
next step would be to consider the integration of our proposed value-based allocation in
the emerging token-based reward systems which are being actively discussed in standards
bodies including the Web3.0 foundation and Industry 4.0/5.0 initiatives. Another avenue
for further work is to explore alternative value functions that capture the contributions of
the founders and the crowd participants.
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Abbreviations
The following abbreviations are used in this manuscript:

CSS Crowd Sourced System
g The unique major participant (founder)
ui ith minor participant (crowd)
n Number of minor participants
N Set containing founder and crowd (grand coalition)
S A coalition of participants, a subset of N
|S| Cardinality of S
ν(S) Value of the coalition S
φui (ν) Shapley payoff to participant ui
Kg Cost incurred by founder per participant
ku Cost incurred by each participant
ρ Constant unit in value functions
V Set of vertices v, each representing a crowd-sourced system, v ≡ CSS(v)
E Set of edges, each edge denoting an agreement between its ends
G Oligopoly graph of CSSs and their bilateral agreements
S A subset of vertices V
G(S) Subgraph of G induced by S
v A vertex/participant in V
e An edge/agreement in E
N(v) Set of neighbors of the vertex v in graph G
nv Number of participants(crowd) in v’s crowd-sourced system
g Main founder of the geographic CSSs
M = {1, . . . , m} Set of agents i, each representing disk Di
ni Number of users in disk Di.

Appendix A

Appendix A.1. Proofs from Section 3

Proof of Lemma 1. We can compute the Shapley value of g as

φg(ν) =
1
|N|! ∑

S⊂N−{g}
|S|!(|N| − |S| − 1)!ν(S ∪ {g})

since ν(S) = 0 as g /∈ S. Since ν(S ∪ {g}) is just a function of |S|, we can reduce the
computation as

φg(ν) =
1
|N|! ∑

S⊂N−{g}
|S|!(|N| − |S| − 1)! f (|S|)

=
1

(n + 1)!

n

∑
s=0

(
n
s

)
s!(n− s)! f (s)

=
1

n + 1

n

∑
s=0

f (s).
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Since the participants are all identical, we derive the Shapley value as

φui (ν) =
ν(N)− φg(ν)

n
.

Proof of Theorem 2. The Shapley value of participant i can be computed as

φui (ν) = ∑
S⊂N−{ui}

|S|!(|N| − |S| − 1)!
|N|! (ν(S ∪ {ui})− ν(S))

= ∑
S⊂N−{ui},g∈S

|S|!(|N| − |S| − 1)!
|N|! (ν(S ∪ {ui})− ν(S)).

The marginal utility of participant i can be written as

ν(S ∪ {ui})− ν(S) = W2α
i + ∑

j∈S
2Wα

i Wα
j ,

which gives

φui (ν) = ∑
S⊂N−{ui},g∈S

|S|!(|N| − |S| − 1)!
|N|!

(
W2α

i + ∑
j∈S

2Wα
i Wα

j

)

=
1

(n + 1)!

n

∑
s=1

s!(n− s)!
(

n− 1
s− 1

)
W2α

i +

∑
S⊂N−{ui},g∈S

|S|!(|N| − |S| − 1)!
|N|!

(
∑
j∈S

2Wα
i Wα

j

)
.

The first sum can be simplified directly and the second sum maybe rewritten using
Fubini’s theorem as follows:

φui (ν) = W2α
i

n

∑
s=1

s
n(n + 1)

+ ∑
j 6=i

2Wα
i Wα

j

(n + 1)! ∑
{g,uj}⊂S⊂N−{ui}

|S|!(|N| − |S| − 1)!

=
W2α

i
2

+ ∑
j 6=i

2Wα
i Wα

j

n

∑
s=2

s!(n− s)!
(n + 1)!

(
n− 2
s− 2

)

=
W2α

i
2

+ ∑
j 6=i

2Wα
i Wα

j

n

∑
s=2

s(s− 1)
(n + 1)(n− 1)n

=
W2α

i
2

+ ∑
j 6=i

(
2
3
+ O(n−1)

)
Wα

i Wα
j .

Dividing by the value of the grand coalition ν(N), we obtain

φui (ν)

ν(N)
=

1
2

W2α
i(

∑j Wα
j

)2 +
2
3 ∑

j 6=i

Wα
i Wα

j(
∑k Wα

k
)2 + O(n−1)∑

j 6=i

Wα
i Wα

j(
∑k Wα

k
)2

=
f 2
i
2

+
2
3

fi ∑
j 6=i

f j + O(n−1) =
f 2
i
2

+
2
3

fi(1− fi) + O(n−1)

=
2
3

fi −
f 2
i
6

+ O(n−1).
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It follows that

lim
n→∞

φui (ν)

ν(N)
=

2
3

fi −
f 2
i
6

,

lim
n→∞

φg(ν)

ν(N)
= 1− 2

3 ∑
i

fi + ∑
i

f 2
i
6

=
1
3
+ ∑

i

f 2
i
6

.

Appendix A.2. Proofs from Section 4

Proof of Theorem 4. The marginal utility of u to coalition S is

ν(S ∪ {u})− ν(S) =n2
u + ∑

(u,w)∈E,w∈S
nunw + ∑

(w,u)∈E,w∈S
nunw

=n2
u + ∑

(u,w)∈E,w∈S
2nunw.

We can then compute

φu(ν) = ∑
S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|! (ν(S ∪ {u})− ν(S))

= ∑
S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|! n2

u+

∑
S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|! ∑

(u,w)∈E,w∈S
2nunw

=n2
u + ∑

S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|! ∑

(u,w)∈E,w∈S
2nunw.

The second term above can be reduced using Fubini’s theorem as we did before to
obtain

φu(ν) = n2
u + ∑

(u,w)∈E
∑

w∈S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|! 2nunw

= n2
u + ∑

(u,w)∈E
2nunw ∑

w∈S⊂V−{u}

|S|!(|V| − |S| − 1)!
|V|!

= n2
u + ∑

(u,w)∈E
2nunw

|V|−1

∑
s=1

s!(|V| − s− 1)!
|V|!

(
|V| − 2
s− 1

)

= n2
u + ∑

(u,w)∈E
2nunw

|V|−1

∑
s=1

s
|V|(|V| − 1)

= n2
u + ∑

w∈N(u)
nunw.

Proof of Theorem 5. The value function ξ can be split as

ξ(S) = ∑
v∈V

ξu(S) + ∑
(v,w)∈E

ξu,w(S) (A1)
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where

ξv(S) =

{
|Sv|2 if v ∈ S
0 otherwise,

and

ξv,w(S) =

{
2|Sv||Sw| if v, w ∈ S
0 otherwise.

Each of these value functions can be considered as the value function of a cooperative
game in its own right. By Linearity of Shapley value,

φa(ξ) = ∑
v∈V

φa(ξv) + ∑
(v,w)∈E

φa(ξv,w) (A2)

for any player a ∈ N.
Notice that for any v ∈ V, if a /∈ {v} ∪Uv, then

ξv(S ∪ {a})− ξv(S) = 0, for all S ⊂ N,

which means a is a null player in the game ξv. This implies φa(ξv) = 0 by the null player
axiom of the Shapley value. The game ξv on the remaining set {v} ∪Uv is just the single
major player game (3), and the result of Theorem 1 gives us

φv(ξv) =
n2

v
3

+ O(nv), φuv(ξv) =
2nv

3
−O(1).

Similarly, for any a /∈ {v, w} ∪Uv ∪Uw,

ξv,w(S ∪ {a})− ξv,w(S) = 0, for all S ⊂ N,

which implies φa(ξv,w) = 0 by the null axiom of the Shapley value.
All that remains to be computed is the Shapley value of players {v, w} ∪Uv ∪Uw with

the value function ξv,w. Since we showed that all other players in this game are dummy,
we can find the Shapley value of players {v, w} ∪Uv ∪Uw as their Shapley value in the
simplified game whose set of players is Ñ = {v, w} ∪Uv ∪Uw and value function ξv,w.
To achieve this, we again split the value function ξv,w as

ξv,w(S) = ∑
uv∈Uv

∑
uw∈Uw

ξuv ,uw
v,w (S)

where

ξuv ,uw
v,w (S) =

{
2 if S = {v, w, uv, uw}
0 otherwise,

and compute the Shapley value of the players for each of these value functions separately.
We observe that any player ūv ∈ Uv − {uv} or ūw ∈ Uw − {uw} is a null player of the value
function ξuv ,uw

v,w , which means

φa(ξ
uv ,uw
v,w ) = 0, if Uv 3 a 6= uv or Uw 3 a 6= uw.

This means we can again reduce the set of players to {v, w, uv, uw} and value function
to ξuv ,uw

v,w , and notice that this value function is symmetric with respect to all four players
{v, w, uv, uw} which implies

φa(ξ
uv ,uw
v,w ) =

{
1
2 if a ∈ {v, w, uv, uw}
0 otherwise.
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We can now compute the original Shapley values as

φa(ξv,w) = ∑
uv∈Uv

∑
uw∈Uw

φa(ξ
uv ,uw
v,w ).

When a = v or a = w,

φa(ξv,w) = ∑
uv∈Uv

∑
uw∈Uw

1
2
=
|Uv||Uw|

2
=

nvnw

2
.

When a ∈ Uv,

φa(ξv,w) = ∑
uv∈Uv

∑
uw∈Uw

1
2

δuv ,a =
|Uw|

2
=

nw

2

and when a ∈ Uw,

φa(ξv,w) = ∑
uv∈Uv

∑
uw∈Uw

1
2

δuw ,a =
|Uv|

2
=

nv

2
.

Putting everything together in (A2), we obtain the results of Equations (11) and (15).
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