
Citation: Niu , L.; Ramasubramanian,

B.; Clark, A.; Poovendran, R. Robust

Satisfaction of Metric Interval

Temporal Logic Objectives in

Adversarial Environments. Games

2023, 14, 30. https://doi.org/

10.3390/g14020030

Academic Editors: Yevgeniy

Vorobeychik and Ulrich Berger

Received: 31 January 2023

Revised: 22 March 2023

Accepted: 22 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Robust Satisfaction of Metric Interval Temporal Logic
Objectives in Adversarial Environments
Luyao Niu 1,*, Bhaskar Ramasubramanian 2, Andrew Clark 3 and Radha Poovendran 1

1 Network Security Lab, Department of Electrical and Computer Engineering, University of Washington,
Seattle, WA 98195, USA

2 Electrical and Computer Engineering, Western Washington University, Bellingham, WA 98225, USA
3 Department of Electrical and Systems Engineering, Washington University in St. Louis,

St. Louis, MO 63130, USA
* Correspondence: luyaoniu@uw.edu

Abstract: This paper studies the synthesis of controllers for cyber-physical systems (CPSs) that are
required to carry out complex time-sensitive tasks in the presence of an adversary. The time-sensitive
task is specified as a formula in the metric interval temporal logic (MITL). CPSs that operate in
adversarial environments have typically been abstracted as stochastic games (SGs); however, because
traditional SG models do not incorporate a notion of time, they cannot be used in a setting where the
objective is time-sensitive. To address this, we introduce durational stochastic games (DSGs). DSGs
generalize SGs to incorporate a notion of time and model the adversary’s abilities to tamper with the
control input (actuator attack) and manipulate the timing information that is perceived by the CPS
(timing attack). We define notions of spatial, temporal, and spatio-temporal robustness to quantify
the amounts by which system trajectories under the synthesized policy can be perturbed in space
and time without affecting satisfaction of the MITL objective. In the case of an actuator attack, we
design computational procedures to synthesize controllers that will satisfy the MITL task along with
a guarantee of its robustness. In the presence of a timing attack, we relax the robustness constraint
to develop a value iteration-based procedure to compute the CPS policy as a finite-state controller
to maximize the probability of satisfying the MITL task. A numerical evaluation of our approach is
presented on a signalized traffic network to illustrate our results.

Keywords: MITL specification; control synthesis; adversary; robustness; Stackelberg game

1. Introduction

Cyber-physical systems (CPSs) are playing increasingly important roles in multiple
applications, including autonomous vehicles, robotics, and advanced manufacturing [1]. In
many of these applications, the CPS is expected to satisfy complex, time-critical objectives
in dynamic environments with autonomy. An example is a scenario where a drone has to
periodically surveil a target region in its environment. One way to specify requirements
on the CPS behavior is through a temporal logic framework [2] such as metric interval
temporal logic (MITL) or signal temporal logic (STL). The verification of satisfaction of
the temporal logic objective can then be achieved by applying principles from model
checking [2,3] to a finite transition system that abstracts the CPS [4–7]. Solution techniques
to verify such an objective usually return a ‘yes/no’ output, which indicates if the behavior
of the CPS will satisfy the desired task and if it is possible to synthesize a control policy to
satisfy this objective.

However, such binary-valued verification results may not be adequate when an
adversary can inject inputs that affect the behavior of the CPS. Small perturbations can
result in significantly large changes in the output of a CPS and can lead to violations of the
desired task. The authors of [8,9] defined a notion of robustness degree to quantify the extent

Games 2023, 14, 30. https://doi.org/10.3390/g14020030 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g14020030
https://doi.org/10.3390/g14020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0002-5868-6186
https://doi.org/10.3390/g14020030
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g14020030?type=check_update&version=1

Games 2023, 14, 30 2 of 23

to which a CPS could tolerate deviations from its nominal behavior without resulting in
violation of the desired specification.

For time-critical CPSs, an adversary could launch attacks on clocks of the system
(by timing attack) and the inputs to the system (by actuator attack). In the latter case,
stochastic games (SGs) have been used to model the interaction between the CPS and
the adversary [10]. However, SGs do not include information about the time taken for a
transition between two states. To bridge this gap, we introduce durational stochastic games
(DSGs). In addition to transition probabilities between states under given actions of the
CPS and adversary, a DSG encodes the time taken for the transition as a probability mass
function. Although DSGs present a modeling formalism for time-critical objectives, they
introduce an additional attack surface that can be exploited by an adversary.

In this paper, we synthesize controllers to satisfy an MITL specification that can be
represented by a deterministic timed Büchi automaton with a desired robustness guarantee.
The robustness guarantee quantifies how sensitive the synthesized policy (that satisfies
the MITL task) will be to disturbances and adversarial inputs. The adversary is assumed
to have the following abilities: it can tamper with the input to the defender through an
actuator attack [11], and it can affect the time index observed by the CPS by effecting a
timing attack [12]. An actuator attack could steer the DSG away from a target set of states,
while a timing attack will prevent it from satisfying the objective within the specified
time interval.

To address perturbations originating from different attack surfaces (timing information
and system inputs), we develop three notions of robustness, namely spatial, temporal, and
spatio-temporal robustness. Spatial robustness is defined over discrete timed words and
quantifies the maximum perturbation that can be tolerated by timed words so that the
desired tasks can still be satisfied in the absence of timing attacks. The temporal robustness
characterizes the maximum timing perturbation that can be tolerated by a CPS such that
the given MITL objective will not be violated. We introduce a notion of spatio-temporal
robustness that unifies the concepts of spatial and temporal robustness. Using these three
notions of robustness, we develop algorithms to estimate them and compute controllers for
CPSs to guarantee that the given MITL objective can be satisfied with the desired robustness
guarantee. This paper makes the following contributions:

• We introduce durational stochastic games (DSGs) to model the interaction between
the CPS that has to satisfy a time-critical objective and an adversary who can initiate
actuator and timing attacks.

• We define notions of spatial, temporal, and spatio-temporal robustness, which quan-
tify the robustness of system trajectories to spatial, temporal, and spatio-temporal
perturbations, respectively, and present computational procedures to estimate them.
We design an algorithm to compute a policy for the CPS (defender) with a robustness
guarantee when the adversary is limited to effecting only actuator attacks.

• We demonstrate that the defender cannot correctly estimate the spatio-temporal
robustness when the adversary can initiate both actuator and timing attacks. We
relax the robustness constraints in such cases and present a value iteration-based
procedure to compute the defender’s policy, represented as a finite-state controller, to
maximize the probability of satisfying the MITL objective.

• We evaluate our approach on a signalized traffic network. We compare our approach
with two baselines and show that it outperforms both baselines.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 provides background on MITL and deterministic timed Büchi automata. We
define the DSG and notions of robustness in Section 4 and formally state the problem of
interest. Sections 5 and 6 present our results when the adversary is limited to initiating
only actuator attacks and when it can effect both actuator and timing attacks, respectively.
The experimental results are presented in Section 7. Section 8 concludes the paper.

Games 2023, 14, 30 3 of 23

2. Related Work

For a single agent, semi-Markov decision processes (SMDPs) [13] can be used to model
Markovian dynamics, where the time taken for transitions between states is a random
variable. SMDPs have been used in production scheduling [14] and the optimization of
queues [15].

Stochastic games (SGs) generalize MDPs when there is more than one agent taking
an action [16]. SGs have been widely adopted to model strategic interactions between
CPSs and adversaries. For example, a zero-sum SG was formulated in [17] to allocate
resources to protect power systems against malicious attacks. Two SGs were developed
in [18] to detect intrusions to achieve secret and reliable communications. The satisfaction
of complex objectives modeled by linear temporal logic (LTL) formulae for zero-sum two-
player SGs was presented in [10], where the authors synthesized controllers to maximize
the probability of satisfying the LTL formula. However, this approach will not apply
when the system has to satisfy a time-critical specification and the adversary can launch a
timing attack.

Timed automata (TA) [3] finitely attach many clock constraints to each state. A transi-
tion between any two states will be influenced by the satisfaction of the clock constraints
in the respective states. There has been significant work performed in the formulation of
timed temporal logic frameworks, a detailed survey of which is presented in [19]. Metric
interval temporal logic (MITL) [20] is one such fragment that allows for the specification of
formulae that explicitly depend on time. Moreover, an MITL formula can be represented as
a TA [20,21] that will have a feasible path in it if and only if the MITL formula is true.

Control synthesis under metric temporal logic constraints was studied for motion
planning applications in [6,7,22,23]. The authors of [22] considered a vehicle routing
problem to meet MTL specifications by solving a mixed integer linear program. Timed
automaton-based control synthesis under a subclass of MITL specifications was studied
in [6,7]. Cooperative task planning of a multi-agent system under MITL specifications was
studied in [24]. In comparison, we consider the actions of an adversarial player, whose
objective is opposite to that of the defender. This leads to a modeling of the interaction
between the adversary and defender as an SG. Moreover, the previous works have limited
their focus to a certain fragment of the MITL, whereas this paper offers a generalized
treatment to arbitrary MITL formulae.

Finite-state controllers (FSCs) were used to simplify the policy iteration procedure for
POMDPs in [25]. The satisfaction of an LTL formula of a POMDP was presented in [26].
This was extended to the case with an adversary who also only had partial observation
of the environment and whose goal was to prevent the defender from satisfying the LTL
formula in [27,28]. These treatments, however, did not account for the presence of timing
constraints on the satisfaction of a temporal logic formula.

Control synthesis for control systems under disturbances with robustness guarantees
has been extensively studied [29–32]. Such robustness guarantees can be categorized
as a notion of spatial robustness. Robust satisfaction of temporal logic tasks have been
studied for signal monitoring and property verification. A notion of robustness degree for
continuous signals was defined in [8] by computing a distance between the given timed
behavior and the set of behaviors that satisfy a property expressed in temporal logic. Our
notion of spatial robustness is defined over discrete timed words using the Levenshtein
distance, which distinguishes our approach from [8]. The robustness degree between two
LTL formulae was introduced in [33]. The authors of [34] adopted a different approach
and used the weighted edit distance to quantify a measure of robustness. The notion of
temporal robustness was also investigated in [9]. There are three differences between our
definition of temporal robustness and that found in [9]. First, the temporal robustness in [9]
is defined for a specific trace. In our framework, as the DSG is not deterministic, there could
be multiple traces that satisfy the MITL objective under the defender and adversary policies.
Therefore, we define temporal robustness with respect to the policies of the defender and
adversary and the MITL specification. Second, the temporal robustness of a real-valued

Games 2023, 14, 30 4 of 23

signal is computed as the maximum amount of time units by which we can shift on the
rising/falling edge of a ‘characteristic function’ in [9]. In comparison, we work with discrete
timed words. Finally, our work considers the presence of an adversary, while [9] assumes a
single agent. Robust control under signal temporal logic (STL) formulae has been studied
based on notions of space robustness [35,36] and temporal robustness [37,38]. These works
did not consider the presence of an adversary.

A preliminary version of this paper [39] synthesized policies to satisfy MITL objectives
under actuator and timing attacks without robustness guarantees. In this paper, we define
three robustness degrees and develop algorithms to compute these quantities. We show
that any defender policy that provides a positive robustness degree is an almost-sure
satisfaction policy, which is stronger than the quantitative satisfaction policies synthesized
in [39].

3. MITL and Timed Automata

We introduce the syntax and semantics of metric interval temporal logic and its
equivalent representation as a timed automaton. We use R,R≥0,N, and Q≥0 to denote
the sets of real numbers, non-negative reals, positive integers, and non-negative rationals,
respectively. Vectors are represented by bold symbols. The comparison between vectors
v1 and v2 is element-wise, and v(i) denotes the i-th element of v. Given a set of atomic
propositions Π, a metric interval temporal logic (MITL) formula is inductively defined as

ϕ := >|π|¬ϕ|ϕ1 ∧ ϕ2|ϕ1UI ϕ2,

where π ∈ Π is an atomic proposition and I is a non-singular time interval with integer end-
points. MITL admits derived operators such as ‘constrained eventually’ (3I ϕ := >UI ϕ)
and ‘constrained always’ (2I ϕ := ¬(3I¬ϕ)). Throughout this paper, we assume that I is
bounded. We further rewrite the given MITL formula in the negation normal form so that
negations only appear in front of atomic propositions. We augment the atomic proposition
set Π so that any atomic proposition π and its negation ¬π are both included in Π.

We focus on the pointwise MITL semantics [40]. A timed word is an infinite sequence
ρ = (a0, t0)(a1, t1) . . . , where ai ∈ 2Π; ti ∈ R≥0 is the time index with ti+1 > ti ∀i ≥ 0. We
denote a0, a1, · · · as a word over Π and t0, t1, · · · as a time sequence. With ρ(i) = (ai, ti),
we define: UNTIME(ρ) := a0, a1, · · · , and VAL(ρ) := t0, t1, · · · .

We interpret MITL formulae over timed words as follows.

Definition 1 (MITL Semantics). Given a timed word ρ and an MITL formula ϕ, the satisfaction
of ϕ at position j, denoted as (ρ, j) |= ϕ, is inductively defined as follows:

1. (ρ, j) |= > if and only if (iff) (ρ, j) is true;
2. (ρ, j) |= π iff π ∈ aj;
3. (ρ, j) |= ¬ϕ iff (ρ, j) does not satisfy ϕ;
4. (ρ, j) |= ϕ1 ∧ ϕ2 iff (ρ, j) |= ϕ1 and (ρ, j) |= ϕ2;
5. (ρ, j) |= ϕ1UI ϕ2 iff ∃k ≥ j such that (ρ, k) |= ϕ2, tk − tj ∈ I and (ρ, m) |= ϕ1 holds for all

j ≤ m < k.

We denote ρ |= ϕ if (ρ, 0) |= ϕ. The satisfaction of an MITL formula can be equiv-
alently associated with accepting words of a timed Büchi automaton (TBA) [20]. Let
C = {c1, · · · , cM} be a finite set of clocks. Define a set of clock constraints Φ(C) over C
as ξ = >|⊥|c ./ δ|ξ1 ∧ ξ2, where ./∈ {≤,≥,<,>}, c, c′ ∈ C are clocks, and δ ∈ Q is a
non-negative rational number. In this paper, we focus on a subclass of MITL formulae that
can be equivalently represented as deterministic timed Büchi automaton, which are defined
as follows.

Definition 2 (Deterministic Timed Büchi Automaton [3]). A deterministic timed Büchi au-
tomaton (DTBA) is a tuple A = (Q, 2Π, q0, C, Φ(C), E, F), where Q is a finite set of states, 2Π is

Games 2023, 14, 30 5 of 23

an alphabet over atomic propositions in Π, q0 is the initial state, E ⊆ Q×Q× 2Π × 2C ×Φ(C) is
the set of transitions, and F ⊆ Q is the set of accepting states. A transition < q, q′, a, C′, φ >∈ E
if A enables the transition from q to q′ when a subset of atomic propositions a ∈ 2Π and clock
constraints φ ∈ Φ(C) evaluate to true. The clocks in C′ ⊆ C are reset to zero after the transition.

We present the DTBA representing MITL formula ϕ = 3[2,3]π as an example in
Figure 1. In this figure, the states Q and transitions E are represented by circles and arrows,
respectively. Here, the initial state is q0. The set of accepting states is F = {q2}. Consider
the transition from initial state q0 to state q2. The transition < q0, q2, π, c, φ > can take place
if atomic proposition π is evaluated to be true and clock constraint φ(c) defined on clock c
satisfies 2 ≤ c ≤ 3. Furthermore, the clock c is reset to zero after the transition.

Figure 1. The deterministic timed Büchi automaton (DTBA) representing a metric interval temporal
logic formula ϕ = 3[2,3]π. The states and transitions of the DTBA are represented by circles and
arrows, respectively. The initial state of this DTBA is q0 and the accepting state is q2. The formula ϕ

can be satisfied if the DTBA reaches state q2.

Given the set of clocks C, v : C 7→ V is the valuation of C, where V ⊆ Q|C|. Let v(c)
be the valuation of clock c ∈ C. We say v = 0 if v(c) = 0 for all c ∈ C. Given δ ∈ R≥0,
we let v + δ := [v(1) + δ, · · · , v(|C|) + δ]T . A configuration of A is a pair (q, v), where
q ∈ Q is a state of A. Suppose a transition < q, q′, a, C′, ξ > is taken after δ time units.
Then, the DTBA is transited from configuration (q, v) to (q′, v + δ) such that v + δ |= ξ,
v′(c) = v(c) + δ for all c /∈ C′ and v′(c) = 0 for all c ∈ C′. We denote the transition between

these configurations as (q, v) a,δ−→ (q′, v + δ). A run of A is a sequence of such transitions

between configurations β := (q0, v0)
a0,δ0−−→ (q1, v1) · · · . A feasible run β on A is accepting iff

it intersects with F infinitely often.

4. Problem Setup and Formulation

In this section, we propose durational stochastic games that generalize stochastic games
and present the defender and adversary models in terms of the information available to
them. We then define three robustness degrees and state the problem of interest.

4.1. Environment, Defender, and Adversary Models

We introduce durational stochastic games as a generalization of stochastic games [10].
Different from SGs, DSGs model (i) the timing information for transitions between states
and (ii) an attack surface resulting from the timing information.

An SG is defined as follows:

Definition 3 (Stochastic game). A (labeled) stochastic game SG is a tuple SG = (S, UC, UA, Pr,
Π,L), where S is a finite set of states, UC is a finite set of actions of the defender, UA is a finite
set of actions of an adversary, and Pr : S×UC ×UA × S→ [0, 1] is a transition function where
Pr(s, uC, uA, s′) is the probability of a transition from state s to state s′ when the defender takes
action uC and the adversary takes action uA. Π is a set of atomic propositions. L : S → 2Π is a
labeling function mapping each state to a subset of propositions in Π.

Games 2023, 14, 30 6 of 23

The SG in Definition 3 cannot be used to verify satisfaction of an MITL objective as it
does not include a notion of time. We define durational stochastic games to bridge this gap.
DSGs incorporate a notion of time taken for a transition between states and also models
the ability of an adversary to modify this timing information.

Definition 4 (Durational stochastic game). A (labeled) durational stochastic game (DSG) is a
tuple G = (SG , sG,0, UC, UA, In fG,C, In fG,A, PrG , TG , Π, L, Cl). SG is a finite set of states, sG,0 is
the initial state, and UC, UA are finite sets of actions. In fG,C : SG ×R≥0 7→ (SG ×R≥0)

∗ and
In fG,A : SG × R≥0 7→ (SG × R≥0 ×UC)

∗ are information sets of the defender and adversary,
respectively, where (·)∗ is the Kleene operator. PrG : SG × UC × UA × SG 7→ [0, 1] encodes
PrG(s′G |sG , uC, uA), the transition probability from state sG to s′G when the controller and adversary
take actions uC and uA. TG : SG ×UC ×UA × SG × ∆ 7→ [0, 1] is a probability mass function.
TG(δ|sG , uC, uA, s′G) denotes the probability that a transition from sG to s′G under actions uC and
uA takes δ ∈ ∆ time units, where ∆ is a finite set of time units that each transition of DSG can
possibly take to complete. Π is a set of atomic propositions. L : SG 7→ 2Π is a labeling function that
maps each state to atomic propositions in Π that are true in that state, and Cl is a finite set of clocks.

The set of admissible actions that can be taken by the defender (adversary) in a state

s ∈ SG is denoted as UC(s) (UA(s)). A path on G is a sequence of states w := s0
uC,0,uA,0−−−−→

δ0

s1 . . .
uC,i ,uA,i−−−−→

δi
si+1 . . . such that s0 = sG,0, PrG(si+1|si, uC,i, uA,i) > 0 and TG(δ|si, uC,i, uA,i,

si+1) > 0 for some uC,i ∈ UC(si), uA,i ∈ UA(si), and δ ∈ ∆ for all i ≥ 0. Consider the
DSG with SG = {sG,0, s1, s2, s3}, UC = {uC}, and UA = {uA} presented in Figure 2 as an

example. We have that w = s0
uC ,uA−−−→

1
s2

uC ,uA−−−→
1

s3 is a finite path. We denote the set of finite

(infinite) paths by (SG ×R≥0)
∗ ((SG ×R≥0)

ω). Given a path w, L(w) := L(sG,0), L(s1), . . . ,
is the sequence of atomic propositions corresponding to states in w. The sequence of
state-time tuples in w is obtained as (s0, k0), (s1, k1), . . ., where ki + δi = ki+1, i = 0, 1,

For the defender, a deterministic policy µ : (SG ×R≥0)
∗ 7→ UC is a map from the set of

finite paths to its actions. A randomized policy µ : (SG ×R≥0)
∗ 7→ D(UC) maps the set of

finite paths to a probability distribution over its actions. A policy is memoryless if it only
depends on the the most recent state.

Consider a path w in G. At a state s, the information set of the defender is
In f w
G,C(s, kC) := {(sG,0, 0), . . . , (s, kC)}, where kC is the time perceived by the defender

when it reaches s along w. For example, given the finite path w = s0
uC ,uA−−−→

1
s2

uC ,uA−−−→
1

s3 for

the DSG presented in Figure 2, information set In f w
G,C(s2, kC) = {(sG,0, 0), (s1, 1)}. For the

adversary, In fG,A(s, kA) := {(sG,0, 0), . . . , (s, kA)} ∪ {µ}, where kA is the time observed by
the adversary at s, and µ is the defender’s policy. Information sets of the defender and ad-
versary are given by In fG,C(s, kC) :=

⋃
w

In f w
G,C(s, kC) and In fG,A(s, kA) :=

⋃
w

In f w
G,A(s, kA).

Figure 2. This figure presents an example of a DSG consisting of 4 states, denoted as SG =

{sG,0, s1, s2, s3}. The transition probabilities PrG and probability mass function TG for some transitions
are given in the figure. The labeling function L for state s1 is given as L(s1) = {π1, π2}.

Games 2023, 14, 30 7 of 23

We assume that the initial time is 0, and this is known to both agents. The adversary
having knowledge of the policy µ committed to by the defender introduces an asymmetry
between the information sets of the two agents. We note that although the adversary is
aware of the defender’s randomized policy, it does not know the exact action uC. This is also
known as the Stackelberg setting in game theory. We assume a concurrent Stackelberg setting
in that both the defender and adversary take their actions at each state simultaneously.

The solution concept to a Stackelberg game is a Stackelberg equilibrium, which is
defined as follows.

Definition 5 (Stackelberg equilibrium [16]). A tuple (µ, (τ, γ)) is a Stackelberg equilibrium if
µ = arg maxµ′ QC(µ

′, BR(µ′)), where QC(µ, (τ, γ)) and QA(µ, (τ, γ)) are the expected utilities
of the defender and adversary under policies µ and (τ, γ), respectively, and BR(µ′) = {(τ, γ) :
(τ, γ) = arg max

(τ′ ,γ′)
QA(µ

′, (τ′, γ′))}.

If BR(µ′) contains multiple adversary policies, the defender will arbitrarily pick one.
During an actuator attack, the adversary can manipulate state transitions in G as its actions
uA will influence the transition probabilities PrG . The adversary could also exploit the
attack surface that will be introduced as a consequence of including timing information.
We term this a timing attack. In this paper, we consider the worst-case scenario and assume
that the adversary knows the correct time index at each time k. However, it can manipulate
the timing information perceived by the defender through TG . Thus, the time index kC
perceived by the defender need not be the same as that known to the adversary, kA.

The adversary launches actuator and timing attacks through attack policies. An
actuator attack policy τ : (SG × R≥0)

∗ 7→ UA specifies the action taken by the adversary
given the set of finite paths. A timing attack policy γ : V ×V 7→ [0, 1] takes as its input the
correct clock valuation and yields a probability distribution over clock valuations. This
models the ability of the adversary to manipulate clock valuations. For an intelligent
adversary, it should launch the timing attack such that the resulting sequence of clock
valuations is monotone when the clocks are not reset. The reason is such non-monotone
clock valuations informs the defender of the presence of a timing attack; thus, the defender
can simply ignore the perceived clock valuations.

4.2. Definitions of Robustness Degree

In this subsection, we define three robustness degrees defined with respect to policies
on the DSG G.

4.2.1. Spatial Robustness

The spatial robustness, denoted as χ
ϕ
s (µ, τ, γ), represents the minimum distance

between any accepting (resp. non-accepting) path on the DSG induced by policies µ and
(τ, γ) and the language of the MITL specification without regard to the timing information.
We define the spatial robustness using the Levenshtein distance, which is used to measure
the distance between strings [41].

Definition 6 (Levenshtein distance [41]). The Levenshtein distance between sequences of symbols
w1 and w2, denoted dL(w1, w2), is the minimum number of edit operations (insertions, substitutions,
or deletions) that can be applied to w1 so that w1 can be converted to w2.

Consider timed words w1 = (q0, 0)(q1, 1)(q2, 2) . . . and w2 = (q0, 0)(q′1, 1)(q2, 2) . . .
that differ at position 1, where q1 6= q′1. Then, dL(w1, w2) = 1, as w1 can be converted to w2
by substituting q1 with q′1. Relying on the Levenshtein distance in Definition 6, we define

Games 2023, 14, 30 8 of 23

the spatial robustness χ
ϕ
s (µ, τ, γ) for policies µ and (τ, γ) on a DSG G with respect to the

MITL formula ϕ as:

χ
ϕ
s (µ, τ, γ) =

minw1∈B
µτγ
G ,w2 /∈L dL(w1, w2), if Bµτγ

G ⊆ L;

−minw1∈B
µτγ
G ,w2∈L dL(w1, w2), otherwise.

(1)

In Equation (1), Bµτγ
G is the set of paths enabled on G under policies µ and (τ, γ),

and L contains the set of paths on G that satisfy ϕ. We note that as dL(·, ·) ≥ 0, any path
w ∈ Bµτγ

G synthesized under policies µ and τ that satisfies ϕ will result in χ
ϕ
s (µ, τ, γ) > 0.

If, for some w ∈ Bµτγ
G , w /∈ L, then χ

ϕ
s (µ, τ, γ) ≤ 0.

4.2.2. Temporal Robustness

The temporal robustness χ
ϕ
t (µ, τ, γ) captures the maximum time units by which any

accepting path synthesized under policies µ and (τ, γ) can be temporally perturbed so that
the MITL formula ϕ is not violated.

Given an accepting run w and k ∈ Q, we let VAL(w) + k := v0 + k, v1 + k, We
define the left temporal robustness χ

ϕ,−
t (µ, τ, γ) and right temporal robustness χ

ϕ,+
t (µ, τ, γ)

as:

χ
ϕ,−
t (µ, τ, γ) = max

⋂
w∈Bµτγ

G

{k|w′ |= ϕ ∀w′ s.t. 0 ≤ VAL(w)− VAL(w′) ≤ k ∈ Q}, (2)

χ
ϕ,+
t (µ, τ, γ) = max

⋂
w∈Bµτγ

G

{k|w′ |= ϕ ∀w′ s.t. 0 ≤ VAL(w′)− VAL(w) ≤ k ∈ Q}. (3)

The left (right) temporal robustness χ
ϕ,−
t (µ, τ, γ) (χϕ,+

t (µ, τ, γ)) indicates that an ac-
cepting run w induced by µ and (τ, γ) can be perturbed up to k time units to the left
(right) without violating ϕ. These definitions also ensure that any perturbation smaller
than χ

ϕ,−
t (µ, τ, γ) or χ

ϕ,+
t (µ, τ, γ) will not violate ϕ. The temporal robustness is then:

χ
ϕ
t (µ, τ, γ) =

{
min{χϕ,−

t (µ, τ, γ), χ
ϕ,+
t (µ, τ, γ)}, if Bµτγ

G ⊆ L
Λ, otherwise

, (4)

where Λ is a symbol indicating that policies µ and (τ, γ) can lead to non-accepting runs.

4.2.3. Spatio-Temporal Robustness

We define the spatio-temporal robustness χϕ(µ, τ, γ) to unify notions of spatial and
temporal robustness as:

χϕ(µ, τ, γ) = I(χϕ
s (µ, τ, γ) ≥ εs)χ

ϕ
t (µ, τ, γ), (5)

where I(χϕ
s (µ, τ, γ) ≥ εs) is an indicator function that equals to 1 if χ

ϕ
s (µ, τ, γ) ≥ εs and

−1 otherwise. In other words, the spatio-temporal robustness χϕ(µ, τ, γ) captures the
maximum time units by which any accepting run can be perturbed without violating the
MITL specification ϕ, given a desired spatial robustness εs, under policies µ and (τ, γ).
Note that when the spatio-temporal robustness is −Λ, we have that policies µ and (τ, γ)
lead to non-accepting runs.

4.2.4. Robust MITL Semantics

Given the spatio-temporal robustness in Equation (5), we can use a real-valued func-
tion ζϕ(ρ, j) to reason about the satisfaction of ϕ such that (ρ, j) |= ϕ ≡ ζϕ(ρ, j) > 0.

Games 2023, 14, 30 9 of 23

Definition 7 (Robust MITL Semantics). Let ρ be a timed word. We define a real-valued function
ζϕ(ρ, j) such that the satisfaction of an MITL formula ϕ at position j by a timed word ρ, written
(ρ, j) |= ϕ := ζϕ(ρ, j) > 0, can be recursively defined as:

1. ζϕ(ρ, j) = f (ρ, j);
2. ζϕ1∧ϕ2(ρ, j) = min{ζϕ1(ρ, j), ζϕ2(ρ, j)};
3. ζϕ1∨ϕ2(ρ, j) = max{ζϕ1(ρ, j), ζϕ2(ρ, j)};
4. ζϕ1U[a,b]ϕ2(ρ, j) = maxt′∈[j+a,j+b]{min{ζ ϕ2(ρ, t′), mint′′∈[j,t′] ζϕ1(ρ, t′′)}}.
where f (ρ, j) = I(minw/∈L dL(ρ, w) ≥ εs)k̄ and k̄ = max{k|(ρ′, j) |= ϕ ∀ρ′ s.t. 0 ≤ |VAL(ρ)−
VAL(ρ′)| ≤ k}.

4.3. Problem Statement

Before formally stating the problem of interest, we prove a result which shows that
a defender’s policy that provides positive spatio-temporal robustness satisfies the MITL
objective ϕ with probability one.

Proposition 1. Given an MITL objective ϕ and policies µ and (τ, γ), the spatio-temporal robust-
ness χϕ(µ, τ, γ) > 0 implies almost-sure satisfaction of ϕ under the agent policies when there is no
timing attack.

Proof. The proof of this result is deferred to Appendix B.

Given Proposition 1, we formally state our problem:

Problem 1 (Robust policy synthesis for defender). Given a DSG G and an MITL formula ϕ,
compute an almost-sure defender policy. That is, compute µ such that χϕ(µ, τ, γ) ≥ εt, where
(τ, γ) ∈ BR(µ).

5. Solution: Only Actuator Attack

We present a solution to robust policy synthesis for the defender as described in
Problem 1, assuming that the adversary only launches an actuator attack. We construct a
product DSG P from DSG G and DTBA A. We present procedures to evaluate the spatio-
temporal robustness and compute an optimal policy for the defender on P .

5.1. Product DSG

In the following, we provide the definition of product DSG.

Definition 8 (Product durational stochastic game). A PDSG P constructed from a DSG
G , DTBA A, and clock valuation set V is a tuple P = (S, s0, UC, UA, In fC, In fA, Pr, Acc).
S = SG × Q × V is a finite set of states, s0 = (sG,0, q0, 0) is the initial state, and UC, UA
are finite sets of actions. In fC, In fA are information sets of the defender and adversary. Pr :
S×UC ×UA 7→ S encodes Pr((s′, q′, v′)|(s, q, v), uC, uA), the probability of a transition from
state (s, q, v) to (s′, q′, v′) when the defender and adversary take actions uC and uA. The probability

Pr
(
(s′, q′, v′)|(s, q, v), uC, uA

)
:= TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA) (6)

if and only if (q, v)
L(s′),δ−−−→ (q′, v′), zero otherwise. Acc = SG × F×V is a finite set of accepting

states.

The following result shows that the transition probability of P is well defined.

Proposition 2. The function Pr(·) satisfies Pr((s′, q′, v′)|(s, q, v), uC, uA) ∈ [0, 1] and

∑
(s′ ,q′ ,v′)

Pr
(
(s′, q′, v′)|(s, q, v), uC, uA

)
= 1. (7)

Games 2023, 14, 30 10 of 23

Proof. The proof is presented in Appendix B.

We write s to represent a state (s, q, v) in PDSG P . We denote the clock valuation
of s by Time(s). In the sequel, we compute a set of states called generalized accepting
maximal end components (GAMECs) of P . Any state s in GAMECs satisfies that the suc-
cessor state s′ also belongs to GAMECs under any policy committed by the defender,
regardless of the actions taken by the adversary. Therefore, for a path that stays within
GAMECs, it is guaranteed that the path corresponds to a run that intersects with F in-
finitely many times, and thus, the path satisfies specification ϕ. We can thus translate
the problem of satisfying ϕ to the problem of reaching GAMECs under any adversary
action. The set C = {s|s belongs to some GAMEC} can be computed using the procedure
COMPUTE_GAMEC(P) in Algorithm 1. The idea is that at each state, we prune the de-
fender’s admissible action set by retaining only those actions that ensure state transitions
in P will remain within GAMECs under any adversary action.

Algorithm 1 Computing the set of GAMECs C.

1: procedure COMPUTE_GAMEC(P)
2: Input: PDSG P
3: Output: Set of GAMECs C
4: Initialization:D(s)← UC(s)∀s;C ← ∅;Ctemp ← {S}
5: repeat
6: C ← Ctemp, Ctemp ← ∅
7: for N ∈ C do
8: R← ∅
9: Let SCC1, · · · , SCCn be the set of strongly connected components of underlying di-

graph G(N,D)
10: for i = 1, · · · , n do
11: for each state s ∈ SCCi do
12: D(s)← {uC ∈ UC(s)|s′ ∈ N, Pr(s′|s, uC, uA) > 0, ∀uA ∈ UA(s)}
13: if D(s) = ∅ then
14: R← R ∪ {s}
15: end if
16: end for
17: end for
18: while R 6= ∅ do
19: dequeue s ∈ R from R and N
20: if ∃s′ ∈ N and uC ∈ UC(s

′) such that Pr(s|s′, uC, uA) > 0 for some uA ∈ UA(s
′)

then
21: D(s′)← D(s′) \ {uC}
22: if D(s′) = ∅ then
23: R← R ∪ {s′}
24: end if
25: end if
26: end while
27: for i = 1, · · · , n do
28: if N ∩ SCCi 6= ∅ then
29: Ctemp ← Ctemp ∪ {N ∩ SCCi}
30: end if
31: end for
32: end for
33: until C = Ctemp
34: for N ∈ C do
35: if AccG ∩ N = ∅ then
36: C ← C \ N
37: end if
38: end for
39: return C
40: end procedure

Games 2023, 14, 30 11 of 23

The procedure Compute_GAMEC(P) presented in Algorithm 1 takes the product DSG
P as its input and returns set C. The algorithm iteratively updates C by removing a set of
states R. R includes any state s that is in some strongly connected component (SCC) and
has an empty admissible defender action set (Line 13). R also includes states s′ from which
P can be steered to R under some adversary action (Line 20). Lines 35–37 verify accepting
conditions defined by the DTBA. The termination of Algorithm 1 is given by the following
proposition.

Proposition 3. Algorithm 1 terminates in a finite number of iterations.

Proof. The proof of this proposition is given in Appendix B.

5.2. Evaluating Spatial Robustness

From Equation (1), evaluating the spatial robustness is equivalent to computing the
Levenshtein distance between paths on the DSG synthesized under policies µ and (τ, γ)
and L. This is equivalent to computing the Levenshtein distance between two automata,
where the first automaton Pµτγ is the PDSG induced by policies µ and (τ, γ). The second
automaton is Ā, the DTBA representing ¬ϕ. We adopt the approach proposed in [42] to
compute the Levenshtein distance between Pµτγ and Ā.

We first construct a DSG Gµτγ from the original DSG G. Given policies µ and (τ, γ),
we retain only those transitions such that PrG(s′|s, uC, uA) > 0, TG(δ|s, uC, uA, s′) > 0 for
some δ, µ(s, uC) > 0, and τ(s, uA) > 0, and we remove all other transitions. We augment
the alphabet of DTBAA as 2Π ∪ {null}, where null is a symbol that will be used to indicate
deletion and insertion operations. The alphabet of Ā is also augmented to include null.
The PDSG Pµτγ in Definition 8 can be constructed from Gµτγ and A. Given Pµτγ and
Ā , we construct P̂ := Pµτγ × Ā. Following [42], we construct a weighted transducer
to capture the cost associated to each edit operation (assumed = 1). We assign a cost
c((s, q, v, q̄), (s′, q′, v′, q̄′)) to each transition from state (s, q, v, q̄) to (s′, q′, v′, q̄′) in P̂ . In
particular, c((s, q, v, q̄), (s′, q′, v′, q̄′)) = 1 if L(s′) is not the same as the label of the transition
from q̄ to q̄′ in Ā. We can then apply a shortest path algorithm on P̂ from the initial state
(s0, q0, 0, q̄0) to the union of the GAMECs of P̂ to compute the minimum Levenshtein
distance. The correctness of this approach follows from [42] [Theorem 2].

The computational complexity of calculating the spatial robustness for any given
policies µ and (τ, γ) is O((|2Π| + 1)2|Pµτγ||Ā|), where |Pµτγ| and |Ā| are the sizes of
Pµτγ and Ā, respectively [42].

5.3. Evaluating Temporal Robustness

In this subsection, we present a procedure to evaluate the temporal robustness. We
introduce some notation. For a time interval I, we use I and I to represent its lower and
upper bounds. The upper bound of the clock valuation set is denoted as V. The indicator
function M(s) takes value 1 if s is in GAMEC and 0 otherwise. A state s′ is said to be a
neighboring state of s if Pr(s′|s, uC, uA) > 0 for some uC and uA such that µ(s, uC) > 0 and
τ(s, uA) > 0. Given the policies of the defender and adversary, we define

bµτγ(s, s′) :=

{
1 if s′ is a neighboring state of s
−∞ otherwise

.

The procedure TEMPORAL(ϕ, s, δ, M(s′)) presented in Algorithm 2 computes the left
and right temporal robustness with respect to the MITL objective ϕ. The left and right tem-
poral robustness of π can be computed by searching over a directed graph representation
of the product DSG. The algorithm determines the temporal robustness of ϕ following the
robust MITL semantics (Definition 7) by simple algebraic computations over the temporal
robustness of all atomic propositions in ϕ.

Games 2023, 14, 30 12 of 23

Algorithm 2 Evaluate temporal robustness.
1: procedure TEMPORAL(ϕ, s, δ, M(s′))
2: Input: MITL formula ϕ, current state s, time duration δ, indicator function M(s′)
3: Output: Temporal robustness χ

ϕ
t (µ, τ, γ)

4: if ϕ = π then
5: le f t_temp← min

⋃
s′′
{Time(s′′)− Time(s)}, where s′′ is reachable from s

6: right_temp← min
⋃
s′′
{V − Time(s′′)}, where s′′ is reachable from s

7: return min{le f t_temp, right_temp}
8: else if ϕ = φ1 ∧ φ2 then
9: r1 ← TEMPORAL(φ1, s, δ, M(s′))

10: r2 ← TEMPORAL(φ2, s, δ, M(s′))
11: return min{r1, r2}
12: else if ϕ = φ1 ∨ φ2 then
13: r1 ← TEMPORAL(φ1, s, δ, M(s′))
14: r2 ← TEMPORAL(φ2, s, δ, M(s′))
15: return max{r1, r2}
16: else if ϕ = φ1UIφ2 then
17: if M(s′) = 0 then
18: r1 ← min

⋃
s′ ,δ,δ′

{
TEMPORAL(φ1, s, δ, M(s′)), bµτγ(s, s′)TEMPORAL(φ1UI−δφ2,

s′, δ′, M(s′′)
}

19: else
20: r1 ← min

⋃
s′

{
(Time(s′)− I), (I − Time(s′))

}
21: end if
22: if 0 ∈ I then
23: r2 ← TEMPORAL(φ2, s, δ, M(s′))
24: else
25: r2 ← −∞
26: end if
27: return max{r1, r2}
28: end if
29: end procedure

We detail the workings of Algorithm 2, which is a recursive procedure that is used
to compute the temporal robustness. It takes an MITL formula ϕ, current state s, time
duration δ, and indicator function M(s′) as its inputs. If ϕ = π, then Algorithm 2 computes
the minimum left temporal robustness (Line 5) and right temporal robustness (Line 6),
respectively. The minimum of these quantities is returned as the temporal robustness.
From the robust MITL semantics, Algorithm 2 returns the minimum (maximum) temporal
robustness when ϕ is a conjunction (disjunction). When ϕ = φ1UIφ2, the robustness is
computed following Lines 16–27. Here, I − t := {t′ − t|t′ ∈ I}. Because we focus on the
worst-case robustness, we compute the minimum value over times δ and neighboring states
s′ in Line 18. We establish the correctness of Algorithm 2 as follows.

Theorem 1. Given a PDSG with initial state s0, MITL formula ϕ, and policies µ and τ, suppose
Algorithm 2 returns ε ≥ 0. Then, any run on the PDSG synthesized under policies µ and τ can be
temporally perturbed by ε̂ ∈ [0, ε] without violating ϕ.

Proof. The proof is presented in Appendix B.

The complexity of Algorithm 2 is O(|cl(ϕ)|(|S|+ |Pr|)), where |cl(ϕ)| is the size of
the closure of formula ϕ and |Pr| is the number of nonzero elements in matrix Pr.

5.4. Evaluating Spatio-Temporal Robustness

We use the results of the previous two subsections to compute the spatio-temporal
robustness using the procedure ROBUST(ϕ, s, δ, M(s′), εs) presented in Algorithm 3. From
Equation (5), when the spatial robustness is above εs, Algorithm 3 returns the temporal

Games 2023, 14, 30 13 of 23

robustness. Otherwise, it returns the negative value of the temporal robustness. The com-
plexity of Algorithm 3 is O(|cl(ϕ)|(|S|+ |Pr|) + (|2Π|+ 1)2|Pµτγ||Ā|). Table 1 summarizes
the computational complexities of evaluating the spatial and temporal robustness.

Algorithm 3 Evaluate spatio-temporal robustness.
1: procedure ROBUST(ϕ, s, δ, M(s′), εs)
2: Input: MITL formula ϕ, current state s, time duration δ, indicator function M(s′)
3: Output: Spatio-temporal robustness χϕ(µ, τ, γ)
4: if ϕ = > then
5: return ∞
6: else if ϕ = ⊥ then
7: return −∞
8: else
9: if SPATIAL(ϕ, s) ≥ εs then

10: return TEMPORAL(ϕ, s, δ, M(s′))
11: else
12: return −TEMPORAL(ϕ, s, δ, M(s′))
13: end if
14: end if
15: end procedure

Table 1. Computational complexities of evaluating the spatial and temporal robustness when policies
are given. |Pµτγ| is the size of product DSG Pµτγ induced by policies µ and (τ, γ). |Ā| is the size of
the timed Büchi automaton of MITL specification ¬ϕ. |cl(ϕ)| denotes the size of the closure of ϕ, and
|Pr| is the number of nonzero elements in matrix Pr. The complexity of Algorithm 3 is (S) + (T).

Robustness Complexity

Spatial (S) O((|2Π|+ 1)2|Pµτγ||Ā|)

Temporal (T) O(|cl(ϕ)|(|S|+ |Pr|))

5.5. Control Policy Synthesis

In this subsection, we compute a control policy that solves the robust policy synthesis
for the defender in Problem 1 when there is no timing attack. From Proposition 1, solving
the robust policy synthesis for the defender in Problem 1 is equivalent to finding a defender
policy so that the spatio-temporal robustness exceeds a desired threshold. This procedure
is named as POLICY_SYNTHESIS(P , ϕ) and is presented in Algorithm 4. We initialize
a policy µk, k = 1 (Line 4). We also define sets of states Et and Es that will indicate
states/transitions that lead to violations of temporal and spatial robustness. We then
compute the best response to µk as (τk, γk) and evaluate the spatio-temporal robustness
χϕ(µk, τk, γk). If χϕ(µk, τk, γk) ≥ εt, we then synthesize the policy µk returned in Line 6. If
0 ≤ χϕ(µk, τk, γk) < εt, then the spatial robustness exceeds εs but the temporal robustness
is below εt. In this case, we eliminate defender actions uC that steer the PDSG into states s
in Et with the positive probability thereby causing a violation of the temporal robustness
constraint. If χϕ(µk, τk, γk) < 0 (Line 17), then the spatial robustness constraint is violated.
In this case, we eliminate defender actions that steer the system into states in Es. If no state
in GAMEC is reachable from the initial state s0 of the product DSG P , then the procedure
POLICY_SYNTHESIS(P , ϕ) presented in Algorithm 4 reports failure, indicating that no
solution is found for robust policy synthesis for defender in Problem 1, and terminates. We
establish the converge of Algorithm 4 as follows.

Games 2023, 14, 30 14 of 23

Algorithm 4 Robust control policy synthesis for defender.
1: procedure POLICY_SYNTHESIS(P , ϕ)
2: Input: Product DSG P , MITL formula ϕ
3: Output: Control policy µ
4: Initialization: Iteration index k ← 1. Initialize µk(s, uC) ← 1

|UC(s)| for all s and uC ∈ UC(s),

and compute adversary policy (τk, γk) ∈ BR(µk). Let Es, Et ← ∅.
5: while true do
6: Compute spatio-temporal robustness χϕ(µk, τk, γk) = ROBUST(ϕ, s0, δ, M(s′)).
7: if χϕ(µk, τk, γk) ≥ εt then
8: return µk

9: else if 0 ≤ χϕ(µk, τk, γk) < εt then
10: Et ← Et ∪ {s : ROBUST(ϕ, s, δ, M(s′)) < εt}
11: for s ∈ Et do
12: Let UC(s

′)← UC(s
′) \ {uC : µk(s′, uC) > 0, Prµkτk

(s′, s) > 0} for all s′ /∈ Et ∪ Es
13: if UC(s

′) = ∅ then
14: Et ← Et ∪ {s′}
15: end if
16: end for
17: else
18: Es ← Es ∪ {s : ROBUST(ϕ, s, δ, M(s′)) < 0}
19: for s ∈ Es do
20: Let UC(s

′)← {uC|µk(s′, uC) > 0, Prµkτk
(s′, s) > 0}

21: if UC(s
′) = ∅ then

22: Es ← Es ∪ {s′}
23: end if
24: end for
25: Update defender’s policy µk+1(s′, uC)← 1

|UC(s′)| for all s′ and uC ∈ UC(s
′)

26: if GAMEC is not reachable from initial state s0 then
27: return message “failure” indicating no solution is found
28: Break
29: end if
30: end if
31: Let k← k + 1.
32: end while
33: end procedure

Theorem 2. Algorithm 4 terminates within a finite number of iterations.

Proof. The proof of this theorem is presented in Appendix B.

In the worst case, we have that Algorithm 4 updates ÛC = ∅ with at most |S| × |UC|
number of iterations. Thus, the complexity of Algorithm 4 is O(|S| × |UC|). We further
present the optimality of the policy found by Algorithm 4 in the following theorem:

Theorem 3. If Algorithm 4 returns a defender’s policy, denoted as µ∗, then the problem of robust
policy synthesis for the defender in Problem 1 is feasible. Moreover, the defender’s policy µ∗ is an
optimal solution to Problem 1.

Proof. The proof is presented in Appendix B.

The soundness of Algorithm 4 is given below:

Corollary 1. Algorithm 4 is sound but not complete. That is, any control policy returned by
Algorithm 4 guarantees probability one of satisfying the given MITL specification, but we cannot
conclude that there exists no solution to the problem if Algorithm 4 returns no solution.

6. Solution: Actuator and Timing Attacks

In this section, we present a solution under both actuator attack and timing attacks.

Games 2023, 14, 30 15 of 23

Compared with the case where there is no timing attack, we make the following obser-
vations. The evaluation of spatial robustness remains unchanged when the adversary can
initiate both actuator and timing attacks. Second, the evaluation of temporal robustness can
become inaccurate during a timing attack. This is because timing information perceived by
the defender can be arbitrarily manipulated by the adversary. As a result, the defender will
not be able to evaluate the temporal robustness and hence the spatio-temporal robustness
during a timing attack. Finally, as the defender cannot accurately evaluate the temporal
robustness, Proposition 1 will not hold during a timing attack. In the following, we relax the
problem of robust synthesis for the defender in Problem 1 and try to compute a defender
policy such that the probability of satisfying the ϕ is maximized in the presence of actuator
and timing attacks. The reason the defender can evaluate the probability of satisfying ϕ is
that it knows the transition probability PrG and probability mass function TG . Thus, it can
determine the expected probability and time of reaching each state, given the policies of
the defender and adversary. The relaxed problem is:

Problem 2 (Policy synthesis for defender). Given a DSG G and an MITL objective ϕ, compute
a defender’s policy such that the probability of satisfying ϕ is maximized and adversary policy (τ, γ)
is the best response to control policy µ. That is, maxµ Pϕ(µ, τ, γ), where (τ, γ) ∈ BR(µ).

Because the timing information perceived by the defender has been manipulated by
the adversary, the defender has limited knowledge of the current time. Even in this case, it
can still detect unreasonable time sequences, e.g., a time sequence that is not monotonic. To
recover from the deficit of timing information, we represent the defender’s policy using a
finite-state controller, which enables the defender to track the estimated time.

Definition 9 (Finite-state controller [25]). A finite-state controller (FSC) is a tuple F =
(Y, y0, µ), where Y = Λ × {0, 1} is a finite set of internal states, Λ is a set of estimates of
clock valuations, and the set {0, 1} indicates if a timing attack has been detected (1) or not (0). y0 is
the initial internal state. µ is the defender policy, given by:

µ =

{
µ0 : Y× S×Y×UC 7→ [0, 1], ifH0 holds;
µ1 : Y× SG ×Q×Y×UC 7→ [0, 1], ifH1 holds.

where µ0 and µ1 denote the control policies that will be executed when hypothesisH0 orH1 holds,
respectively.

For an FSC as given in Definition 9, hypothesisH0 represents the scenario where no
timing attack is detected by the defender, whileH1 represents the scenario where a timing
attack is detected. In the FSC, the defender’s policy specifies the probability of reaching the
next internal state by taking an action uC given the current state of DSG, detection result of
the timing attack, and state of DTBA.

To capture the state evolutions of DSG, DTBA, and FSC, we construct a global DSG.

Definition 10 (Global DSG (GDSG)). A GDSG is a tuple Z = (SZ , sZ ,0, UC, UA,
In fZ ,C, In fZ ,A, PrZ , AccZ), where SZ = S×Y is a finite set of states and sZ ,0 = (s0, q0, 0, y0)
is the initial state. UC and UA are finite sets of actions and In fZ ,C and In fZ ,A are the information
sets of the defender and adversary, respectively. PrZ : SZ ×UC ×UA× SZ 7→ [0, 1] is a transition
function where PrZ ((s′, q′, v′, y′)|(s, q, v, y), uC, uA) is the probability of a transition from state
(s, q, v, y) to (s′, q′, v′, y) when the defender and adversary take actions uC and uA, respectively.
The transition probability is given by

PrZ
(
(s′, q′, v′, y′)|(s, q, v, y), uC, uA

)
=

{
∑v′′ γ(v′′|v)µ0(y′, uC|s, q, v′′, y)Pr((s′, q′, v′)|(s, q, v), uC, uA), ifH0 holds;
µ1(y′, uC|s, q, y)TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA), ifH1 holds;

Games 2023, 14, 30 16 of 23

AccZ = Acc×Y is the set of accepting states.

Consider the global DSG. Let Q ∈ R|SZ | be the probability of satisfying ϕ. Then, Q
can be computed from Proposition 4. A proof is presented in [39].

Proposition 4. Let Q := max
µ

min
τ,γ

P(ϕ) be the probability of satisfying ϕ. Then,

Q((s, y)) = max
µ

min
τ,γ ∑

uC
∑
uA

∑
(s′ ,y)

τ((s, y), uA)Q((s′, y′)) · PrZ
(
(s′, y′)|(s, y), uC , uA

)
, ∀(s, y).

Moreover, the value vector is unique.

We use the procedure CONTROL_SYNTHESIS(Z) presented in Algorithm 5 to compute
the policy µ. Guarantees on its termination is presented in [39]. We finally remark on the
complexity of Algorithm 5. We first make the following relaxation to Line 5 of Algorithm 5
so that Qk+1((s, y)) is updated if the following holds:

max
µ

min
τ,γ ∑

uC
∑
uA

∑
(s′ ,y)

τ((s, y), uA)Q((s′, y′)) · PrZ
(
(s′, y′)|(s, y), uC, uA

)
≥ (1+ ε)Qk((s, y)).

Then, Algorithm 5 converges to some Qk+1(s, y) satisfying ‖Qk+1(s, y)−Qk(s, y)‖∞ <
ε within |SZ |max(s,y){log(1/Q0((s, y)))/ log(1 + ε)} iterations, where parameter
Q0((s, y))) is the smallest value of Qk((s, y))) for k = 0, 1, Furthermore, Line 8 of Algo-
rithm 5 can be solved using a linear program in polynomial time, denoted as f . Combining
these arguments, the complexity of Algorithm 5 is |SZ | f max(s,y){log(1/Q0((s, y)))/ log(1
+ ε)}.

Algorithm 5 Computing an optimal control policy.

1: procedure CONTROL_SYNTHESIS(Z)
2: Input: Global DSG P
3: Output: value vector Q
4: Initialization: Q0 ← 0, Q1(s)← 1 for s ∈ Acc, Q1(s)← 0 otherwise, k← 0
5: while max {|Qk+1(s)−Qk(s)| : s ∈ S} > ε do
6: k← k + 1
7: for s /∈ Acc do

8: Qk+1(s)← max
µ

min
τ,γ

{
∑
uC

∑
uA

∑
(s′ ,y)

τ((s, y), uA)γ(v′′, v)Q((s′, y′))

· PrZ ((s′, y′)|(s, y), uC, uA)

}
9: end for

10: end while
11: return Qk

12: end procedure

7. Case Study

In this section, we present a numerical case study on a signalized traffic network. The
case study was implemented using MATLAB on a Macbook Pro with a 2.6 GHz Intel Core
i5 CPU and 8 GB of RAM.

7.1. Signalized Traffic Network Model

We consider a signalized traffic network [43] consisting of five intersections and
twelve links under the remote control of a transportation management center (TMC). A
representation of the signalized traffic network is shown in Figure 3.

We briefly explain how a DSG from Definition 4 can model the network. Each DSG
state models the total number of vehicles on a link in the network. Transitions between

Games 2023, 14, 30 17 of 23

the states in the DSG models the flow of vehicles. Because the vehicle capacity of a link is
finite, the number of states in the DSG will be finite.

The defender’s action set represents that the TMC can actuate a link by issuing a ‘green
signal’ on outgoing intersections of that link. Conversely, the TMC can block a link by
issuing a ‘red signal’.

The TMC is assumed to control the traffic network over an unreliable wireless channel.
Thus, an intelligent adversary can launch man-in-the-middle attacks to tamper with the
traffic signal issued by the TMC or manipulate observations of the TMC. In particular, the
adversary can initiate an actuator attack to change the traffic signal and a timing attack to
manipulate the time-stamped measurement (number of vehicles at each link along with the
time index) perceived by the TMC.

Figure 3. Representation of a signalized traffic network consisting of five intersections and twelve links.

The TMC is given one of the following objectives: (i) number of vehicles at link 4 is
eventually below 10 before deadline d = 6: ϕ1 = 3[0,6](x4 ≤ 10); (ii) number of vehicles
at links 3 and 4 are eventually below 10 before d = 6: ϕ2 = 3[0,6]((x3 ≤ 10) ∧ (x4 ≤ 10));
or (iii) number of vehicles at links 3, 4, and 5 are eventually below 10 before d = 6: ϕ3 =
3[0,6]((x3 ≤ 10) ∧ (x4 ≤ 10) ∧ (x5 ≤ 10)). Spatial and temporal robustness thresholds are
set to εs = 1 and εt = 1. We compare our approach with two baselines. In Baseline 1, the
TMC periodically issues green signals. In Baseline 2, the TMC always issues green signals
for links 3, 4, and 5 to greedily minimize the number of vehicles on these links.

7.2. Numerical Results

In the following, we present the numerical results using our proposed approach and
the two baselines.

We first report the results when the adversary only launches an actuator attack and the
TMC is given specification ϕ1. We compute a control policy using Algorithm 4. A sample
sequence of traffic signals is presented in Table 2. Using Proposition 1 and Corollary 1, the
MITL specification ϕ1 is satisfied with probability one.

Table 2. Sample sequence of traffic lights realized at each intersection for the MITL specification
ϕ1 = 3[0,6](x4 ≤ 10). The letters ‘R’ and ‘G’ represent ‘red’ and ‘green’ signals, respectively.

Intersection

Time 1 2 3 4 5

1 G R R G R
2 R R G G R
3 R G G G R
4 R R R R G
5 R G G G R
6 G G G R G

We then consider an adversary that launches both actuator and timing attacks. Sup-
pose that the TMC is equipped with an FSC with five states. We show the results of our
approach using Algorithm 5 in Figure 4. In this example, ϕ3 is violated as the number of
vehicles on link 5 exceeds the threshold of 10. We also give the probabilities of satisfying
each MITL specification using Algorithm 5. Specifications ϕ1, ϕ2, and ϕ3 are satisfied with
the probabilities 0.7000, 0.6857, and 0.4390, respectively.

Games 2023, 14, 30 18 of 23

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Time

0

2

4

6

8

10

12

14

16

18

20

N
u
m

b
e
r

o
f
V

e
h
ic

le
s
 a

t
e
a
c
h
 L

in
k

Link 3

Link 4

Link 5

Threshold

Figure 4. A sample of the number of vehicles on links 3, 4, and 5 over time using our proposed
approach. In this realization, the number of links on link 5 is above the threshold.

We assume that the TMC commits to deterministic policies in both baselines. In
Baseline 1, the adversary launches actuator attacks when the TMC issues a green signal
and does not attack when it issues a red signal. In Baseline 2, the adversary always
launches an actuator attack. In both baselines, the adversary launches a timing attack at
each time instant to delay the TMC’s observation. As a consequence, both baselines have
zero probability of satisfying ϕ1, ϕ2, or ϕ3.

The DSG in our experiments had 232 states. For ϕ1, the GAMEC of the product
DSG had 400 states. For ϕ2 and ϕ3, the GAMEC had 160 and 80, states respectively. The
computation time of Algorithm 4 for ϕ1 was 264 s. Algorithm 5 took 720 s.

8. Conclusions and Future Work

In this paper, we proposed methods to synthesize controllers for cyber-physical sys-
tems to satisfy metric interval temporal logic (MITL) tasks in the presence of an adversary
while additionally providing robustness guarantees. We considered the fragment of MITL
formulae that can be represented by deterministic timed Büchi automata. The adver-
sary could initiate actuator and timing attacks. We modeled the interaction between the
defender and adversary using a durational stochastic game (DSG). We introduced three no-
tions of robustness degree—spatial robustness, temporal robustness, and spatio-temporal
robustness—and presented procedures to estimate these quantities, given the defender and
adversary’s policies and current state of the DSG. We further presented a computational
procedure to synthesize the defender’s policy that provided a robustness guarantee when
the adversary could only initiate an actuator attack. A value iteration-based procedure was
given to compute a defender’s policy to maximize the probability of satisfying the MITL
goal. A case study using a signalized traffic network illustrated our approach.

DSGs can be adopted to model interactions between a defender and adversary across
various application domains with time-sensitive constraints. Examples include the time-
sensitive motion planning of drones, product scheduling of industrial control systems,
and time-sensitive message transmissions in wireless communications in the presence of
adversaries. For future work, we will generalize our definition of the DSG to broaden
its applications. We will generalize DSGs to address partial observations by the CPS and
adversary. We will additionally investigate the scenarios where the adversary is nonrational
and may not perform its best response to the strategies committed by defender.

Author Contributions: Conceptualization, L.N., B.R., A.C. and R.P.; methodology, L.N., B.R. A.C.
and R.P.; software, L.N. and B.R.; validation, B.R.; formal analysis, L.N., B.R. and A.C.; writing—
original draft, L.N. and B.R.; writing—review and editing, A.C. and R.P.; supervision, R.P.; project
administration, R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Office of Naval Research grant N00014-20-1-2636, National
Science Foundation grants CNS 2153136 and CNS 1941670, and Air Force Office of Scientific Research
grants FA9550-20-1-0074 and FA9550-22-1-0054.

Games 2023, 14, 30 19 of 23

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Summary of Notations

This appendix summarizes the notations used in this paper, as presented in Table A1.

Table A1. This table provides a list of the notation and symbols used in this paper.

Variable Notation Interpretation

ϕ MITL formula
ρ Timed word
A Deterministic timed Büchi automaton (DTBA)
v Clock valuation
β Run of DTBA
G Durational stochastic game (DSG)
µ Defender’s policy
τ Actuator attack policy by the adversary
γ Timing attack policy by the adversary

χ
ϕ
s (µ, τ, γ) Spatial robustness

χ
ϕ
t (µ, τ, γ) Temporal robustness

χϕ(µ, τ, γ) Spatio-temporal robustness
P Product durational stochastic game
F Finite-state controller (FSC)
Z Global durational stochastic game (GDSG)

C Set of generalized accepting maximal end
components (GAMECs)

Appendix B. Proofs of Technical Results

In this appendix, we present the proofs of all of the technical results.

Proof of Proposition 1. From Equation (4), χ
ϕ
t (µ, τ, γ) is non-negative. If χϕ(µ, τ, γ) > 0 ,

then I(χϕ
s (µ, τ, γ) ≥ εs) = 1, and hence, χ

ϕ
s (µ, τ, γ) ≥ εs > 0. This implies that Bµτγ

G ⊆ L,
i.e., all runs obtained under policies µ and (τ, γ) are accepting. This gives Prµτγ(ϕ) = 1, or
almost-sure satisfaction of ϕ under the respective agent policies.

Proof of Proposition 2. The statement that Pr((s′, q′, v′)|(s, q, v), uC, uA) ∈ [0, 1] for all
transitions in P follows from the fact that TG(δ|s, uC, uA, s′) ∈ [0, 1] and PrG(s′|s, uC, uA) ∈
[0, 1]. We have that Pr((s′, q′, v′)|(s, q, v), uC, uA) = 0 iff TG(δ|s, uC, uA, s′) = 0, or PrG(s′|s,
uC, uA) = 0, or both. Moreover, we have that Pr((s′, q′, v′)|(s, q, v), uC, uA) = 1 iff

TG(δ|s, uC, uA, s′) = 1 and PrG(s′|s, uC, uA) = 1. Let Iδ
(q,v),(q′ ,v′) := 1((q, v)

L(s′),δ−−−→ (q′, v′)),
which is an indicator function that takes value 1 if its argument is true and 0 otherwise.
Then, Equation (7) can be rewritten as:

∑
(s′ ,q′ ,v′)

TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA)

= ∑
s′

∑
δ

TG(δ|s, uC, uA, s′)Iδ
(q,v),(q′ ,v′)PrG(s′|s, uC, uA) (A1)

This follows from the substitution from Equation (6) and product DSG in Definition 8. The
result follows by ∑

s′∈SG
PrG(s′|s, uC, uA) = 1 and ∑

δ∈∆
TG(δ|s, uC, uA, s′) = 1.

Proof of Proposition 3. We proceed by showing that each loop in Algorithm 1 is executed
a finite number of times. The PDSG P has a finite number of states and actions as the DSG
G has a finite number of states and actions, the DTBA A has a finite number of states, and

Games 2023, 14, 30 20 of 23

the clock valuation set V is bounded due to the boundedness of time interval I. Therefore,
the for-loops in Line 7, 10, 11, and 27 are executed for a finite number of times. The while-loop
in Line 18 is executed a finite number of times as R ⊆ S is a finite set. Moreover, there are a
finite number of states that will be added to R (Line 14), and this will be carried out finitely
many times. The overall complexity is O(|V|(|V|+ |E|)), where |V| and |E| are the number
of vertices and edges in P .

Proof of Theorem 1. We leverage the recursive robust MITL semantics to prove the theo-
rem and consider the following cases:

Case 1— ϕ = π ∈ Π: In this case, the temporal robustness is computed by Lines 4–7
of Algorithm 2: TEMPORAL(ϕ, s0, δ, M(s′)) = min{le f t_temp, right_temp} = ε > 0. This
means that there must exist a state s′′ that is reachable from s under policies µ and τ such
that s′′ |= π. Without loss of generality, we assume that TEMPORAL(ϕ, s0, δ, M(s′)) =
Time(s′′)− Time(s0) = ε. As Time(s0) = 0, we have Time(s′′) = ε, i.e., ε is the time index
of state s′′. Therefore, a shift to the left by ε̂ ∈ [0, ε] will not affect the satisfaction of π as
π ∈ L(s′′) holds true independent of time. If the accepting run is temporally perturbed
by more than ε time units, the clock valuation becomes negative. This contradicts our
assumption that clock valuations take positive values.

Case 2— ϕ = φ1 ∧ φ2: Consider Lines 8–11 of Algorithm 2. Suppose φ1, φ2 ∈ Π. Let
TEMPORAL(ϕ, s0, δ, M(s′)) = TEMPORAL(φ1, s0, δ, M(s′)) = ε > 0. From Line 11, it fol-
lows that TEMPORAL(φ2, s0, δ, M(s′)) := ε′ > ε. As φ1, φ2 ∈ Π, we can apply Case 1 to
TEMPORAL(φ1, s0, δ, M(s′)) and TEMPORAL(φ2, s0, δ, M(s′)). Therefore, if we shift the run
synthesized under policies µ and τ by ε̂ ∈ [0, ε] time units to the left, φ1 will still be satisfied.
Moreover, as ε < ε′, φ2 will also be satisfied. Hence, φ = φ1 ∧ φ2 will still be satisfied if we
shift the run synthesized under policies µ and τ by at most ε̂ < ε time units.

Case 3 — ϕ = φ1 ∨ φ2: Consider Lines 12–15. Suppose φ1, φ2 ∈ Π. Let TEMPORAL(φ1, s0,
δ, M(s′)) = ε > 0. From Case 1, we can shift any accepting run starting from s0 by at most ε
time units without violating φ1. Then by semantics of the disjunction operator, ϕ = φ1 ∨ φ2
is also satisfied when the accepting run is shifted by at most ε time units.

Case 4 — ϕ = φ1UIφ2: In this case, the temporal robustness is computed by Lines 16–27.
We consider the case that φ1, φ2 ∈ Π. Let t := inf{t′|φ2 is satisfied at t′}.

If t = 0, φ2 is satisfied at state s0, and hence, ϕ is satisfied at s0. Therefore, s0 is in
GAMEC. From the definition of GAMEC, we have that s0 and its neighboring states are
in GAMEC (the defender does not take any action that steers the PDSG outside GAMEC),
and hence, M(s′) = 1. Thus, Algorithm 2 will execute Lines 19–20. We have that r1 ←
min

⋃
s′

{
(Time(s′)− I), (I − Time(s′))

}
, where I = sup{t′|t′ ∈ I} and I = inf{t′|t′ ∈ I} are

the upper and lower bounds of I. As t = 0, Line 23 will be executed. φ2 ∈ Π indicates that
r2 = TEMPORAL(φ2, s0, δ, M(s′)) can be obtained from Lines 4–7. This gives r1 = r2 = 0,
and hence, ε = 0. We remark that this only indicates that we cannot shift the accepting run
to the left temporally without violating ϕ. Shifting the run to the right might not lead to
violation of ϕ. However, as the temporal robustness is defined as the minimum of the left
and right temporal robustness, the algorithm returns ε = 0.

If t > 0, from the semantics of time constrained until operator UI , φ1 is satisfied up
to time t ∈ I and φ2 is satisfied immediately after time t; thus, ϕ is satisfied. Therefore,
we will eventually reach some accepting state so that M(s′) = 1 for some s′. In this case,
ε = max{r1, r2}, where r1 is given in Line 20 and r2 is given in Lines 22–26 of Algorithm 2.
Suppose ε = r1. From Line 27, we must have r1 ≥ r2. From Line 20, r1 = min{t− I, I− t} =
ε. Thus, we can shift any accepting run by at most t − I time units to the left without
violating ϕ if ε = t− I. After the perturbation, φ1 is satisfied at time I and φ2 is satisfied
immediately after I. The case where ε = I − t can be obtained analogously. Suppose ε = r2.
From Lines 22–26, r2 = TEMPORAL(φ2, s0, δ, M(s′)). Since φ2 ∈ Π, r2 can be obtained from
Lines 4–7. Recall that we consider a bounded clock valuation set. Let V := sup{t|t ∈ I} = I.
Then r2 models the maximum distance between the time index at which φ2 is satisfied
and the upper bound of I. From Case 1, we have that perturbing an accepting run by at

Games 2023, 14, 30 21 of 23

most ε time units will not violate ϕ as the run obtained after perturbation satisfies φ2 at the
boundary of I.

Case 5 — φ1 and φ2 in Cases 2-4 are MITL formulae: In this case, we can apply the previ-
ous analyses using the recursive definition of MITL formula.

Proof of Theorem 2. We prove the theorem in the following way. At each iteration within
the while loop (starting at Line 5), Algorithm 4 executes one of the three cases of the if-else
statement (Lines 7, 9, or 17), with each case corresponding to the satisfaction of the spatio-
temporal robustness constraint, violation of the temporal robustness constraint, or violation
of the spatial robustness constraint. We denote the execution of Line 7 as Scenario I, Line 9
as Scenario II, and Line 17 as Scenario III. We will show that Algorithm 4 reaches Scenario I
at most once and reaches Scenarios II and III finitely many times. If Algorithm 4 reaches
Scenario I, it terminates (Line 8). For Scenarios II and III, we will show that there exists an
index k such that if Algorithm 4 reaches Scenario II or III at iteration k, then Scenario I will
be executed at iteration k + 1 and hence terminates, or Lines 26-29 will be executed and the
process will terminate at iteration k.

Scenario I — executing Line 7: Suppose Algorithm 4 reaches Scenario I at iteration k. In
this case, the control policy µk satisfies the spatio-temporal robustness constraints. By Line
8 we have that Scenario I is reached exactly once and hence Algorithm 4 terminates.

Scenario II — executing Line 9: Suppose Algorithm 4 reaches Scenario II at iteration k.
In this case, the policy µk satisfies the spatial robustness constraint but violates the temporal
robustness constraint. Let s be the state that results in temporal robustness constraint
violation and let s′ be a neighboring state of s. We decompose our discussion into the
following cases:

1. Suppose UC(s
′) = ∅. In this case, state s′ is included in set Et. If adding s′ to Et makes

states in GAMEC not reachable from s0, then Algorithm 4 executes Lines 26-29 and
terminates by reporting failure.

2. Suppose UC(s
′) 6= ∅. However, the remaining control actions uC ∈ UC(s

′) cannot
make GAMEC reachable from the initial state s0. In this case, Algorithm 4 will execute
Lines 26-29 and terminates.

3. Suppose UC(s
′) 6= ∅, and GAMEC is reachable from s0. We further assume that all

actions uC ∈ UC(s
′) that are admissible by the policy generated at Line 25 result in

a robustness greater than or equal to εt. As a consequence, the remaining control
actions in UC(s

′) must steer the system into some neighboring state s′′ of s′ such that
χϕ(µ, τ, γ, s′′) > εt. Therefore, Algorithm 4 will execute Scenario I at iteration k + 1
and thus terminates.

4. Suppose UC(s
′) 6= ∅ and GAMEC is reachable from the initial state s0. Now assume

that there exists some action uC ∈ UC(s
′) such that it is admissible by the policy

generated at Line 25 and results in the robustness below εt for some neighboring state
s′′ of s. In this case, this uC will be removed according to Line 12 at iteration k + 1. As
there are only finitely many states and control actions, this case will converge to one
of the cases discussed in (1), (2), or (3) in a finite number of iterations.

Scenario III — executing Line 17: Suppose Algorithm 4 reaches Scenario III at iteration
k. In this case, the control policy µk violates the spatial robustness constraint. We use
s to denote the state that violates the spatial robustness constraint and use s′ to denote
the neighboring state of s. We analyze Scenario III by dividing our discussion into the
following cases:

1. Suppose UC(s
′) = ∅. From Line 18, s′ is included in set Es. If adding s′ to Es makes

states in GAMEC not reachable from s0, then Algorithm 4 executes Lines 26-29 and
terminates by reporting failure.

2. Suppose UC(s
′) 6= ∅ and GAMEC is not reachable from the s0 for all uC ∈ UC(s

′). In
this case, Algorithm 4 will execute Lines 26-29 and terminate.

3. Suppose UC(s
′) 6= ∅, and GAMEC is reachable from s0. Assume that all actions

uC ∈ UC(s
′) that are admissible by the policy generated at Line 25 result in robustness

Games 2023, 14, 30 22 of 23

≥ εt. In this case, the game must be steered to a neighboring state s′′ of s′ such that
χϕ(µ, τ, γ, s′′) > εt. Then, Algorithm 4 will execute Scenario I at iteration k + 1 and
terminate.

4. Suppose UC(s
′) 6= ∅, and GAMEC is reachable from s0. Now assume that the policy

generated at Line 25 results in robustness below εt for some neighboring state s′′ of
s. In this case, the control action uC will be removed according to Lines 12 and 20 at
iteration k + 1. As there are only finitely many states and control actions, this case will
converge to one of the cases discussed in (1), (2), or (3) in a finite number of iterations.

From the preceding discussion, the control action set UC will converge to a set ÛC
that will never lead Algorithm 4 to Scenarios II or III. In the worst case, ÛC = ∅ when
there will be at most |S| × |UC| actions being removed due to Scenarios II and III, leading
Algorithm 4 to Line 28, where it terminates by reporting failure.

Therefore, Algorithm 4 converges to a set ÛC that will never cause violations of
the robustness constraints, and the game can be driven to GAMEC in a finite number
of iterations. If no such set exists, it terminates by reporting failure. If ÛC 6= ∅, then
Algorithm 4 returns a policy over ÛC.

Proof of Theorem 3. Suppose Algorithm 4 returns a policy µ∗. From Theorem 2, µ∗ is
defined over ÛC 6= ∅ (otherwise, µ∗ should not be returned by Algorithm 4 as no admissible
defender action is available). From Lines 10 to 16 in Algorithm 4, the defender’s policy
µ∗ will not result in a temporal robustness below εt. From Lines 17 to 23, µ∗ guarantees
a positive spatio-temporal robustness. Therefore, if µ∗ is returned by Algorithm 4, we
must have a spatio-temporal robustness χϕ(µ∗, τ∗, γ∗, s) ≥ εt, where (τ∗, γ∗) are the best
responses of the adversary. Thus, µ∗ is a feasible solution for robust policy synthesis for
the defender in Problem 1. From Proposition 1, the probability of satisfying the MITL
formula ϕ equals 1, which is the maximum value that can be achieved for any control
policy; therefore, µ∗ is an optimal policy.

References
1. Baheti, R.; Gill, H. Cyber-physical systems. Impact Control. Technol. 2011, 12, 161–166. [CrossRef]
2. Baier, C.; Katoen, J.P.; Larsen, K.G. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.
3. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
4. Kress-Gazit, H.; Fainekos, G.E.; Pappas, G.J. Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot.

2009, 25, 1370–1381. [CrossRef]
5. Ding, X.; Smith, S.L.; Belta, C.; Rus, D. Optimal control of Markov decision processes with linear temporal logic constraints. IEEE

Trans. Autom. Control. 2014, 59, 1244–1257. [CrossRef]
6. Zhou, Y.; Maity, D.; Baras, J.S. Timed automata approach for motion planning using metric interval temporal logic. In Proceedings

of the European Control Conference, Aalborg, Denmark, 29 June–1 July 2016; pp. 690–695. [CrossRef]
7. Fu, J.; Topcu, U. Computational methods for stochastic control with metric interval temporal logic specifications. In Proceedings

of the Conference on Decision and Control, Osaka, Japan, 15–18 December 2015; pp. 7440–7447. [CrossRef]
8. Fainekos, G.E.; Pappas, G.J. Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 2009,

410, 4262–4291. [CrossRef]
9. Donzé, A.; Maler, O. Robust satisfaction of temporal logic over real-valued signals. In Proceedings of the International Conference on

Formal Modeling and Analysis of Timed Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 92–106. [CrossRef]
10. Niu, L.; Clark, A. Optimal Secure Control with Linear Temporal Logic Constraints. IEEE Trans. Autom. Control. 2020, 65.

[CrossRef]
11. Zhu, M.; Martinez, S. Stackelberg-game analysis of correlated attacks in cyber-physical systems. In Proceedings of the American

Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 4063–4068. [CrossRef]
12. Wang, J.; Tu, W.; Hui, L.C.; Yiu, S.M.; Wang, E.K. Detecting time synchronization attacks in cyber-physical systems with machine

learning techniques. In Proceedings of the International Conference on Distributed Computing Systems, Atlanta, GA, USA, 5–8
June 2017; pp. 2246–2251. [CrossRef]

13. Jewell, W.S. Markov-renewal programming: Formulation, finite return models. Oper. Res. 1963, 11, 938. [CrossRef]
14. Ross, S.M. Introduction to Stochastic Dynamic Programming; Academic Press: Cambridge, MA, USA, 2014.
15. Stidham, S.; Weber, R. A survey of Markov decision models for control of networks of queues. Queueing Syst. 1993, 13, 291–314.

[CrossRef]
16. Leitmann, G. On generalized Stackelberg strategies. J. Optim. Theory Appl. 1978, 26, 637–643. [CrossRef]

http://doi.org/10.1109/ICMECH.2019.8722929
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TAC.2014.2298143
http://dx.doi.org/10.1109/ECC.2016.7810369
http://dx.doi.org/10.1109/CDC.2015.7403395
http://dx.doi.org/10.1016/j.tcs.2009.06.021
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1109/TAC.2019.2930039
http://dx.doi.org/10.1109/ACC.2011.5991463
http://dx.doi.org/10.1109/ICDCS.2017.25
http://dx.doi.org/10.1287/opre.11.6.938
http://dx.doi.org/10.1007/BF01158935
http://dx.doi.org/10.1007/BF00933155

Games 2023, 14, 30 23 of 23

17. Wei, L.; Sarwat, A.I.; Saad, W.; Biswas, S. Stochastic games for power grid protection against coordinated cyber-physical attacks.
IEEE Trans. Smart Grid 2016, 9, 684–694. [CrossRef]

18. Garnaev, A.; Baykal-Gursoy, M.; Poor, H.V. A game theoretic analysis of secret and reliable communication with active and
passive adversarial modes. IEEE Trans. Wirel. Commun. 2015, 15, 2155–2163. [CrossRef]

19. Bouyer, P.; Laroussinie, F.; Markey, N.; Ouaknine, J.; Worrell, J. Timed temporal logics. In Models, Algorithms, Logics and Tools;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–230. [CrossRef]

20. Alur, R.; Feder, T.; Henzinger, T.A. The benefits of relaxing punctuality. J. ACM 1996, 43, 116–146. [CrossRef]
21. Maler, O.; Nickovic, D.; Pnueli, A. From MITL to timed automata. In Proceedings of the International Conference on Formal Modeling

and Analysis of Timed Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 274–289. [CrossRef]
22. Karaman, S.; Frazzoli, E. Vehicle routing problem with metric temporal logic specifications. In Proceedings of the Conference on

Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 3953–3958. [CrossRef]
23. Liu, J.; Prabhakar, P. Switching control of dynamical systems from metric temporal logic specifications. In Proceedings of the

International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 5333–5338. [CrossRef]
24. Nikou, A.; Tumova, J.; Dimarogonas, D.V. Cooperative task planning of multi-agent systems under timed temporal specifications.

In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016; pp. 7104–7109. [CrossRef]
25. Hansen, E.A. Solving POMDPs by searching in policy space. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence, Madison, WI, USA, 24–26 July 1998; pp. 211–219. [CrossRef]
26. Sharan, R.; Burdick, J. Finite state control of POMDPs with LTL specifications. In Proceedings of the American Control Conference,

Portland, OR, USA, 4–6 June 2014; p. 501. [CrossRef]
27. Ramasubramanian, B.; Clark, A.; Bushnell, L.; Poovendran, R. Secure control under partial observability with temporal logic

constraints. In Proceedings of the American Control Conference, Philadelphia, PA, USA, 10–12 July 2019; pp. 1181–1188. [CrossRef]
28. Ramasubramanian, B.; Niu, L.; Clark, A.; Bushnell, L.; Poovendran, R. Secure control in partially observable environments to

satisfy LTL specifications. IEEE Trans. Autom. Control 2021, 66, 5665–5679. [CrossRef]
29. Zhao, G.; Li, H.; Hou, T. Input–output dynamical stability analysis for cyber-physical systems via logical networks. IET Control

Theory Appl. 2020, 14, 2566–2572. [CrossRef]
30. Zhao, G.; Li, H. Robustness analysis of logical networks and its application in infinite systems. J. Frankl. Inst. 2020, 357, 2882–2891.

[CrossRef]
31. Simon, D. Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.
32. Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control. 2002, 47, 410–421. [CrossRef]
33. Rizk, A.; Batt, G.; Fages, F.; Soliman, S. A general computational method for robustness analysis with applications to synthetic

gene networks. Bioinformatics 2009, 25, i169–i178. [CrossRef]
34. Jakšić, S.; Bartocci, E.; Grosu, R.; Nguyen, T.; Ničković, D. Quantitative monitoring of STL with edit distance. Form. Methods Syst.

Des. 2018, 53, 83–112. [CrossRef]
35. Aksaray, D.; Jones, A.; Kong, Z.; Schwager, M.; Belta, C. Q-learning for robust satisfaction of signal temporal logic specifications.

In Proceedings of the Conference on Decision and Control, Las Vegas, NV, USA, 12–14 December 2016; pp. 6565–6570. [CrossRef]
36. Lindemann, L.; Dimarogonas, D.V. Robust control for signal temporal logic specifications using discrete average space robustness.

Automatica 2019, 101, 377–387. [CrossRef]
37. Rodionova, A.; Lindemann, L.; Morari, M.; Pappas, G. Temporal robustness of temporal logic specifications: Analysis and control

design. ACM Trans. Embed. Comput. Syst. 2022, 22, 1–44. [CrossRef]
38. Rodionova, A.; Lindemann, L.; Morari, M.; Pappas, G.J. Combined left and right temporal robustness for control under STL

specifications. IEEE Control Syst. Lett. 2022, 7, 619–624. [CrossRef]
39. Niu, L.; Ramasubramanian, B.; Clark, A.; Bushnell, L.; Poovendran, R. Control Synthesis for Cyber-Physical Systems to Satisfy

Metric Interval Temporal Logic Objectives under Timing and Actuator Attacks. In Proceedings of the International Conference
on Cyber-Physical Systems, Sydney, Australia, 21–25 April 2020; pp. 162–173. [CrossRef]

40. Ouaknine, J.; Worrell, J. Some recent results in metric temporal logic. In Proceedings of the International Conference on Formal
Modeling and Analysis of Timed Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–13. [CrossRef]

41. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Proceedings of the Soviet Physics Doklady;
The American Institute of Physics: New York, NY, USA, 1966; Volume 10, pp. 707–710.

42. Mohri, M. Edit-distance of weighted automata: General definitions and algorithms. Int. J. Found. Comput. Sci. 2003, 14, 957–982.
[CrossRef]

43. Coogan, S.; Gol, E.A.; Arcak, M.; Belta, C. Traffic network control from temporal logic specifications. IEEE Trans. Control Netw.
Syst. 2015, 3, 162–172. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSG.2016.2561266
http://dx.doi.org/10.1109/TWC.2015.2498934
http://dx.doi.org/10.1007/978-3-319-63121-9_11
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1007/11867340_20
http://dx.doi.org/10.1109/CDC.2008.4739366
http://dx.doi.org/10.1109/ICRA.2014.6907643
http://dx.doi.org/10.1109/ACC.2016.7526793
http://dx.doi.org/10.5555/2074094.2074119
http://dx.doi.org/10.1109/ACC.2014.6858909
http://dx.doi.org/10.23919/ACC.2019.8814630
http://dx.doi.org/10.1109/TAC.2020.3039484
http://dx.doi.org/10.1049/iet-cta.2020.0197
http://dx.doi.org/10.1016/j.jfranklin.2019.12.002
http://dx.doi.org/10.1109/9.989067
http://dx.doi.org/10.1093/bioinformatics/btp200
http://dx.doi.org/10.1007/s10703-018-0319-x
http://dx.doi.org/10.1109/CDC.2016.7799279
http://dx.doi.org/10.1016/j.automatica.2018.12.022
http://dx.doi.org/10.1145/3550072
http://dx.doi.org/10.1109/LCSYS.2022.3209928
http://dx.doi.org/10.1109/ICCPS48487.2020.00023
http://dx.doi.org/10.1007/978-3-540-85778-5_1
http://dx.doi.org/10.1142/S0129054103002114
http://dx.doi.org/10.1109/TCNS.2015.2428471

	Introduction
	Related Work
	MITL and Timed Automata
	Problem Setup and Formulation
	Environment, Defender, and Adversary Models
	Definitions of Robustness Degree
	Spatial Robustness
	Temporal Robustness
	Spatio-Temporal Robustness
	Robust MITL Semantics

	Problem Statement

	Solution: Only Actuator Attack
	Product DSG
	Evaluating Spatial Robustness
	Evaluating Temporal Robustness
	Evaluating Spatio-Temporal Robustness
	Control Policy Synthesis

	Solution: Actuator and Timing Attacks
	Case Study
	Signalized Traffic Network Model
	Numerical Results

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

