
Citation: Evans, S.; Turrini, P.

Improving Strategic Decisions in

Sequential Games by Exploiting

Positional Similarity. Games 2023, 14,

36. https://doi.org/10.3390/

g14030036

Academic Editors: Abhinay Muthoo

and Ulrich Berger

Received: 7 January 2022

Revised: 10 February 2022

Accepted: 7 April 2022

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Improving Strategic Decisions in Sequential Games by
Exploiting Positional Similarity
Sabrina Evans 1,2 and Paolo Turrini 3,*

1 Department of Mathematics, Yale University, New Haven, CT 06511, USA; sabrina.evans997@hotmail.co.uk
2 Bloop AI, London WC1H 9SE, UK
3 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
* Correspondence: p.turrini@warwick.ac.uk; Tel.: +44-(0)24-7652-3193

Abstract: We study the strategic similarity of game positions in two-player extensive games of
perfect information by looking at the structure of their local game trees, with the aim of improving
the performance of game-playing agents in detecting forcing continuations. We present a range of
measures over the induced game trees and compare them against benchmark problems in chess,
observing a promising level of accuracy in matching up trap states. Our results can be applied
to chess-like interactions where forcing moves play a role, such as those arising in bargaining
and negotiation.

Keywords: limited foresight; traps; similarity; strategy

1. Introduction

In complex sequential interactions, such as those arising in bargaining and negoti-
ation, boundedly rational participants are often not in a position to fully calculate the
consequences of their own decisions and need to make a judgment call on which move to
make next. These interactions are often compared to chess, for the importance of forward
thinking, opponent modelling and prediction, surprise moves and deceptive concessions
(for an interesting take on the connections between chess and negotiation, see [1]). However,
the right way to analyse them is far from obvious. Game theory offers perhaps the most
natural toolbox to do so, but it is important to strike a good balance between the simplicity
of the solution and its applicability.

In his book Modelling Bounded Rationality [2], Ariel Rubinstein says:

At the beginning of the twentieth century, Zermelo proved a proposition which
can be interpreted: “chess is a trivial game”. [2] (p. 130).

This sentence ironically revisits the seminal result of Zermelo on the determinacy
of two-player zero-sum games (for a modern and neat technical exposition see [3]; for a
comprehensive account of its historical relevance, including the original proof of the result,
see [4]) which rarely scales up to games that are played in practice, such as chess. In a
way, Rubinstein notes, there is a game theory and a game practice, and the often idealised toy
models from the former abstract away from many important features in the latter, which
we should not forget about. Some games have a solution in theory, but this solution can be
very hard to find in practical play.

Rubinstein continues:

But [in games like chess] this calculation requires going through a huge number
of steps, something no human being can accomplish. Modeling games with
limited foresight remains a great challenge [and the frameworks studied thus far]
fall short of capturing the spirit of limited-foresight reasoning. [2] (p. 131).

Games 2023, 14, 36. https://doi.org/10.3390/g14030036 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g14030036
https://doi.org/10.3390/g14030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0003-4609-1051
https://doi.org/10.3390/g14030036
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g14030036?type=check_update&version=1

Games 2023, 14, 36 2 of 13

Bounded Decision-Makers. The modern advances in Artificial Intelligence, particu-
larly the work of the Google DeepMind team in games of perfect information and beyond
(see, e.g., [5,6]), have shown how limited human knowledge is when it comes to decision
making in complex extensive games of perfect information. However, chess, as well as
many other chess-like games, is not solved, in the sense that we do not yet know an optimal
strategy from the start of the game. Even if, thanks to Zermelo, we know that either White
has a winning strategy, or Black has a winning strategy, or both players at least have a
drawing strategy, we still do not know which one of these disjuncts is true. In fact, even
if/when found, the solution would be hard to remember or even store anywhere. Dis-
cussing Zermelo’s result [3], Maschler, Solan and Zamir claim that, should chess be solved,
it will “cease to be of interest” [3] (p. 3). However, this is far from obvious when boundedly
rational players are involved. Think of issues such as time pressure, when grandmasters
and even supercomputers manage to lose theoretically won positions.

We cannot stress enough how bounded rationality is not just a “human” feature. Any
decision-making agent operating in large extensive games, including supercomputers,
needs to resort to heuristic assessments to make decisions. Artificial Intelligence can then
provide us with stylised and testable models of boundedly rational decision-making, which
we can use to support human decision-making as well—a point of view which we take in
this paper.

An Issue with the Current AI Methods. When analysing complex extensive games
of perfect information, where intermediate positions need to be assessed heuristically,
Artificial Intelligence has come up with approximate methods, the most successful of which
is Monte Carlo Tree Search (MCTS), which evaluates non-terminal positions by repeated
simulation—see [7] for a full description of MCTS methods.

MCTS constitutes an evolution from traditional α− β methods, which are decision-
making mechanisms that assign a utility to “features” of a game position and select a
continuation based on max–min solution concepts (for a detailed description of these
methods, see [8]). MCTS-based agents dominate many games of perfect information, such
as Go, Checkers, Reversi, and Connect Four [7]; witness the impressive achievements of
the DeepMind team against human players [5,6]. Nonetheless, MCTS-based agents still
trail behind their α− β counterparts when playing game positions requiring accurate play.
Recent evidence of this fact was provided in game 6 of the 2018 Chess Championship
Match between World Champion Magnus Carlsen (White) and challenger Fabiano Caruana
(Black), where DeepMind’s AlphaZero missed a mate for Black following a sequence of
30 moves, found by the Sesse supercomputer running this line on the non-MTCS-based
Stockfish [9].

A key issue for MCTS’s performance in games such as chess is the presence of trap
states, where an initial move may look strong and then be followed by a forcing sequence
of moves by the opponent, leading to a loss or significant disadvantage [10]. In other
words, the ubiquitous presence of reachable subgames which admit (practically) winning
strategies from the opponent. Despite the breakthroughs of MCTS-based engines, the
challenge still remains to equip MCTS with the capability of handling such forcing lines.

The approach we take in this paper is to formulate a generalised notion of similarity
between game states to improve the performance of game-playing agents by smart search:
if a trap was found after position x and we now analyse position y, which is very similar to
x, then chances are we still have a trap after y. As similar strategies are likely to contain
similar move sequences but not necessarily similar board positions, our measures are based
on possible moves from each position, rather than the appearance of the board itself.

Our Contribution. We study the similarities of game positions in two-player, deter-
ministic games of perfect information, looking at the structure of their local game trees,
working with the set of possible moves from each position. We introduce novel similar-
ity measures based on the intersection of move sets, and a structural similarity measure
that only considers the arrangement of the local game tree and not the specific moves
entailed. We analyse the formal relation of these measures and test them against benchmark

Games 2023, 14, 36 3 of 13

problems in chess, with a number of surprising and promising findings. Notably, our
structural similarity measure was able to match trap states to their child-trap states with
85% accuracy without using domain-specific knowledge. On top of this, we introduce a
move-matching algorithm, which accurately pairs moves with similar strategic value from
different positions. Our results are of immediate relevance to MCTS adaptations to detect
and avoid trap states in gameplay.

Other Related Work. Graph comparison is one of the most fundamental problems of
theoretical computer science, with graph isomorphism computation having been an open
problem for quite some time [11]. With tree structures, possibly the most commonly used
metric is the edit distance [12]: based on the number of edits (node insertions, deletions, and
substitutions) necessary to transform one tree into another, this metric works well for trees
of a similar size with many shared nodes and edges. However, it tends to be less suitable
when comparing multiple trees of different sizes, as large trees sharing some proportion of
their nodes appear further from each other than two completely distinct smaller trees. An
alternative measure is the alignment distance [13], an adaptation of the edit distance based
on the notion of sliding one tree into another and counting the number of edits needed
to transform both trees into the combined one. The alignment distance requires lower
complexity to compute than the edit distance, but it is technically not a metric and suffers
from similar problems comparing trees of different sizes.

In game playing, the presence of forcing continuations is identified as a key problem
faced by AI engines, with more acute implications for chess-like games [10]. Surprisingly,
though, the theory of similarity metrics to aid strategic decisions in game playing is not
well developed.

Similarity measures have instead been used in other areas of AI, as in the case of
Siamese neural networks for one-shot learning [14]. In this case, two symmetric convolu-
tional neural networks were trained on same–different pairs and then shown a test instance,
as well as one example from each possible classification. The output of the twin networks
was then compared using a similarity measure. Here, a cross-entropy objective function
was used to determine similarity, but this required the networks to be symmetric and
weight tied. New similarity measures based on the structural similarity of networks could
remove these requirements, but have not yet been investigated.

Paper Structure. The section “Positional Similarities” introduces our formal setup
to compare game trees through a number of similarity measures. The section “Detect-
ing Structural Similarities” uses these as the basis of a dynamic algorithm to detect
structural similarities among subtrees. In the “Performance” Section, we compare these
against known chess positions. We conclude by discussing potential applications and
research directions.

2. Positional Similarities

Let G be a two-player finite extensive form game of perfect information, where players,
e.g., Black and White, alternate moves, with White starting the game. Formally, G consists
of a set of histories (x0, x1, . . . , xK) such that x0 is the starting board position and each xk+1
(with k ≤ K) can be reached from xk with a single legal move by White whenever k is even,
and by Black otherwise (as in, e.g., [3]).

We are interested in comparing trees that result from players exploring game con-
tinuations from a certain board position on. In MCTS, for example, these are the game
trees generated by the expansion step (see, e.g., [15]). Let T1, T2 denote tree roots and
T1i, T2i child nodes (board positions) of T1 and T2. Then let Mi denote the set of all possible
moves from position Ti and Md

i the set of all possible moves contained in all possible move
sequences of length d from position Ti.

We now present three natural measures, of increasing complexity, to establish how
similar such trees are: the similarity of continuations, the similarity of sequences, and
the tree-edit similarity. All these measures are model free, in the sense that they can be
used in all situations that can be described as two-player finite extensive games of perfect

Games 2023, 14, 36 4 of 13

information. We analyse their formal interrelation in this section and use them as the basis
of our dynamic algorithm in the subsequent one.

2.1. Similarity of Continuations

Our first measure, which we call similarity of continuations, is calculated from the sets
Md

1 , Md
2 of 1-ply atomic moves from starting positions T1, T2 to their children of depth

d. The similarity is the size of the intersection of these two sets divided by the size of
their union.

Pcont(T1, T2) =
|Md

1 ∩Md
2 |

|Md
1 ∪Md

2 |

As Md
1 , Md

2 can be found from a simple expansion of the game trees, computing such a
measure takes time O(|Md

1 |+ |Md
2 |) ∼ O(bd), where b is the breadth of the game tree.

At depth 1, the similarity of continuations simply calculates the proportion of children
that two nodes share. When extended to a deeper search, the measure becomes less fine-
grained, since a move that occurs at different depths in the trees will still count as shared,
and multiple occurrences of the same move are only counted once.

As an example, consider the trees T1, T2 in Figure 1, which have depth-2 continuation
sets M2

1 = {a, b, c, d, e, f }, M2
2 = {a, b, c, d, e, g, h}.

T1

c d e f

a

c d

b

a b

c

T2

d e g

a

a b h

c

b

d

Figure 1. Tree comparison. Starting from the same position, metrics can be used to establish how
close the resulting positions will be.

Here,

Pcont(T1, T2) =
|M2

1 ∩M2
2|

|M2
1 ∪M2

2|
=

5
8
= 0.625.

2.2. Similarity of Sequences

Our second similarity measure, which we call similarity of sequences, uses longer se-
quences of moves rather than single plies. To ease computation, we require each possible
move sequence of length d from tree root T1 to first be rewritten according to a predeter-
mined move, ordered as a simplified sequence S. Formally, two sequences are simplified
into one if—and only if—they are the same modulo move permutation. These simplified
sequences are then stored in a structure T′1, which we call the simplified tree of T1. As
different move permutations can create the same simplified sequence, we also store the
multiplicity k of each S in T′1, where k corresponds to the number of ways S can be reached
from the root note. Then, the similarity of sequences calculates the ratio of the intersection
to the union of the simplified trees.

Let k1i be the multiplicity of simplified sequence Si in T′1, k2j the multiplicity of Sj
in T′2, and n = max(|T′1|, |T′2|), and the number of nodes in the larger of T′1, T′2. Then, the
similarity of sequences of T1 and T2 is given by

Pseq(T1, T2) =
∑n

i=1 ∑n
j=1(k1i + k2j)1Si∩Sj

∑n
i=1 k1i + ∑n

j=1 k2j
.

Calculating the similarity of sequences at depth 2 on the example trees in Figure 1 can
be achieved as follows. For an alphabetical ordering, the simplified trees can be written as

T′1 = {ac2, ad1, ae1, a f 1, bc2, bd1}

Games 2023, 14, 36 5 of 13

T′2 = {ac1, ad1, ae1, ag1, bc1, bd1, ch1}

where the superscript corresponds to the multiplicity of each sequence. Then

Pseq(T1, T2) =
12
15

=
4
5
= 0.800.

The tree simplification can be performed in one depth-first pass of each tree, taking
time O(bd). Calculating the proportion of shared sequences takes O(|T′1|+ |T′2|), which
is equal to O(bd) in the worst case, the same logarithmic complexity as the similarity of
continuations. It should be noted that the tree-reduction step means that the complexity
coefficient is larger for the similarity-of-sequences calculation. This is a trade-off for
accuracy at depth d > 1, as less information is lost when calculating from sequences rather
than continuations.

Relation to Kernels. The similarity of sequences is closely related to the Tanimoto
similarity measure or kernel [16,17] based on the intersection over the union of the inner
products of two sets. The Tanimoto kernel was successfully used to calculate the similarity
of molecule fingerprints in Bioinformatics from the feature map of a molecule by counting
the number of paths through the map shared by different molecules [16]. The methods
used in this area can be carried over to extensive form games of perfect information, as
a board position can be viewed as a fingerprint representing the game that has gone
before it. The game tree and feature map can both be traversed and have their matching
paths counted. Using a suffix tree data structure [18,19], we can compute the Tanimoto
kernel in time O(d(n1m1 + n2m2)), for depth d, ni nodes and mi edges in trees T1, T2. The
similarity of sequences is also comparable to the random walks kernel [20], a measure
of similarity between two graphs found by counting the number of random paths they
share. The main difference here is that the similarity of sequences has limited depth and is
a normalised metric.

2.3. Tree-Edit Similarity

It may be the case that T1 is very similar to T2 but differs by some very shallow moves.
If this is the case, the similarity of sequences measure would not detect this similarity. We
therefore propose a modified version of the tree-edit distance [21], which traditionally
counts the cost-wise minimal number of operations needed to turn one tree into another.
The tree edit similarity, used to compare subtrees, is normalised, and acts as a metric on
the tree-edit space. The normalised tree-edit distance [21] gives values in the range [0, 1],
and as such would be suitable as a similarity measure when subtracted from one. The
normalised distance is given as

2e(T1, T2)

α(|T1|+ |T2|) + e(T1, T2)
,

where e(T1, T2) is the tree-edit distance between T1 and T2, and α is the weight of edit
operations. Since there is no need to weigh edit operations differently, we may take α to
be one for all operations. Then, as shown by Li and Zhang [21], the formula is valid as a
metric. Since calculating the distance between two trees is equivalent to calculating their
similarity and subtracting it from one, we define the tree-edit similarity as

Ptree(T1, T2) = 1− 2e(T1, T2)

|T1|+ |T2|+ e(T1, T2)
.

Calculating the tree-edit similarity on the example trees in Figure 1 is as follows:

Ptree(T1, T2) = 1− 2× 6
11 + 10 + 6

=
15
27

= 0.556.

This measure is the most fine-grained of the three detailed so far. Since calculating
tree-edit distance on unordered trees is known to be NP-hard [22], we must again order

Games 2023, 14, 36 6 of 13

the nodes in a preprocessing step with complexity O(bd), as above. Once we have ordered
trees, the time complexity reduces to O(b2dd2) when d < b, and O(b2d+2) when d ≥ b [12].
As such, the improvements made by the tree-edit similarity over the two previous measures
must be weighed against the added complexity.

2.4. Comparing Terminal States

It may sometimes be necessary to find the similarity of two terminal states. In terms
of the game tree for a zero-sum game, two terminal nodes should have a value of one if
they give the same reward for the agent (win–win, draw–draw, lose–lose), and zero if the
reward is different. Since two terminal nodes have no children, their fractional similarity
measure is undefined, so we must handle this case separately.

The normalised difference between the rewards of the two terminal nodes can be found
by subtracting the reward R1 of one node from the reward R2 of the other, then dividing the
result by the size of the range of possible reward values S0, S1. This gives a value between
0 and 1, where 1 represents rewards at opposite ends of the range, and 0 represents equal
rewards. Subtracting from 1 then gives a similarity measure, formalised as

P(T1, T2) = 1− |R2 − R1|
|S1 − S0|

.

This can be used in endgame cases to prevent zero errors when calculating other
similarity measures.

2.5. Relationship between Measures

At depth 1, the similarity of sequences and the similarity of continuations are equiva-
lent, as each child move only appears once per tree. At depth 2, the similarity of sequences
has greater variation, as can be seen from the following chess-inspired instance.

Example 1 (Chess trees). Let T1, T2 be nodes of a chess game tree where branching factor b is
constant, and T1, T2 differ only in the placement of two pieces. Then at depth two

Pcont(T1, T2) ∼
b− 2

b
, Pseq(T1, T2) ∼

b2 − 2
b2 .

Now consider positions T3, T4, which also differ only in the placement of two pieces, except
that in T3 the opponent has chosen a forcing move leading to checkmate at depth 2, while in T4
the opponent has chosen otherwise. Then T4 extends past depth two, but T3 is truncated and only
contains depth 1 moves, all of which are shared with T4. Then at depth two

Pcont(T3, T4) ∼
b− 2

b
, Pseq(T3, T4) ∼

b− 1
b2 .

So we can see that
Pcont(T1, T2) < Pseq(T1, T2),

Pcont(T3, T4) > Pseq(T3, T4)

and thus, the similarity of sequences has greater variation than the similarity of continuations. The
tree-edit similarity is yet more variable than the similarity of sequences, as can be seen from further
calculations on the same examples.

Ptree(T1, T2) ∼
2b2 − 1
2b2 + 1

> Pseq(T1, T2)

Ptree(T3, T4) ∼
1

2b + 1
< Pseq(T3, T4)

Games 2023, 14, 36 7 of 13

Modulo is the tradeoff between simplicity and complexity. The above similarity
measures can be used to analyse any game trees with consistent move labelling. This would
be especially useful for games with less dynamic trees; that is, those without capturing or
blocking moves that change the game tree structurally between plies. For games such as Go,
with the potential to use one piece to exert power over a whole area, these measures provide
useful tools for analysis, which could be further explored by accounting for symmetries
and abstractions of the board.

3. Detecting Structural Similarities

We may find ourselves comparing positions that do not share many continuations,
e.g., those that are far away from one another in a game tree. What we can then do is to
extend the previous approach to recursively check for subtree similarity.

Structural Similarity Measure

Our final similarity measure, which we call the structural similarity measure, compares
the graphical structure of two game trees without comparing their atomic moves directly.
The measure is based on calculating the similarity of each starting position T1 to each of its
child nodes T1i using any of the three previously defined measures, before comparing this
list of similarities to the list of similarities of another starting position T2 to its children T2i.
The measure uses an assignment algorithm (see Algorithm 1) to pair each child node of T1
to a child node of T2 to minimise the sum of the paired nodes’ similarities to their respective
parents. If one subtree has more children than the other, each unpaired child adds one to
this sum. The sum is then divided by the larger number of children and subtracted from
one to provide the structural similarity of the two subtrees, where a value of 1 is identical
and zero is completely distinct. Let c1, c2 be the number of child nodes of T1, T2 respec-
tively. Then, for a selected similarity measure P, the structural similarity measure can be
expressed as

S(T1, T2) = 1−
|c1 − c2|+ min(i,j)pairs(∑ |P(T1i)− P(T2j)|)

max(c1, c2)
.

Algorithm 1 Structural Similarity Detection Protocol

1: function STRUCSIM(T1, T2)
2: max ←max number of children of T1, T2
3: min←min number of children of T1, T2
4: for child T1i of T1 do
5: sim1[i]← MEASURE(T1i, T1)
6: for child T2j of T2 do
7: sim2[j]← MEASURE(T2j, T2)

8: pad smaller of sim1, sim2 with 1s
9: for i, j from 1 to max do

10: distances[i, j]← |sim1[i]− sim2[j]|
11: matches← MATCH(distances)
12: for k from 0 to max do
13: total ← total + matches[k]
14: return (distances

max)

The following calculates the structural similarity measure based on the similarity of
continuations at depth 1 on the trees in Figure 1. The similarity of each branch to its root is

P(T1, T1.1) =
1
6

, P(T1, T1.2) =
1
4

, P(T1, T1.3) =
2
3

Games 2023, 14, 36 8 of 13

P(T2, T2.1) =
1
5

, P(T2, T2.2) =
1
5

, P(T2, T2.3) = 0.

There are two minimum distance matchings:

{(T1.1, T2.3), (T1.2, T2.1), (T1.3, T2.2)},

{(T1.1, T2.3), (T1.2, T2.2), (T1.3, T2.1)}

and their total distance is 0.683. So

S(T1, T2) = 1− 0.683
3

= 0.772.

While the structural similarity measure may calculate more accurate similarities be-
tween positions, this comes at a cost, as each calculation requires similarity computations of
every child node to its parent. When the similarity of sequences or continuations at depth 1
is used as the base measure, on average it takes time O(b2) to calculate the similarity of all
children to their parent. Assigning children in pairs using the Hungarian algorithm takes
O(b3) operations, so the structural similarity algorithm runs in time O(b3). To improve the
complexity, the measure could be approximated by randomly sampling child nodes and
calculating their structural similarity, which warrants further investigation.

Strategic Similarity of Tic Tac Toe Positions. To investigate convergence of the struc-
tural similarity measure to an intuitive similarity of board positions based on their strategic
advantage, we manually calculated the structural similarity measure on a small section of
the Tic Tac Toe game tree, using the similarity of continuations measure as a basis. Figure 2
shows the game tree for a small segment of a Tic Tac Toe game, and Table 1 contains the
results of the similarity analysis, where the branches of the game tree are labelled according
to their original board position O and the square in which the next move is made. The
measure correctly identifies the rotational symmetry between branches OB1 and OB3, and
gives a value of zero for all comparisons of OC2 with distinct subtrees, as OC2 is terminal
and so shares no structural similarity with any of the other depth 1 nodes. This is very
promising, as it shows that the measure behaves well on a solved game, so we can be more
confident in trusting it in a heuristic setting.

Figure 2. Section of the Tic Tac Toe game tree with moves labelled.

Games 2023, 14, 36 9 of 13

Table 1. Structural similarity of Tic Tac Toe branches in Figure 2.

OB1 OA2 OC2 OB3

OB1 1 5/6 0 1
OA2 5/6 1 0 5/6
OC2 0 0 1 0
OB3 1 5/6 0 1

Move Matching. As the structural similarity measure pairs moves that are comparably
similar to their parent states, this method can be used to pair moves from different board
positions that may have similar strategic value. For example, if one position is known to
have a killer move in two plies, leading to a win for the opponent, and this position has
a high similarity to a new position, the depth 2 matches can be inspected and the move
that is most frequently matched to the killer move in the known position can be identified,
and this move is likely to be a killer move from the new position. We will evaluate the
effectiveness of this approach in the forthcoming section.

Generalisability. The structural similarity measure is generalisable to the analysis of
any two local trees with self-consistent move labellings, as the measure can be calculated
independently of such labels. This means, e.g., that the structure of a local Go tree can
be compared to that of a local chess tree or, alternatively, we can show how a game tree
changes through the game.

Calculating how dynamic a game is, in terms of the variability of the connection
density of the graph, can be very useful in indicating which gameplay heuristics to use. For
example, to use the All-Moves-As-First (AMAF) heuristic, which initially updates sibling
nodes with the same estimated value for each move played, an agent first assumes that a
move from one node is likely to affect the game in a similar way to the same move played
from a sibling node. This may be likely to work on less dynamic games, but could be less
reliable for highly dynamic games, where the effect of a move on the state of the game is
less consistent. Conversely, pruning may be most helpful for highly dynamic games, as
these games offer a stark contrast between reward values for different branches, which is
not necessarily the case for less dynamic games.

These hypotheses are supported by studies of successful AMAF use in less dynamic
games such as Go [23], Phantom Go [24], Havannah [25], and Morpion Solitaire [26],
successful pruning in the dynamic game of Amazons [27] and less successful pruning in
Havannah [25].

4. Performance

We tested how effective the first three similarity measures were at detecting nearby
trap states in chess, using the similarity of continuations at depth d = 1, similarity of
sequences at d = 2 and tree-edit similarity at d = 2. We chose a sample of four distinct trap
states which each lead to checkmate within 2 to 4 plies, as shown in Figure 3. We used a
sample of all 1000–1500 board positions that were two plies away from each trap state, and
recorded whether the trap was maintained or not for each new position. The measures
were calculated on each of these board positions, as was a cross-correlation measure that
was used as a control, calculated by finding the number of squares where piece placement
differed and dividing this number by 64. The similarity of sequences was adapted for chess
by including captures in the simplified sequences. This adaptation can be generalised to
any game with irreversible moves by recording the irreversible moves from each sequence
as well as its standard moves.

Clearly, an effective measure should evaluate trap states as highly similar to the
original position with high frequency, so we fixed a threshold value ρ and calculated the
proportion of trap and non-trap states with similarity higher than ρ for each measure. For
each trap state and each of our similarity measures, when ρ was set to the average value of
the similarities, around 70% of all children that were also trap states had above average
similarity to the original position, and consistently over 50% of non-trap children had

Games 2023, 14, 36 10 of 13

below average similarity. This was not the case for the cross-correlation, where up to 87%
of trap states had below average similarity, and 72% of non-trap states had above average
similarity. These results can be seen in Table 2.

8rmblkZ0s
7opopZpop
60Z0Z0Z0Z
5Z0aPo0A0
40ZPZnZ0Z
3Z0Z0Z0Z0
2PO0ZPOPO
1SNZQJBMR

a b c d e f g h

8rZ0lka0s
7opZ0opop
6nmpZPZ0Z
5Z0Z0M0Zb
40ZPZ0Z0Z
3Z0Z0Z0ZP
2PO0M0OPZ
1S0AQJBZR

a b c d e f g h

8rZbZkZ0s
7opoplpop
60ZnZ0Z0Z
5Z0Z0m0Z0
40aPZ0A0Z
3O0Z0ZNZ0
20O0MPOPO
1S0ZQJBZR

a b c d e f g h

8rZ0lkans
7opo0Zpop
60Zno0Z0Z
5Z0Z0M0Z0
40ZBZPZbZ
3Z0M0Z0Z0
2POPO0OPO
1S0AQJ0ZR

a b c d e f g h

Figure 3. Benchmark positions: (Top Left) Trap from Budapest Gambit: 1.d4 Nf6 2. c4 e5 3.d5 Bc5
4.Bg5 Ne4, to be followed by 5.Bxd8 Bxf2#. (Top Right) Trap after mistake in Caro–Kann Defence,
Breyer variation: 1. e4 c6 2. d3 d5 3. Nd2 dxe4 4. dxe4 Nf6 5. Ngf3 Bg4 6. e5 Nd5 7. h3 Bh5 8. c4
Nb6 9. e6 Na6 10. Ne5, to be followed by ... Bxd1 11. exf7#. (Bottom Left) Kieninger Trap: 1.d4 Nf6
2.c4 e5 3.dxe5 Ng4 4.Bf4 Nc6 5.Nf3 Bb4+ 6. Nbd2 Qe7 7.a3 Ngxe5, to be followed by 8.axb4 Nd3#.
(Bottom Right) Légal Trap: 1.e4 e5 2. Nf3 Nc6 3. Bc4 d6 4. Nc3 Bg4 5. Nxe5, to be followed by ...
Bxd1 6. Bxf7+ Ke7 7. Nd5#.

Table 2. Trap states with proportions of false negatives (trap states with lower-than-average similarity)
and false positives (non-trap states with higher than average similarity).

Position Similarity Measure False Negatives False Positives

Budapest Continuations 0.252 0.493
Caro–Kan Continuations 0.324 0.437
Kieninger Continuations 0.185 0.393
Légal Continuations 0.332 0.461
Budapest Sequences 0.234 0.480
Caro–Kann Sequences 0.335 0.397
Kieninger Sequences 0.276 0.424
Légal Sequences 0.330 0.457
Budapest Correlation 0.195 0.723
Caro–Kann Correlation 0.029 0.630
Kieninger Correlation 0.865 0.380
Légal Correlation 0.207 0.713

In general, there was no significant difference between the proportion of false positives
(non-traps with above average similarity) and false negatives (traps with below average
similarity) given by the similarity of sequences, similarity of continuations and tree-edit
similarity. However, the added time complexity of the similarity of sequences and tree-
edit similarity at depth 2 was significant. Thus, perhaps surprisingly, the similarity of
continuations is effectively better as a heuristic similarity measure for evaluating similarities
of closely related board positions than the similarity of sequences.

Finally, for complexity considerations, we tested the structural similarity measure
on five smaller samples of 40 randomly selected child positions from the first two trap
positions. Using this measure, an average of 85% of child trap states had above average

Games 2023, 14, 36 11 of 13

structural similarity to the original position. The high complexity of this measure makes
it time intensive to compute, but results clearly show it is rather effective at picking out
potential trap states from a select sample of positions.

Move Matching. The move-matching algorithm was also tested on various chess
positions to detect moves with similar strategic impact. Frequent matchings were assumed
to be a more reliable indicator of moves with a similar effect on gameplay, so only the top
five most frequently matched pairings were assessed.

We tested the matching algorithm on three different samples, each with six pairs of
board positions, all shown in Table 3. Firstly, we used the algorithm on all traps from the
trap-detection sample. For all but one of the pairings (Légal and Budapest traps), all of
the five most frequent matches for each pair comprised two decisive or two non-decisive
moves. In all but one pairing (Caro–Kann and Kieninger traps), the two most frequently
paired moves were both checkmate moves. The second sample we used was based on the
Légal and Budapest Gambit traps. We compared each trap with a sample of three child
positions. This sample comprised one position containing the original trap but a difference
in the placement of two pawns; one position where the bishop that had threatened the
queen had been captured; and one position that was selected as the best continuation by
the Stockfish chess engine. In all but one pairing, all of the top five matches comprised two
decisive or two non-decisive moves. All of the most frequently paired moves were both
decisive. The third sample was a selection of positions from the 2016 World Championship
match between Magnus Carlsen and Sergey Karjakin, which appeared after 10, 20, 30, and
40 plies. An average of four of the top five matches for each pairing comprised two decisive
or two non-decisive moves. Three of the most frequently paired moves were both check
moves, and one of them comprised two equivalently unimpactful moves of the king. This
sample provided less reliable pairings than the previous two samples, possibly because its
positions had a more varied strategic impact than those of the other samples.

These results show that the move-matching algorithm is fairly well suited to finding
similarly decisive moves from different board positions, and thus is useful for detecting
possible trap states and sacrificial moves from the game-tree structure without evaluating
board positions.

Table 3. Pairs of board positions, the number of equally decisive matches in their 5 most frequent
move matches, and their top match.

Board Position Pairings Equally Decisive Top 5 Pairs Top Match

Légal, Budapest 4 Bf7#, Bf2#
Légal, Kieninger 5 Bf7#, Nf3#
Légal, Caro–Kann 5 Bf7#, ef7#
Budapest, Kieninger 5 Bf2#, Nd3#
Budapes, Caro–Kann 5 Bf2#, ef7#
Caro–Kan, Kieninger 5 ef7#, Nf3+
Budapest, Budapest + 5. b3 a6 5 Bf2#, Bf2#
Budapest, Budapest + 5. f3 Nxe5 3 Bf2#, Nf3+
Budapest, Budapest + 5. Bd2 Qh4 5 Bf2#, Bd2+
Légal, Légal + ... h6 6. a3 5 Bf7#, Bf7#
Légal, Légal + ... h6 6. Nxg4 5 Bf7#, Bf7+
Légal, Légal + ... Nxe5 6. Be2 5 Bf7#, Bb5+
Carlsen–Karjakin Move 10, Move 20 5 Be6, Qe8
Carlsen–Karjakin Move 10, Move 30 5 Qc3+, Rg5+
Carlsen–Karjakin Move 10, Move 40 5 Qc3+, Rg5+
Carlsen–Karjakin Move 20, Move 30 4 Nd4, Rg5+
Carlsen–Karjakin Move 20, Move 40 3 Kf8, Kh8
Carlsen–Karjakin Move 30, Move 40 3 Rg5+, Qg6+

Games 2023, 14, 36 12 of 13

5. Applications
5.1. Amaf/Rave Adaptation

Past papers [28] have shown that MCTS displays a marked improvement when using
adaptations such as All-Moves-As-First (AMAF), Rapid Action Value Estimation (RAVE),
and Permutation-AMAF. Such adaptations update multiple areas of the game tree at once,
where one move is available from many positions (as in AMAF) or where one board
position is a permutation of another, on the assumption that the equivalent move from
each of these positions will have the same strategic impact on gameplay. We envisage
the effective use of a similarity measure when choosing which equivalent positions to
update, as this may lead to more effective trap detection than that of MCTS or its AMAF
adaptations. We suggest adding a similarity measure to two MCTS adaptations: the killer
heuristic, where decisive moves are evaluated first, and killer RAVE, which only applies
RAVE to decisive moves [29]. MCTS may more quickly detect a trap ahead when combined
with these similarity-based adaptations.

5.2. Wider Game Strategy and Graph Applications

Many modern AI programs use deep learning to recognise tactical patterns from
shapes of features in the field of play. It seems natural to use this learning strategy to group
atomic moves by their tactical value, to then create an abstracted game-tree with a lower
branching factor than the original tree. The structural similarity measure can then be used
to detect tactical moves representing equivalent strategies, giving the agent options once it
has chosen its desired strategy.

In cases where an agent is trained to predict the moves a human player would make,
as was the case for AlphaGo [5], the modified AMAF/RAVE adaptation above can be used
to prime the neural network and update predictions for multiple positions at once. This
may lead to opportunities for faster reinforcement learning or more efficient learning from
smaller data sets.

6. Conclusions

We presented four similarity measures for game positions in two-player, determin-
istic games of perfect information, based on their game trees with no domain-specific
knowledge. We tested the measures on chess and suggested their use in heuristics for
MCTS-based agents, noting their application to a range of graphical problems. We showed
that, using our first two similarity measures, an average of around 70% of chess positions
occurring two plies after a trap state that were also traps had above-average similarity to the
original position. This figure rose to 85% using the structural similarity measure. We also
showed that our move-matching algorithm consistently paired moves with similar strategic
value from different starting positions. We believe this can aid MCTS agents in finding
equally decisive moves within different areas of the game tree, as well as in detecting new
trap states.

Author Contributions: Conceptualization, S.E. and P.T.; methodology, S.E. and P.T.; software, S.E.;
formal analysis, S.E.; writing—original draft preparation, S.E.; writing—review and editing, P.T.;
visualization, S.E. and P.T.; supervision, P.T.; project administration, P.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karpov, A.; Phelizon, J.F.; Kouatly, B. Chess and the Art of Negotiation: Ancient Rules for Modern Combat; Praeger: Westport, CT,

USA, 2006.
2. Rubinstein, A. Modeling Bounded Rationality; MIT Press Books; The MIT Press: Cambridge, MA, USA, 1997.

Games 2023, 14, 36 13 of 13

3. Maschler, M.; Solan, E.; Zamir, S. Game Theory; Cambridge University Press: Cambridge, UK, 2016.
4. Schwalbe, U.; Walker, P. Zermelo and the Early History of Game Theory. Games Econ. Behav. 2001, 34, 123–137.
5. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484. [PubMed]
6. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

7. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 2012, 4, 1–43. [CrossRef]

8. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson (Intl): London, UK, 2016.
9. Sadler, M.; Regan, N. Game Changer: AlphaZero’s Groundbreaking Chess Strategies and the Promise of AI; New in Chess: Alkmaar, The

Netherlands, 2019.
10. Ramanujan, R.; Sabharwal, A.; Selman, B. On Adversarial Search Spaces and Sampling-Based Planning. In Proceedings of the

Twentieth International Conference on Automated Planning and Scheduling, Toronto, ON, Canada, 12–16 May 2010; Volume 10,
pp. 242–245.

11. Babai, L. Graph Isomorphism in Quasipolynomial Time. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory
of Computing, Cambridge, MA, USA, 19–21 June 2016.

12. Zhang, K.; Shasha, D. Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 1989,
18, 1245–1262. [CrossRef]

13. Jiang, T.; Wang, L.; Zhang, K. Alignment of trees—An alternative to tree edit. Theor. Comput. Sci. 1995, 143, 137–148. [CrossRef]
14. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML

Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2.
15. Sutton, R.S.; Barto, A.G. Reinforcement Learning—An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
16. Swamidass, S.J.; Chen, J.; Bruand, J.; Phung, P.; Ralaivola, L.; Baldi, P. Kernels for small molecules and the prediction of

mutagenicity, toxicity and anti-cancer activity. Bioinformatics 2005, 21, i359–i368. [CrossRef] [PubMed]
17. Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?

J. Cheminform. 2015, 7, 20. [CrossRef] [PubMed]
18. Ukkonen, E. On-line construction of suffix trees. Algorithmica 1995, 14, 249–260. [CrossRef]
19. Weiner, P. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium on Switching and Automata

Theory, Iowa City, IA, USA, 15–17 October 1973; pp. 1–11.
20. Vishwanathan, S.V.N.; Schraudolph, N.N.; Kondor, R.; Borgwardt, K.M. Graph kernels. J. Mach. Learn. Res. 2010, 11, 1201–1242.
21. Li, Y.; Zhang, C. A metric normalization of tree edit distance. Front. Comput. Sci. China 2011, 5, 119–125. [CrossRef]
22. Touzet, H. Tree edit distance with gaps. Inf. Process. Lett. 2003, 85, 123–129. [CrossRef]
23. Gelly, S.; Silver, D. Monte-Carlo tree search and rapid action value estimation in computer Go. Artif. Intell. 2011, 175, 1856–1875.

[CrossRef]
24. Cazenave, T. A phantom-go program. In Advances in Computer Games; Springer: Berlin/Heidelberg, Germany, 2005; pp. 120–125.
25. Teytaud, F.; Teytaud, O. Creating an upper-confidence-tree program for Havannah. In Advances in Computer Games; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 65–74.
26. Akiyama, H.; Komiya, K.; Kotani, Y. Nested Monte-Carlo search with AMAF heuristic. In Proceedings of the 2010 International

Conference on Technologies and Applications of Artificial Intelligence, Hsinchu City, Taiwan, 18–20 November 2010.
27. Lorentz, R.J. Amazons Discover Monte-Carlo; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–24.
28. Helmbold, D.P.; Parker-Wood, A. All-Moves-As-First Heuristics in Monte-Carlo Go. In Proceedings of the IC-AI, Las Vegas, NV,

USA, 13–16 July 2009; pp. 605–610.
29. Lorentz, R.J. Improving monte–carlo tree search in havannah. In International Conference on Computers and Games; Springer:

Berlin/Heidelberg, Germany, 2010; pp. 105–115.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1016/0304-3975(95)80029-9
http://dx.doi.org/10.1093/bioinformatics/bti1055
http://www.ncbi.nlm.nih.gov/pubmed/15961479
http://dx.doi.org/10.1186/s13321-015-0069-3
http://www.ncbi.nlm.nih.gov/pubmed/26052348
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/s11704-011-9336-2
http://dx.doi.org/10.1016/S0020-0190(02)00369-1
http://dx.doi.org/10.1016/j.artint.2011.03.007

	Introduction
	Positional Similarities
	Similarity of Continuations
	Similarity of Sequences
	Tree-Edit Similarity
	Comparing Terminal States
	Relationship between Measures

	Detecting Structural Similarities
	Performance
	Applications
	Amaf/Rave Adaptation
	Wider Game Strategy and Graph Applications

	Conclusions
	References

