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Abstract: In transportation networks, incomplete information is ubiquitous, and users often delegate
their route choice to distributed route planners. To model and study these systems, we introduce
network control games, consisting of multiple actors seeking to optimise the social welfare of their
assigned subpopulations through resource allocation in an underlying nonatomic congestion game.
We first analyse the inefficiency of the routing equilibria by calculating the Price of Anarchy for
polynomial cost functions, and then, using an Asynchronous Advantage Actor–Critic algorithm
implementation, we show that reinforcement learning agents are vulnerable to choosing suboptimal
routing as predicted by the theory. Finally, we extend the analysis to allow vehicles to choose their
route planner and study the associated equilibria. Our results can be applied to mitigate inefficiency
issues arising in large transport networks with route controlled autonomous vehicles.

Keywords: resource allocation; congestion games; multi-agent learning; efficiency

1. Introduction

Tackling traffic congestion has been a goal of many cities for decades, to, for example,
reduce travel times and decrease air pollution. The increased adoption of automatic
route planners such as GPS navigation, Google Maps, Waze, etc., can potentially have
a positive impact on reducing congestion by the resource allocation of routes. A recent
study demonstrated, to a large extent, that intelligent transport systems have a greater
effect on improving congestion than building new roads [1]. Furthermore, the capacity
for routing systems to control the flow of congestion is only increasing, and autonomous
vehicle development will allow for routing control with minimal input from drivers.

Although arguably beneficial in many ways, the presence of multiple planners has
important repercussions on the overall system efficiency, and the possibility for navigation
applications to enforce socially desirable outcomes in transportation networks was recently
listed as an open problem in Cooperative Artificial Intelligence [2].

Due to the size and complexity of the problem, using multi-agent reinforcement
learning (MARL) algorithms for network control in order to optimise congestion could be a
solution, but the problem remains of how far away the learnt strategies would be from the
most socially desirable outcome. Before deploying such algorithms, we need to understand
the quality of the resulting equilibria.

In Distributed Artificial Intelligence (DAI), congestion games [3] have become a ref-
erence model to analyse the inefficiency of traffic flows, with important implications for
the design of better road systems [4]. In congestion games, self-interested players travel
between origin and destination nodes in a network, choosing paths that minimise their
travel time. Players’ route choices constitute a Nash (or user) equilibrium when there is
no incentive to unilaterally deviate, and then, they are typically compared against the
total travel times, yielding the players’ social welfare. The most often used measure of
inefficiency is the Price of Anarchy (PoA) [5], which compares the worst Nash equilibrium
routing with that of the optimal flow.
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While Nash equilibria are important predictors, it is also well known that their assump-
tions on individuals’ rationality are frequently not met in practice. In large transportation
networks, it is often the case that individuals have incomplete knowledge of the network
(see, e.g., the bounded rationality approaches in [6,7]) and rely on personal route planners
to figure out their optimal route. An account of this intermediate perspective, where
competing controllers act on the same selfish routing network, is still missing from the
multi-agent systems literature.

1.1. Our Contribution

In this paper, we study intelligent routing systems that act as distributed controllers
on a traffic network and analyse their impact on the overall efficiency. We develop a
two-level game, called the network control game, where route planners have control over
the resource allocation of an underlying nonatomic (information-constrained) congestion
game. Specifically, each route planner controls a finite predetermined fraction of the total
traffic by choosing information available to vehicles with the goal of minimising the travel
time incurred by that fraction only. We show that this can be seen as a distributed resource
allocation problem with separable welfare functions, where the resource sets are edges
on a network and the strategies of a player must correspond to their given origin and
destination pair. Modelling players of the nonatomic congestion game as vehicles and
route controllers or planners as optimisers for a subset of vehicles, we prove that network
control games are potential games and therefore have an essentially unique equilibrium.
Then, we study equilibrium efficiency, showing that the PoA is highest when the allocation
of vehicles to route planners is (approximately) proportional. We also give PoA bounds
over polynomial cost functions, depending on the polynomial degree and the number of
controllers. Furthermore, we give an example of an MARL implementation to show that
this PoA occurs in practice. Finally, we extend network control games to allow vehicles to
choose their route planner, showing that the unique resulting equilibrium has the highest
total cost.

1.2. Paper Outline

We begin by discussing our work in connection with the related literature in Section 2
and outline the necessary preliminaries and notation in Section 3. Then, Section 4 introduces
the network control games and studies the existence of equilibria. Section 5 calculates the
PoA over polynomial cost functions, with an MARL implementation shown in Section 6.
Finally, we analyse the extension where vehicles choose their route planner in Section 7.

2. Related Literature

Our work connects to a number of research lines in algorithmic game theory, focusing
on the quality of equilibria in congestion games and resource allocation, and the research
in DAI studying planning and control with boundedly rational agents.

Congestion games are a class of games first proposed by Rosenthal [3], which were
utilised in research for modelling the behaviours of network systems. These were initially
studied in the transportation literature by Wardrop [8] who established the conditions for a
system equilibrium to exist when all travellers have minimum and equal costs. Their appli-
cations have increased to include many other situations that can be modelled with selfish
players routing flow in a network, for example, machine scheduling or communication
networks [9], as well as physical systems such as bandwidth allocation [10] or electrical net-
works [11]. However, their main application for congestion games is transportation [12–14].

Games, where the utilities of all players can be described with a single function, are
called potential games [15], and these are, in fact, equivalent to congestion games. A useful
property of potential games is that they always admit a pure Nash equilibrium. Finding a
pure Nash equilibrium in an exact potential game is a PLS-complete problem [16]. However,
improvement paths [15] converge at equilibrium for all potential games. For nonatomic
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congestion games, i.e., ones with continuous player sets, the maximisers of the potential
function are Nash equilibria of the potential game [17].

The PoA [5] was proposed as a measure of inefficiency representing the cost ratio
of the worst possible Nash equilibrium to the social optimum. The PoA in network
congestion games is a phenomenon that is independent of network topology [18]. The
biased PoA [7] compares the cost of the worst equilibrium to the social optimum, when
players have “wrong” cost functions, i.e., differing from the true cost due to biases or
heterogeneous preferences.

From the point of view of distributed control, an important related model is Stackelberg
routing games, where a portion of the total flow is controlled centrally by a “leader”, while
the “followers” play as selfish vehicles. Stackelberg routing was first proposed by [19],
characterising which instances are optimal. Roughgarden [20] found the ratio between
worst-case and best-case costs in these games, and the impact of Stackelberg routing on
the PoA has also been established for general networks [21]. Single-leader Stackelberg
equilibria in congestion games have been looked at, and it is known that they cannot
be approximated in polynomial time [22]. Instead, multi-leader Stackelberg games are
largely unexplored in this context [23]. Our approach features multiple leaders but not
Stackelberg-like “followers”, which impacts our results on the PoA.

Much of the transport literature is aimed at reducing congestion, and increasing effi-
ciency in traffic networks focuses on introducing tolls [24–26]. Information design, which
is closely related to our approach, has more recently been considered as a mechanism to
reduce congestion [6,7,27]. The information-constrained variant of a nonatomic conges-
tion game was first introduced to show that information could cause vehicles to change
their departure times in such a way as to exacerbate congestion rather than ease it [28].
The set of outcomes that can arise in equilibrium for some information structure is equal
to the set of Bayes correlated equilibria [29]. Das et al. [30] considered an information
designer seeking to maximise welfare and restore efficiency through signals using infor-
mation design. Tavafoghi and Teneketzis [31] showed that the socially efficient routing
outcome is achievable through public and private information mechanisms. Moreover,
Ikegami et al. [32] consider a centralised mediator to recommend routing to users taking
into account their preferences for incomplete information games. Our work differs from
the private information design literature. In our model, route planners control the routing
rather than provide signals, and multiple agents attempt to optimise ‘group’ welfare.

A similar game is the splittable congestion game, which was first studied in the context
of communication networks [9]. Here, each player in the congestion game assigns a weight
to the possible strategies that arise when considering coalitions of players in nonatomic
congestion games. The bounds on the PoA for splittable congestion games have been found
for polynomial cost functions [33], which have the same bound when there are an infinite
number of route planners in a network control game.

Network control games can be seen as resource allocation games, where the resources
are edges in a network and the potential function is the total cost of players’ travel times.
Distributed resource allocation problems aim to allocate resources for optimal utilisa-
tion, such as distributed welfare games [34] and cost-sharing protocols [35]. A recent
survey of game-theoretic control of networked systems highlights major advancements
and applications [4].

Additionally, distributed welfare games [34] utilise game-theoretic control for dis-
tributed resource allocation where the distribution rule is chosen to maximise the welfare
of resource utilisation. Different distribution rules can be compared by their desirable
properties such as scalability, the existence of Nash equilibria, PoA, and Price of Stability. In
this context, protocols have been studied to improve the equilibria of network cost-sharing
games [35], while [36] studied welfare-optimising designers under full and partial control.
We consider a distributed resource allocation problem with separable welfare functions
where the resource sets are edges on a network and the strategies of player must coincide
with their given origin and destination pair, i.e., on a congestion game.
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Regulating the flow of traffic in complex road networks is an important application of
artificial intelligence technologies usually involving distributed optimisation and multi-
agent learning methods [37–39]. Most of the literature focuses on adapting traffic lights
to coordinate traffic, but MARL can also be used to improve traffic flow through resource
allocation, as we show in Section 6.

3. Preliminaries

We begin by introducing some standard definitions of nonatomic congestion games
and the properties of their equilibria.

Let N = {1, . . . , n} be a nonempty finite set of player (or vehicle) populations such
that players in the same population share the same available route choices (or strategy set).
For population i ∈ N, the demand for a population, i.e., the traffic volume associated with
that population, is di > 0. Each population i has a nonempty finite resource set Ei made
up of relevant resources, i.e., those edges that are used in at least one route choice, Si ⊆ 2Ei ,
where Si is the strategy set of i. Denote E as the irredundant resource set E =

⋃
i∈N Ei, the

set of edges used in any strategy set. Resource cost functions, ce : R≥0 → R≥0 ∪ {∞} such
that e ∈ E, are assumed to be continuous, nondecreasing, and non-negative.

We assume that individuals have limited knowledge of the routing options; i.e., we
assume there exist Ki ≥ 1 information types in each population i ∈ N and refer to a player
from population i of type k as (i, k), where the demand for a type is d(i,k) ≥ 0. Information
types can restrict knowledge of the resources; i.e., each population–type pair is associated
with a known set E(i,k) ⊆ Ei. Formally, a nonatomic information-constrained (NIC) congestion
game is defined as a tuple (N, (Ki), (E(i,k)), (S(i,k)), (ce)e∈E, (d(i,k))), with i ∈ N, k ∈ Ki.

The outcome of all players of type k choosing strategies leads to a vector x(i,k) satisfying

∑
s∈S(i,k)

x(i,k)s = d(i,k) (1)

and x(i,k)s ≥ 0, ∀s ∈ S(i,k). A strategy distribution or outcome x = (x(i,k))i∈N is feasi-
ble if Equation (1) holds ∀i ∈ N and ∀k ∈ Ki. Then, denote the load on e in an out-
come x to be fe(x) = ∑i∈N ∑s∈S(i,k) xi

s1s(e), where 1 is the indicator function. In a strat-

egy distribution, x := (x(i,k))k∈Ki , i∈N , a player of knowledge type (i, k) incurs a cost of
C(i,k)(s, x) := ∑e∈s ce( fe(x)) when selecting strategy s ∈ S(i,k). An information-constrained
user equilibrium (ICUE) [6] is a strategy distribution x such that all players choose a strategy
of minimum cost: ∀i ∈ N, k ∈ Ki and strategies s, s′ ∈ S(i,k) such that when x(i,k)s > 0 we
have C(i,k)(s, x) ≤ C(i,k)(s′, x). Every player of the same knowledge type has the same cost
at a UE x, which is denoted C(i,k)(x). We say that a user equilibrium is essentially unique if
all user equilibria have the same social cost. For any nonatomic congestion game, there
exists a user equilibrium, and it is essentially unique [40].

The social cost of x is the total cost incurred by all players,

SC(x) := ∑
i∈N

∑
(k∈Ki

C(i,k)(x)d(i,k) (2)

Strategy distribution x is a social optimum (SO) if it minimises Equation (2). Formally, a
SO solves minx SC(x), such that ∑s∈S(i,k) xs

(i,k) = d(i,k), ∀i ∈ N, k ∈ Ki, xs
(i,k) ≥ 0.

In most cases, the SO solution is different to the UE solution, since players only
maximise their individual utility. Pigou [41] was the first to show this on a network with
one origin and one destination and two parallel edges joining them, for a population of
size 1. The cost of the first of the edges is constant at 1, and the second costs the same as the
proportion of players that choose it. The UE here is for all players to use the second edge,
which gives a social cost of 1, whereas the optimal routing is to split players equally along
edges for a social cost of 3

4 .
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The efficiency of the UE when compared with the SO is the Price of Anarchy (PoA). It is
defined as the ratio between the social cost of a SO outcome and the worst social cost of
a UE,

PoA =
maxy∈UE SC(y)

minx SC(x)
(3)

where UE is the set of user equilibria. For example, in Pigou’s network, the PoA is 4
3 .

An exact potential game is one that can be expressed using a single global payoff function
called the potential function. More formally, a game is an exact potential game if it has a
potential function Φ : A→ R such that ∀a−i ∈ A−i, ∀ai, a′i ∈ Ai, Φ(ai, a−i)−Φ(a′i, a−i) =
ui(ai, a−i) − ui(a′i, a−i). Here, the notation −i means all players in N excluding i, i.e.,
{1, .., i− 1, i + 1, .., |N|}. The concept of potential games was first posed by [15] for atomic
games and later extended to nonatomic games [17,42]. Potential games and congestion
games are equivalent, where a player’s utility is their negative cost. The potential function
for nonatomic congestion games is

Φ(x) := ∑
e∈E

∫ fe(x)

0
ce(z)dz (4)

where x is the strategy distribution of players, which is also referred to as the Beckmann
function [43]. A strategy distribution is an ICUE if, and only if, it minimises the potential
function [6] (an extension of results in [40,43]).

When studying the PoA in network control games, we will turn our attention to
social dilemmas, i.e., games in which there exists a conflict between individual and social
preferences. The classic two-player matrix game social dilemma is a game with payoffs
shown in Table 1, where we must have the conditions R > P, R > S, 2R > T + S, and
either T > R or P > S. A social dilemma, by definition, has a PoA strictly greater than 1.

Table 1. The classic format of social dilemma payoffs in a two-player matrix game, where (A, B)
means that player 1 receives payoff A and player 2 receives payoff B.

C D

C (R, R) (S, T)

D (T, S) (P, P)

Learning algorithms can be used to find strategies in large or complex environments.
In this paper, we consider the effects of using reinforcement learning algorithms to solve
the problem of route control in information-constrained nonatomic congestion games.

Reinforcement learning (RL) is a framework where an agent earns rewards for taking
actions in a given environment. The goal is to find a policy—a sequence of actions to take
in each environmental state—in order to maximise rewards. Value functions are used to
estimate long-term rewards given that the agent observes a particular state and selects
actions aligning with its policy. Equivalently, this can be formalised as a single-player
stochastic game where the policy is the agent’s strategy. See [44] for a detailed introduction
to RL.

The environment is represented by a state variable, s ∈ S, and the principle task of the
agent is to select the best action, a ∈ A, given the current state. An optimal policy states the
actions to be taken in a given state to achieve the highest expected return.

A Markov decision process (MDP) is a discrete-time stochastic control process that pro-
vides a suitable mathematical framework for modelling an agent’s reasoning and planning
strategies in the face of uncertainty. It satisfies the Markov property—the probability dis-
tribution over the next set of states only depends on the current state and not its history.
Formally, we write an MDP as a tuple (S, A, P, R): state space S, action set A, Markovian
transition model P : S× A× S 7→ [0, 1], and reward function R : S× A× S 7→ R.
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The goal of the agent is to select a sequence of actions, or policy π. An optimal policy
π∗ maximises the cumulative discounted return, Gt = ∑∞

k=0 γkrt+k+1, where γ ∈ [0, 1] is a
discount factor and ri = R(si, ai, si+1) is the reward at step i. The state-value function, or
value function, Vπ : S→ R describes the expected value of following policy π from state s,
Vπ(s) := Eπ [Gt|st = s].

The action–value function, or Q-function, Qπ : S× A→ R estimates the expected value
of choosing an action a in state s then following policy π: Qπ(s, a) = Eπ [Gt|st = s, at = a].
We can write the Q-function in terms of the value function as follows:

Qπ(s, a) = R(s, a, s′) + γ ∑
s′

P(s, a, s′)Vπ(s′) (5)

In MARL, each agent must make assumptions about their opponents’ strategies
in order to optimise their own payoff. An MDP can be generalised to capture mul-
tiple agents through the use of Markov games. Formally, a Markov game is a tuple
(N, S, (Ai)i∈N , P, (Ri)i∈N , γ) where N is the set of agents, state space S, Ai is the ac-
tion space of i ∈ N, P : S × A1 × ... × A|N| × S → [0, 1] is the transition function,
Ri : S× ...× A|N| × S→ R is the reward function, and γ is the discount factor.

Denote the action profile of agents at time t is at, then we can define the value function
for player i as

Vi
πi ,π−i (s) := Eπ−i [∑

t≥0
γtRi(st, at, st+1)|ai

t ∼ πi(.|st), s0 = s] (6)

For Markov games, a Nash equilibrium is a joint policy π = (π1, . . . , π|N|) such that for
all i ∈ N and s ∈ S,

Vi
πi ,π−i (s) ≥ Vi

π̄i ,π−i (s) for all π̄i.

Actor–critic methods [45] are a class of algorithms where a ‘critic’ advises an ‘actor’ of
the quality of each action. The actor and critic each learn separately; the critic estimates the
value function, while the actor learns the policy based on feedback from the critic.

Asynchronous Advantage Actor–Critic (A3C) is a model-free policy optimisation-
based MARL algorithm. It equips the actor–critic format with independent local agents
(asynchronicity) whereby the critics estimate the advantage function, which is defined as the
Q-function Equation (5) minus the value function Equation (6). In policy optimisation, we
learn the policy directly rather than the Q-values. In deep learning, we learn the parameters
θ of the neural network that represents the policy or value function. For further details of
the algorithm, see [46].

4. Network Control Games

Suppose that the routing choices of vehicles in an NIC congestion gameM are con-
trolled by a set of route planners R, where each route planner aims at minimising the
total travel cost of the (nonempty) portion of vehicles assigned to them Nr, where r ∈ R
and Nr ⊆ N. For instance, this could occur in a setting of competing autonomous taxi
companies within a city. Each taxi company wishes to minimise the journey times of their
fleet for customer satisfaction and energy efficiency but does not use the same routing
systems as the other companies.

The way in which the route planners have control over the routing choices is by
choosing which knowledge set is available to each player, i.e., any type k ∈ Ki for a vehicle
in population i. Since there exist knowledge types that have only one route available as
a strategy, this action space is a superset of controlling the routes of vehicles. Thus, we
allow route planners to control the demand for each knowledge type within the fraction of
flow they control; i.e., they control the distribution of knowledge types within populations.
Choosing this action space allows for a more generalised model than if they selected a single
route for each vehicle. For instance, a navigation app would give its users a choice between
only a few routes; thus, drivers have incomplete knowledge of the network available
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to them. For example, autonomous vehicles may not give their passengers a choice of
route. In this case, the knowledge set would contain only the route that the autonomous
vehicle follows.

Let the size of each population i ∈ N controlled by r ∈ R be denoted dr
i , where

∑r∈R dr
i = di and dr

i = 0, for i /∈ Nr. We can view the game as an information design
problem, where a player r partitions populations in Nr into sets of information types to
minimise the social cost of Nr. The route planner r has a strategy set denoted Kr := (Ki)i∈Nr .
Thus, a route planner chooses the information type demands d(i,k), such that ∀i ∈ Nr,
∑(i,k)∈(Kr)i

d(i,k) = dr
i . Let the strategy space for route planners be Dκr where κr is the set

of all information sets Ki for any i ∈ Nr. Moreover, for any d ∈ Dκr and ∀i ∈ Nr, we have
∑(i,k)∈κr d(i,k)1Ki (i, k) = dr

i , where 1 is the indicator function. Let the combined strategy
space of all route planners be denoted as Dκ , where κ is the set of all information types.

Now, we define a network control game to be a tuple (M, R, (Nr)r∈R, (dr
i )i∈Nr , (Dκr )r∈R),

whereM is an NIC congestion game, R is the set of route planners, Nr is the population
controlled by r ∈ R, dr

i is the demand of population i controlled by r, and Dκr is the strategy
space of r.

Let the share of control of route planner r be ∑i∈Nr dr
i

∑i∈N di
. If a route planner has a share

of control equal to 1, then we say it has full control of the game. The control of r over a

population i is defined as dr
i

di
. If ∀r ∈ R and ∀i ∈ N, the control of r over population i is

|R|−1, then we say that the game is proportional.
Observe now that the outcome of all route planners’ strategies d := (dr)r∈R leads

to an ICUE x in the underlying game. This is true, since it is a two-level game, where
route planners first choose the information types, and then, the congestion game is played
by vehicles in the second stage. Given this, the cost function of a route planner Cr :
Dκr → R≥0 is defined as Cr(dr, d−r) := ∑(i,k)∈κr C(i, k)(x)dr

(i,k) ∀r ∈ R, where x is the
ICUE from (dr, d−r). Note that due to the notation −r, we can use Cr(d) and Cr(dr, d−r)
interchangeably.

Then, an outcome d is a Nash equilibrium of the network control game if, and only
if, ∀r ∈ R, we have Cr(d) ≤ Cr(d′, d−r) ∀d′ ∈ Dκr . We can show the existence of Nash
equilibria in network control games by showing that these are exact potential games.

Proposition 1. A network control game is an exact potential game for potential Φ defined as

Φ(d) := ∑
e∈E

∫ fe(x)

0
ce(z)dz,

where x is the ICUE formed from d.

Proof. Consider a unilateral deviation d̂r of route planner r from an outcome d with
respective ICUE profiles x̂ and x.

Φ(d̂r, d−r)−Φ(d) = ∑
e∈E

∫ fe(x̂)

0
ce(z)dz− ∑

e∈E

∫ fe(x)

0
ce(z)dz (7)

Since the deviation from x to x̃ only involves edges in κr, we can rewrite the right-hand
side of Equation (7) as

= ∑
(i,k)∈κr

∑
e∈s(i,k)

[ ∫ fe(x̂)

0
ce(z)dz−

∫ fe(x)

0
ce(z)dz

]
= ∑

(i,k)∈κr

[
C(i,k)(x̂)− C(i,k)(x)

]
= Cr(d̂r, d−r)− Cr(d)
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Thus, the function Φ is an exact potential function. By definition, the network control game
is an exact potential game.

Since we have an exact potential game with nondecreasing edge costs, Corollary 1
follows directly from Acemoglu et al. [6] (Theorem 1).

Corollary 1. For every network control game, there exists a Nash equilibrium, and it is essen-
tially unique.

As network control games are exact potential games, all of the results known for
nonatomic congestion games will also hold in the new context, e.g., [18,47]. Nonetheless,
these games allow for insights into how the distribution of vehicle route planners will
affect traffic equilibria, which is an important and novel contribution to the literature (see
Section 2 for an in-depth discussion).

We now define the PoA of a network control game as

PoA =
maxd∈NE C(d)
mind∈Dκ

C(d)
,

where NE is the set of Nash equilibria. Since there is a one-to-one mapping of flow to route
planners, the social cost is defined the same as the underlying congestion game.

Note that our setup can be extended to incorporate vehicles that are not fully controlled
by a route planner, e.g., by allowing route planners that give full information sets to their
populations. However, we only consider vehicles following a route planner directly to more
easily classify the best and worst-case equilibria from the full route control of populations.

We also note that for any strategy distribution in a (information-constrained) nonatomic
congestion game, we can, without loss of generality, restrict ourselves to pure strategy
equivalents. A route planner has no incentive to recommend multiple routes to a vehicle,
since this creates uncertainty about vehicle route choice. Thus, henceforth, we study the
case where all information sets chosen by the route planners contain only one strategy. As
such, the profile set by the route planners d has a deterministic associated ICUE x.

5. Inefficiency of Route Controllers

To see how the network control game creates inefficient equilibria, first consider what
happens as we change the number of route planners in a proportional game. First, suppose
that a route planner has full control of the game, then all vehicles follow the same route
planner. Thus, the route planner has an objective function equal to the social cost of the
system: Cr(d) = ∑(i,k)∈κr C(i,k)(x)d(i,k) = ∑r∈R ∑(i,k)∈Kr C(i,k)(x)d(i,k) = SC(x). As such,
the case with |R| = 1 will implement the socially optimal routing allocation.

Now, as we increase the number of route planners, the demand of the population
controlled by a single player decreases. As |R| → ∞ and since the game is proportional,
we have that dNr → 0, ∀r ∈ R. As we now have an infinite number of agents controlling a
negligible amount of flow, we are back to a simple NIC congestion game. This occurs since
C−r(dr, d−r) = C−r(d−r) ∀dr ∈ Dκ , when the proportion of control of r is negligible. The
PoA of the game is now the same as in its underlying NIC congestion game. Thus, if there
is more than one route planner in a proportional network control game, which is true by
definition, there is an inefficient equilibrium if the NIC congestion game admits one.

Proposition 2. A proportional network control game has a PoA strictly greater than 1 if, and only
if, the underlying NIC congestion game does.

Proof. (⇒). If the PoA of a network control game is strictly greater than 1, then there
is an incentive to choose suboptimal routing at the Nash equilibrium. As the number of
route planners in the proportional game tends to infinity, we approach the underlying NIC
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congestion game. As such, the suboptimal routing exists in the NIC congestion game, and
so, the PoA for the NIC congestion game is strictly greater than 1, too.

(⇐) If the PoA of an NIC congestion game underlying a proportional network game
is strictly greater than 1, then we know that at the UE, there exists a suboptimal selfish
routing of drivers. Let the Nash equilibrium of routing be D and the SO be C. Since
the game is proportional, all route planners have the same strategy space. Thus, ∀r ∈ R,
(i) Cr(D) ≤ Cr(Cr, D−r), (ii) SC(C) ≤ SC(D), and (iii) SC(C) ≤ SC(Cr, D−r).

We can write this as a two-player (r and −r) normal form game with the actions Cr,
Dr, C−r, and D−r. This, combined with the inequalities above, indicates that the payoffs
comply with the conditions required for a social dilemma. As such, the PoA is strictly
greater than 1.

Thus, we have identified that having multiple route planners controlling the flow on
any NIC congestion game with an inefficient equilibrium will not have SO equilibrium
flow. We will now bound this inefficiency by finding the PoA of the route control game.

Since the PoA is independent of network topology in all nonatomic congestion
games [18], we can use the Pigou example to illustrate the inefficiency of having mul-
tiple route planners. We assume that cost functions are polynomial with maximum degree
p. To begin, let us consider linear cost functions, i.e., p = 1.

Example 1 (Two route planners). Suppose we have a total flow of 1 and two route planners 1
and 2 with respective population control of d1 and d2 = 1− d1 on a Pigou network. Each route
planner must solve the following minimisation problem to find their equilibrium routing defined by
the variable xr for r ∈ {1, 2} r 6= s ∈ {1, 2}, as defined in Figures 1 and 2.

min
xr

[
xr(xr + xs) + (dr − xr)

]
subject to 0 ≤ xr ≤ dr. This gives us the Lagrangian function (where s ∈ {1, 2}, s 6= r):

L(xr, λ1, λ2) = xr(xr + xs) + dr − xr − λ(dr − xr)

The corresponding Karush–Kuhn–Tucker conditions are:

δL
δxr

= 2xr + xs − 1 + λ = 0 λ(xr − dr) = 0

Consider the following three cases:

1. First, consider the case where xr = dr. Since λ ≥ 0, we must have dr ≤ (1−xs)
2 . Route

planner r plays selfishly by routing along the bottom edge only if their control is small.
2. Now, suppose that xr 6= dr and xs 6= ds. The solution here is xr = xs =

1
3 .

3. The last possible case is where xs = ds, and similarly, this occurs when ds ≤ 1
2 (1− xr).

Thus, the optimal routing of splitting the vehicles equally between routes only occurs when
there is one route planner with full control. The social cost of equilibria is shown in Figure 3.

O D

dr − xr

xr

Figure 1. The strategy for route planner r ∈ R where xr ∈ [0, dr] on a Pigou network with two route
planners, r and s.
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O D

1

(xr + xs)p

Figure 2. The edge cost functions, where p ≥ 0 and xr and xs are defined from the flows in Figure 1.

Figure 3. Social cost of Pigou routing with two route planners and p = 1.

As choices are independent, similar reasoning applies for more route planners. The
optimal routing remains the same as the three cases in Example 1, but the effect of adding
another selfish agent increases the worst possible cost.

Example 2 (Three route planners). Now suppose three route planners control the flow on the
same Pigou network. As before, each route planner r ∈ {1, 2, 3} performs a minimisation over their
routing choice xr. Since they chose their routing independently of one another, the same reasoning
can be used to consider more populations. The optimal routing remains the same, but the effect of
adding another selfish agent increases the worst possible cost. This can be seen in Figure 4, where
the same behaviour of two operating systems is seen with another dimension.

Figure 4. The social cost of routing on the Pigou network with p = 1 for three route planners.
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Let us formalise the result that proportionality is linked to a high PoA. Once again,
since the PoA is independent of network topology, we can find the worst-case example of it
using the Pigou example. Thus, Examples 1 and 2 found the worst-case ratio of selfish route
planners to fully cooperative route planners for two and three route planners, respectively.
Let the number of route planners be |R| ∈ N. We can find the PoA using the same method
as the example for general |R|.

Proposition 3. The PoA of a network control game is highest when the game is proportional.

Proof. To find the worst-case PoA of route control, we want that no route planner is acting
socially optimally. We can find the worst-case of routing on the Pigou example since it is
independent of topology. Thus, we solve the minimisation problem

min
0≤xr≤dr

[
xr(∑

s∈R
xs)

p + (dr − xr)
]

To do so, we use the following Lagrangian function

L(xr, λ1, λ2) = xr(∑
s∈R

xs)
p + dr − xr − λ(dr − xr)

The corresponding Karush–Kuhn–Tucker conditions are:

δL
δxr

= (∑
s∈R

xs)
p + pxr(∑

s∈R
xs)

p−1 − 1 + λ = 0

λ
δL
δλ

= λ(xr − dr) = 0

For general p ≥ 0 and |R| > 2, the three cases remain the same as Example 1.

The best response to xr = dr is to choose xs = (1 + p)
−1
p , and when xr = xs, we have

xr = (p|R|p−1 + |R|p)
−1
p . For no route planner to choose the socially optimal routing in

Pigou’s example, each route planner must have a proportion of control of population i
of at least (p|R|p−1 + |R|p)−1/p and less than or equal to 1− (p|R|p−1 + |R|p)−1/p. For
all |R| and p, (p|R|p−1 + |R|p)−1/p ≥ 1

|R| . As |R| → ∞, (p|R|p−1 + |R|p)−1/p → 1
|R| .

Thus, the worst-case equilibrium cost can be achieved through a proportional assignment
of populations.

The maximum social cost of Nash equilibria of the network control game also occurs
for other distributions of route planner control. From Figure 3, we see that there is a set of
population controls that maximise the social cost existing around the proportional version
of the game. This set is characterised by each route planner having a share of control of
at least (|R|p + p|R|p−1)−1/p for each population. For example, with linear cost functions
and two route planners, each route planner must control at least 1/3 of each population, or
for three route planners, they must control at least 1/4.

We will now find the worst-case PoA for a network control game for polynomial
edge-cost functions.

Theorem 1. The worst-case PoA for a network control game with |R| route planners and polynomial
edge-cost functions at most degree p is

1− |R|
(
|R|p−1(p + |R|)

)− 1
p + |R|p+1(|R|p−1(p + |R|)

)− p+1
p

1− (p + 1)−
1
p + (p + 1)−

p+1
p
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Proof. By Proposition 3, the worst-case equilibrium can be found when the game is pro-
portional. Thus, we let each route planner solve the objective function

min
xr

[
xr
(

∑
s∈R

xs
)p

+ dr − xr
]

At the minimum, we have (
∑
s∈R

xs
)p

+ xr p
(

∑
s∈R

xs
)p−1 − 1 = 0.

Since the strategy spaces are symmetric and the game has an exact potential function, there
exists a Nash equilibrium where each route planner plays the same strategy. The Nash
equilibria of an exact potential game all have the same social cost, so this instance is also
the worst Nash equilibrium. Thus,

(|R|xr)
p + xr p(|R|xr)

p−1 − 1 = 0.

which rearranges to
xr = (p|R|p−1 + |R|p)−1/p.

The social cost of the worst-case Nash equilibrium is

|R|p+1(p|R|p−1 + |R|p)−1−1/p + 1− |R|(p|R|p−1 + |R|p)−1/p.

The social optimum of the game is where the total congestion on the bottom edge is
(p + 1)−1/p, with a social cost of

(p + 1)−1−1/p + 1− (p + 1)−1/p.

The ratio of these two costs gives us the result.

For |R| = 1, by Theorem 1, the PoA is 1. Thus, the system is efficient when a route
planner has full control of all vehicles. As |R| → ∞, Theorem 1 implies that the PoA tends
to that of the NIC congestion game it controls [18],

(p + 1)
1
p +1

(p + 1)
1
p +1 − p

.

Figures 5 and 6 plots the PoA as a function of p for the network control games with
varying |R| and p.

Figure 5. The PoA for a network control game for a range of p and a selection of |R| values.
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Figure 6. The PoA for a network control game for a range of |R| and a selection of p values.

The PoA for the network control game is significantly better than that of the NIC
congestion game (where |R| = ∞) for a small number of route planners ∀p > 0. The system
gets more inefficient as the number of route planners increases.

6. MARL Implementation

In this section, we consider the application of the theory of network control games
to multi-agent reinforcement learning to test whether self-interested learning agents will
converge to equilibrium strategies. To do so, we consider an instance of the Braess network
with cost functions known to induce suboptimal selfish routing. The cost functions are
shown in Figure 7.

O D

xp 1

1 xp

0

Figure 7. The Braess example where d = 1. With p = 1, the cost functions are linear, and for p = 2,
the cost functions are quadratic.

To show that these results align with multi-agent learning, we simulated an instance
of the network control game on this example for linear and quadratic edge-cost functions.
We chose a proportional game, since this case has worst-case selfish-routing as indicated by
Proposition 3.

The repeated game can be seen as an MDP by defining the following state, action,
rewards, and transitions. The state is the congestion of the network, i.e., the flow on
each edge. Note that the route planners have full information of the network congestion.
The actions of the route planners are to select the demand of knowledge types. Since we
restrict our analysis to the case where recommended knowledge types have only one route
available, the action space is equivalent to the demand of routes. Figure 7 shows the four
routes available to the population: along the two upper edges; along the lower two edges;
and the two paths that include an upper edge, a lower edge, and the middle connecting
edge. The route planners receive a reward equal to the negative of their cost function.
Finally, the subsequent state is the user equilibrium of the congestion game. Thus, state
change is deterministic from the actions of route planners and vehicles. Since there is no
change in state that is external to the players in a repeated game, they are often referred
to in MARL literature as stateless games. Note that we use a model-free algorithm which
means we do not explicitly use the transition function in the learning algorithm.
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We used the Asynchoronous Advantage Actor–Critic (A3C) algorithm [46], due to its
use in multi-agent RL social dilemma environments, e.g., [48,49]. We simulated instances
with either one, two, or three route planner agents controlling the flow. Each game consisted
of playing the network control game shown in Figures 8 and 9 for 100 repeated rounds
with no discounting (γ = 1). Thus, the SO cost is 150 or 123 for linear and quadratic
costs, respectively. In both instances, the worst possible cost is 200. Each instance was
averaged over three different random seeds. The neural network consisted of two fully
connected layers of size 32 and a Long Short-Term Memory (LSTM) recurrent layer [50].
This network architecture was taken from [48]. We used the Ray library (https://github.
com/ray-project/ray, accessed 10 January 2021) for a standard implementation of A3C
with default parameter settings.

The learning curves for these experiments are shown in Figures 8 and 9. The results
indicate that the agents learn to play strategies with a total cost that is close to the predicted
PoA (from Theorem 1) for the edge-cost type and number of agents. Thus, reinforcement
learning agents are vulnerable to choosing suboptimal routing as predicted by the theory.
This suggests that the application of RL to route control requires cooperation, as with other
social dilemmas, between route planners to minimise congestion.

Figure 8. Learning curves for A3C agents playing a network control game on Braess’ example for
linear cost functions.

Figure 9. Learning curves for A3C agents playing a network control game on Braess’ example for
quadratic cost functions.

7. Choosing Route Planners

So far, we have studied vehicles that are assigned to route planners controlling their
choices. Suppose that instead, we allow vehicles to strategically select their route planner
prior to their journey. In this extension, Nash equilibrium outcomes are such that no vehicle

https://github.com/ray-project/ray
https://github.com/ray-project/ray
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has an incentive to unilaterally deviate from the route planner they selected, given the
prescribed route choices.

A route planners game can be a tuple (M, R), whereM is an NIC congestion game,
and R is the set of route planners. Furthermore, the strategy space of players inM is R,
since their routing is selected by the route planner they choose. Let yi

r indicate the share
of control of r ∈ R selected by population i ∈ N. Then, a strategy profile y = (yi)i∈N is
feasible if ∀i ∈ N, ∑r∈R yi

r = di. Each feasible y has a corresponding network control game
where ∀r ∈ R and ∀i ∈ N, yi

r = dr
i and i ∈ Nr if yr

i > 0. Thus, each y has an essentially
unique Nash equilibria d deciding the distribution of information. Define the cost function
of a vehicle i ∈ N to be

Ci(y) := ∑
r∈R

yi
r ∑
(i,k)∈κr

C(i,k)(x)dr
(i,k)1(i,k)∈Ki

,

where x is the ICUE that results from d. Moreover, a Nash equilibrium is y such that ∀i ∈ N
Ci(y) ≤ Ci(y′, y) ∀y′ ∈ R.

Proposition 4. A route planners game is an exact potential game for potential Φ defined as

Φ(y) := ∑
e∈E

∫ fe(x)

0
ce(z)dz,

where x is the ICUE formed from d and y.

Proof. Consider the change in potential function between strategy distributions y and
y′ = (y′j, y−j) for some j ∈ N, with respective ICUE profiles x′ and x.

Φ(y′)−Φ(y) = ∑
e∈E

∫ fe(x′)

0
ce(z)dz− ∑

e∈E

∫ fe(x)

0
ce(z)dz

Rewrite as a sum over possible strategies in S,

= ∑
i∈N

di ∑
(i,k)∈Ki

∑
s∈S(i,k)

[
x′is ∑

e∈s

∫ fe(x′)

0
ce(z)dz

− xi
s ∑

e∈s

∫ fe(x)

0
ce(z)dz

]
Rewrite as a sum over the route planners’ strategies,

= ∑
i∈N

∑
r∈R

∑
(i,k)∈κr

dr
(i,k)1{(i,k)∈Ki}

[
y′ir ∑

e∈Ki

∫ fe(x′)

0
ce(z)dz

− yi
r ∑

e∈Ki

∫ fe(x)

0
ce(z)dz

]
Since the only difference between y′ir and yi

r is when i = j,

= ∑
r∈R

∑
(i,k)∈κr

dr
(i,k)1{(i,k)∈Kj}

[
y′jr ∑

e∈Kj

∫ fe(x′)

0
ce(z)dz

− yj
r ∑

e∈Kj

∫ fe(x)

0
ce(z)dz

]
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= ∑
r∈R

∑
(i,k)∈κr

dr
(i,k)1{(i,k)∈Kj}

[
y′jr C(i,k)(x′)− yj

rC(i,k)(x)
]

= Cj(y′)− Cj(y)

Thus, Φ is an exact potential function. By definition, the network control game is an exact
potential game.

Thus, Corollary 2 follows.

Corollary 2. For every route planners game, there exists a Nash equilibrium, and this is essen-
tially unique.

Now, suppose we have an NIC congestion game with a socially inefficient UE and
at least two route planners controlling the flow. Any route planner that has a small share
of control of a population will choose the same strategy as players in a congestion game
(selfish routing). Similarly, any route planner with a large share of control of a population
plays by routing according to the social optimum. Since the UE of the game is socially
inefficient, we know that the players choosing the route planner with a large share of
control will have a strictly greater cost than those choosing a route planner with a small
share of control. Thus, vehicles choosing their route planners have an incentive to choose
the one with the least control. Any route planner that has less control over the population
than any other route planner is more desirable to vehicles. Thus, there cannot be a route
planner with strictly less control than all other route planners at the Nash equilibrium. We
have ruled out the case where a route planner has no control over any population, so the
flow must be proportional at the equilibrium.

Proposition 5. Each Nash equilibrium of route planner games is proportional.

Proof. Any route planner with control of a population less than (p|R|p−1 + |R|p)−1/p will
choose the same inefficient selfish routing as the vehicles of the NIC congestion game. Since
this is the UE of the game, the other routing must be greater than or equal to this cost. Thus,
vehicles prefer to choose a route planner with less than (p|R|p−1 + |R|p)−1/p control over
their population. Since (p|R|p−1 + |R|p)−1/p ≥ 1

|R| , the best-response dynamics will end
when all route planners have proportional control of all populations.

Following from Proposition 3, we see that allowing vehicles to choose their route
planner gives the worst possible PoA.

8. Conclusions

We studied multiple route planners optimising the routing of subpopulations in a
nonatomic information-constrained congestion game through resource allocation. As
their number grows, the equilibrium changes from achieving socially optimal routing to
achieving the same inefficient routing as the original congestion game. We found the exact
bound on the PoA of the induced game for polynomial edge-cost functions. Then, we
used a simple example to show that MARL suffers from this PoA in practice. Additionally,
we allowed vehicles to choose their route planner and showed that this only increases
the overall inefficiency. Thus, companies using MARL routers to ease congestion require
further incentives to cooperate with each other.

Natural extensions include analysing games with partial route planner control and the
rest as selfish players with full or partial information which, we believe, could influence how
autonomous vehicles design their route choice when the roads have a mix of human-driven
and autonomous vehicles.

Another line of further work is to discover under what conditions is there an incentive
to follow a route planner over autonomous routing. Designing incentive mechanisms for
drivers to choose route planner control whilst achieving some level of fairness can impact
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the use of route controllers in real-world traffic. Survey research into people’s beliefs about
the ethics of autonomous vehicles found that although people were in favour of a utilitarian
approach of saving more lives over less, they also said that they would not purchase
a utilitarian car themselves due to the risk of self-sacrifice [51]. This phenomenon was
coined “the social dilemma of autonomous vehicles”. Perhaps people would have a similar
perspective of socially optimal routing—desiring a utilitarian system that is beneficial for
everyone yet irrationally choosing the opposite. In which case, designing a routing system
that drivers have no incentive to defect from, by choosing their own routes, would be an
important extension of the work.

The results from this paper theoretically support the implementation of a centralised
route planning algorithm to guide autonomous vehicles and reduce congestion. The higher
the number of route planners controlling vehicles on the roads, the larger the inefficiency
of the resulting routing equilibria. This is also the case for navigation apps; the more
applications available to drivers, the worse the outcome of selfish routing will be. However,
suboptimal routing could be mitigated if route planners cooperate with each other. The
problem constitutes a social dilemma, so if route planners were able to detect if their rivals
were cooperating or defecting, algorithms such as ARCTIC [49] could be adapted and
utilised for safe cooperation in route control.
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