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Abstract: This paper tries to prove that the outcomes stemming from interactions on assignment
markets bring about coordination in case of a stochastic matching subject to various forms of expec-
tations. We consider an exchange network with stochastic matching between the pairs of players
and analyze the dynamics of bargaining in such a market. The cases of convergent expectations,
divergent expectations and of social preferences are studied. The extension of earlier works lies in the
consideration of a stochastic matching on a graph dependent on the weights of edges. The results
show that, in all three cases, the dynamics converges rapidly to the generalized Nash bargaining
solution, which is an equilibrium that combines notions of stability and fairness. In the first two
scenarios, the numerical simulations reveal that the convergence toward a fixed point is speedily
achieved at the value of the outside option. In the third scenario, the fixed point promptly converges
to the value of the outside option supplemented by the surplus share.

Keywords: exchange networks; games on graphs; stochastic matching; bargaining

1. Introduction

Matching markets have been the subject of research in economics ([1]) and in opera-
tions research ([2,3]) for their capacity to take account of agents’ different preferences for
different kinds of items. Just as much, they managed to consider the allocations of goods
to agents in a decentralized manner ([4]). The early papers extended the initial model
by [5] in which the authors analyzed the problem of achieving better partnerships. Despite
the originality of their analysis of the assignment problems, its main limitation was to be
found in the absence of consideration of uncertainty. Likewise, the competitive equilibrium
that characterized the matching outcomes appeared extreme in a certain number of cases.
Hence, it became a necessity to consider that trading prices—that matched agents agreed
upon—divide the surplus from their matches through bargaining ([6]).

Parallel to the exchange networks, bargaining has received great attention from the
economists ([7–10]). Nash bargaining solution, normatively satisfying axioms of ratio-
nality of players in a non-cooperative game, has been previously studied with regard to
vertical markets ([11]), international relations ([12]), innovation partnerships ([13]), labor
relations ([14]) and to power division among economic stakeholders ([15]). The Nash
bargaining solution to a bilateral negotiation problem involves the determination of payoffs
for each party with a specification of the disagreement point if the negotiation breaks
down ([11]). Whereas the case of bargaining between two players—even in stochastic
processes ([16,17])—is now well understood, the possible outcomes of bargaining on a
large scale such as networked systems has been less explored. Those represent patterns of
trading opportunities ([18,19]), which are not necessarily stable in time. The examples of
networked structures can be found in markets for labor, agricultural and forestry activities,
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knowledge and information, housing, energy and in joint-venture partnering. Furthermore,
the need for forecast—based on matching probabilities—arose in decision-making. This is
how matching, bargaining on networks and randomness led to exchange networks ([20]).

Following the literature on assignment markets ([21–23]), which reveal games on
graphs, we consider players to occupy the nodes of a network. The edges represent
the trading partnerships between the nodes. The previous works notably studied the
convergence properties of matched players’ allocations that happen to stand within the
generalized Nash bargaining solutions ([23,24]). Those can be equal to or different from
the standard Nash solutions. The generalized solution for such a game is an equilibrium
concept that combines the notions of stability, by consolidating the trading partnership,
and of balance or fair-trade, by equally splitting the trading surplus.1 If we now consider
the process in which the partnership is concluded at random, this involves a process of
stochastic matching and the construction of an edge-random graph. The random-graph-
theoretic framework, where a potential edge occurs independently of the other edges with
some non-null probability, has been mostly studied from the inaugural frame of reference
proposed by [26].

Apropos of the literature on decentralized matching markets, we do not stipulate the
absence of information about other agents’ payoffs nor do we take heed of coalitions of
players ([27–29]). Our interest is based on the convergence properties instead. Otherwise,
coalitions would lead to an oligopoly, with many-to-few trading opportunities, which is
not addressed by the present research. In addition to the remark mentioned above, the
matching probability functions that we shall take into consideration are, to some extent,
comparable to that in [28]. We albeit focus on the economic valuations of model-players
over an item, intended for trade, weighted by the network value of exchange.

More importantly, the number of research papers specifically exploring the strategic
issues that appear in bargaining on networks with random matching are relatively infre-
quent to date. Among others, the topic has been previously discussed by [18,19,30,31]. In
their models, the matching mechanism activates a number of linked pairs of agents. In
each activated pair, one of the players is randomly selected to propose a division of the
surplus created upon agreement. One of the recurrent technologies used in these models
is termed linear search ([32]). The latter assumes that every player finds a bargaining
partner with a fixed probability ([33]). In addition, the conditional probability of meeting a
certain type of partner—as long as the conditioning event remains fixed—is given by the
proportion of players in the market belonging to that type ([19]). In the following work, we
approach random matching in a different way, for the assignment technology is built from
the weights of edges ([34]), which are at the very heart of the exchange networks.

The purpose of such a choice is related to some of the emerging properties of complex
systems. As a matter of fact, such systems are regarded as efficient if they manage to
produce high coordinatedness among their constituent parts ([35]). For instance, catallactics
or spontaneous order is a theory proposed by [36] to describe the order, brought about by
the mutual adjustment of many individual economies, in a free-market system composed
of various actors. The process can be understood as a network of firms and households
taking part in a coordination game, where coordinatedness is a spontaneous outcome
of individual trading activities that aims at reaching exchange rates and prices ([37]). In
fact, individuals are making decisions based on their own market valuations without a
centralized coordinator ([4]). Accordingly, the consideration of a time-evolving random
matching is appropriate to study the mutually beneficial relationships on which are based
free-market economies. Stochastic matching markets then have the capacity to study the
likelihood of maladjustment and of lack of coordination in overall trading activities.2

Moreover, in the presence of such an assignment technology, can various forms of
players’ expectations lead to a generalized outcome? It has long been well known that
divergent expectations lead to a disagreement in bargaining ([39]). Agents that have the
same information but interpret it differently are said to have divergent expectations ([40]).
Our wish is to see if this divergence can purely and simply disappear in the presence of
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an assignment market, the very essence of which is to permit reaching an agreement. In
addition, we want to verify whether converging expectations or social preferences, even
if rare in nature, yield results that outperform the matching that can be reached with
divergent expectations.

We consider an exchange network with stochastic matching between the pairs of
players and analyze the dynamics of bargaining in such a market. The cases of convergent
expectations, divergent expectations and of social preferences are studied. The results show
that, in all three cases, the dynamics converge rapidly to the concept of generalized Nash
bargaining solution. In the first two scenarios, the numerical simulations reveal that the
convergence toward a fixed point is achieved at the value of the outside option. In the third
scenario, the fixed point converges to the value of the outside option supplemented by the
surplus share.

Section 2 provides a detailed description of the network model in the respective
scenarios. Section 3 is devoted to illustrating simulation examples. Concluding remarks
are given in Section 4.

2. Model

Let us first introduce the deterministic framework that has been used in the literature so
far. Consider a network of players spread across a graph G = (V, E), where V = {v1, ..., vn}
denotes the set of nodes representing the players and E = {(u, v) ∈ V ×V} is the set of
edges or connections between those players. The graph is considered to be complete, in that
any two network players can be seen as neighbors and can thus engage in a negotiation.
No other graph property is reckoned with.

Players u and v, for u, v = 1, ..., n and u 6= v, connected through an edge (u, v), are
allowed to play the bargaining game at time t, ∀t ≥ 0. The game aims at splitting the value
generated by their exchange. Before the negotiation between matched players takes place,
let w(t) : E → RV×V

+ be the vector of edge weights at time t measuring the aggregated
value of an item destined to negotiation. Put differently, it corresponds to the weight of
a matching. Despite the simultaneous negotiation across the edges of G, each player can
engage in at most one transaction ([21]). When one exists, the game outcome is related to
a matching M(t) ⊆ E of G, which defines the pairs of players involved in exchanges at
time t.

When the game leads to a trade outcome, let a vector x(t) ∈ RV
+ describe the allocations

on V. The latter corresponds to the weights on edges incident on V. For example, if xu(t)
is the allocation of node u, the outcome xu(t) + xv(t) = wu,v(t) ≤ ∞, issued from an
edge (u, v) ∈ M(t), is the solution of the game at time t. Otherwise, xu(t) = 0 for every
unmatched node u 6∈ M(t). Let us specify that u would seek to match with v if and only
if xu(t) − xv(t) ≥ 0 in the first place. When xu(t) = xv(t), the bargaining outcome is
considered to be generalized. When the equality is verified on the entire time length, the
generalized Nash bargaining solution is assumed to be stable.

We now extend the original model by injecting stochasticity in the networked system.
In order to compute the expected trade outcomes, choice probabilities to all the pairs of
players are assigned. That is, we consider a probability function that assigns to each node
the likelihood that a neighbor chooses it as a trading partner among the set of nodes.
Consider P[(u, v) ∈ M(t)] ∈ [0, 1] to be the probability that two players decide to get
involved in a negotiation, which implicitly puts a probability that an edge between u and v
is chosen ([41]). Likewise, P[(u, k) ∈ M(t), k 6= v], or simply P[(u, v) 6∈ M(t)], represents
the probability that player u, as a potential counterpart of player v in the bargaining game,
chooses a neighbor k different from v. Denote by nG(u) the set of neighbors of player u,
where k ∈ nG(u)\v. Therefore, we are faced with a random graph G = (V, E, P), defined
over the probability measure function P(G) : F → [0, 1], with F the σ-field. Hence, all
subsets of the probability space are measurable. A random graph then becomes a graph-
valued random variable or a measurable mapping from a probability space to G ([42]).
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According to the methodology introduced by [43,44], the probability functions are defined
to be3

P[(u, v) ∈ M(t)] (1)

=
[xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

P[(u, v) 6∈ M(t)] (2)

=
wu,v(t)α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). As for α ∈ [0, 1], it represents
the decay factor in the probabilistic method. Assuming a decay factor of 1 leads to certainty
that u will engage in the comparison of weights with v, videlicet u has assured beliefs of
being a match with v. Formally, the probability function is defined in terms of the difference
in the weights of edges between players u and v, and of the difference in the weights of
edges between player u and an alternative neighbor k, should the negotiation with the
matching partner fail, reflecting the outside option.4 In parallel, the probability that players
u and v do not match depends on the weight of a match, before the realization of the
exchange, as well as on the gap in the weights of edges between player u and an alternative
player k. It is ascertainable that both denominators contain the weight of a match wu,v(t),
the presence of which is meant to adjust the likelihood of matching between nodes u and v
and to ensure consistency to the probability functions. Indeed, the denominators reflect the
network value of exchange.

Following the methodology by [45], we have then conducted a simple investigation
of the robustness when it comes to decay factor α. For example, the relative risk aversion
coefficient is defined as being in the vicinity of one ([46]), but there is not yet a commonly
accepted estimate. By bounding α between 0 and 1, we ensure that the overweighting
cannot take place, which would fall under a completely different paradigm, for we would
need to deal with irrational agents.

2.1. Convergent Expectations

By means of identical decay factors αu, αv ∈ [0, 1], such that αu = αv = α, let players
u and v exhibit convergent expectations on the possibility to initiate a trading exchange
through the comparison of edge weights. In this case, the condition yields5

E[xu(t) + xv(t)] = E[wu,v(t)] (3)

⇔ [xu(t) + xv(t)]P[(u, v) ∈ M(t)]

= wu,v(t)P[(u, v) 6∈ M(t)],

∀t ≥ 0, for u, v = 1, ..., n, from which we obtain the following weight in expectation

wu,v(t) = [[xu(t) + xv(t)][xu(t)− xv(t)]α]
1

1+α , (4)

∀t ≥ 0, for u, v = 1, ..., n, (u, v) ∈ E\M(t). The notion of Nash solution that captures
the rational play in the bargaining game resumes to a stable outcome. The latter comes
from pairwise stability, which accounts for the mutual approval of both players. Such
a requirement, where the sum of values is maximal, which implies a maximum weight
matching ([33]), states that an unrealized exchange between two players cannot be better
than the realized one. Put differently, the player cannot earn more by changing its trading
partner. Formally,

wu,v(t) ≤ [[xu(t) + xv(t)][xu(t)− xv(t)]α]
1

1+α . (5)
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Each player also has an alternative option, which represents its expected value in
case they disagree on how to split the value. Let βu(t) = wu,v(t) − xv(t) and βv(t) =
wu,v(t) − xu(t) denote the best alternatives that nodes u and v might obtain had they
terminated their current agreements and formed new ones. The former could be interpreted
as the threats of players in a match. Then, consider E[βu(t)] and E[βv(t)] to be the respective
expected option values of players u and v such that6

E[βu(t)] = βu(t)P[(u, v) ∈ M(t)] (6)

=
[wu,v(t)− xv(t)][xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

E[βv(t)] = βv(t)P[(u, v) ∈ M(t)] (7)

=
[wu,v(t)− xu(t)][xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). The exchange yields an
expected surplus of

E[su,v(t)] = E[wu,v(t)]− [E[βu(t)] +E[βv(t)]] (8)

=
wu,v(t)1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α

− [xu(t)− xv(t)]
α[2wu,v(t)− xu(t)− xv(t)]

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). While the stable outcome
ensures that the outcome from a matched exchange is always preferred, a stable generalized
Nash bargaining solution is an outcome in which the edge endpoints satisfy the Nash
bargaining solution at any point of time ([22]). The latter posits that players split the
surplus evenly between them, that is, the surplus of u over its alternative equals that of v
over its own alternative. In expectation, the Nash bargaining solutions amount to

x?u(t) = E[βu(t)] +E[su,v(t)]/2 (9)

=
1
2

[xu(t)− xv(t)]1+α + wu,v(t)1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

x?v(t) = E[βv(t)] +E[su,v(t)]/2 (10)

=
1
2

wu,v(t)1+α − [xu(t)− xv(t)]1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ M(t).

Proposition 1. In exchange networks with stochastic matching and convergent expectations of
players, the bargaining outcome is stable and thus a generalized Nash bargaining solution.

Proof. Following [23], the condition for an outcome to be stable corresponds to the ef-
ficiency property of x?u(t) + x?v(t) ≥ wu,v(t). The sum of individual weights of an edge
incident on V is an upper bound on the weight of a matching and thus of an edge at issue.
The latter is obtained by assigning values to the nodes—equivalent to their weighting of
the matching—such that their sum is greater than or equal to the weight of the edge. Ergo,
the individual values of the edges in the matching have a maximal value on G. Provided



Games 2023, 14, 2 6 of 18

the values of x?u(t) and x?v(t), coming from the expressions (9) and (10), and of wu,v(t),
we obtain

x?u(t) + x?v(t) ≥ wu,v(t) (11)

⇔ xu(t) + xv(t)

≤ wu,v(t)(1+α)2
[xu(t)− xv(t)]−α(

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
)1+α

,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). When the surplus is meant to
be split equally, the disparity between the allocations goes to zero or [xu(t)− xv(t)]α → 0.
This implies that xu(t) + xv(t) ≤ ∞, which is valid by assumption. Thereby, the Nash
bargaining solutions with convergent expectations prove to be stable.

Proposition 2. In exchange networks with stochastic matching and convergent expectations of
players, the generalized Nash bargaining outcome converges to a fixed point.

Proof. Following [47], we need to differentiate either x?u(t) or x?v(t) with respect to time.
In point of fact, their similar expressions ought to lead us to an equivalent interpretation
of results. Although the bargaining process can be considered to take place in discrete
time, the connection between discrete and continuous times enables us to obtain the same
conclusion as with the difference operator ([48]). Namely, due to the iterative re-matching
process, δxu(t) = (xu(t + 1)− xu(t))∆t−1 ' dxu(t)

dt at xu(t) = xu(∆t). By virtue of fairness
in the generalized Nash bargaining solution, such that x?u(t)− x?v(t) = 0, we consider an
equal split. This is due to the fact that the initial bargaining outcome is not meant to be
unfair or unbalanced. Provided the existence of a match and of Nash allocations of u and
v, we then deliberately ignore the time evolution of the weighting of alternative player
k ∈ nG(u)\v. The latter is nonetheless accounted for, by means of the denominator of x?u(t)
or x?v(t), in the network value of exchange. One obtains a final differential equation in the
form of [

C(1 + α)wu,v(t)α − αwu,v(t)2α
]
w′u,v(t)

C2 = 0, (12)

where C = ∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α, the solution of which is a constant related
to edge value wu,v(t) to be split between u and alternative player k. As one runs the
bargaining dynamics, the Nash bargaining solution converges. A convergence value
dependent on the edge weight and on an alternative player reflects the realignment toward
the outside option of player u engaging into a new negotiation. The same rationale applies
to player v.

2.2. Divergent Expectations

Now, consider divergent expectations of players u and v through the use of differ-
entiated decay factors αu, αv ∈ [0, 1], where αu 6= αv, such that the probability functions
rely on different expectations apropos of the comparison of edge weights. Let us in turn
differentiate Pu[(u, v) ∈ M(t)] from Pv[(u, v) ∈ M(t)], such that Pu[(u, v) ∈ M(t)] 6=
Pv[(u, v) ∈ M(t)]. They represent the respective probability functions of matching of u and
v. The differentiation is based on the earlier distinction between the decay factors. The
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condition for the expected Nash bargaining outcomes to exist is represented in the form of
a Diophatine equation ([49]), which yields

Eu[xu(t)] +Ev[xv(t)] = Eu×v[wu,v(t)] (13)

⇔ xu(t)Pu[(u, v) ∈ M(t)]

+xv(t)Pv[(u, v) ∈ M(t)]

= wu,v(t)Pu[(u, v) 6∈ M(t)]Pv[(u, v) 6∈ M(t)],

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). The use of the equation enables
us to assign an expected weight of

wu,v(t) (14)

=
xu(t)P[(u, v) ∈ M(t)] + xv(t)P[(u, v) ∈ M(t)]

Pu[(u, v) 6∈ M(t)]Pv[(u, v) 6∈ M(t)]

= [xu(t)[xu(t)− xv(t)]αu A + xv(t)[xu(t)− xv(t)]αv B]
1

1+αu+αv ,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v, (u, v) ∈ E\M(t) and αu 6= αv, where A =

∑(u,k)∈M(t)[xu(t) − xk(t)]αv + wu,v(t)αv and B = ∑(u,k)∈M(t)[xu(t) − xk(t)]αu + wu,v(t)αu .
Accordingly, the stable outcome corresponds to

wu,v(t) (15)

≤ [xu[xu(t)− xv(t)]αu A + xv[xu(t)− xv(t)]αv B]
1

1+αu+αv .

As for the option values, they now amount to

Eu[βu(t)] = βu(t)Pu[(u, v) ∈ M(t)] (16)

=
[wu,v(t)− xv(t)][xu(t)− xv(t)]αu

∑(u,k)∈M(t)[xu(t)− xk(t)]αu + wu,v(t)αu
,

Ev[βv(t)] = βv(t)Pv[(u, v) ∈ M(t)] (17)

=
[wu,v(t)− xu(t)][xu(t)− xv(t)]αv

∑(u,k)∈M(t)[xu(t)− xk(t)]αv + wu,v(t)αv
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v, (u, v) ∈ E\M(t) and αu 6= αv. The latter serve to
compute the updated expression of the expected surplus

Eu×v[su,v(t)] (18)

= Eu×v[wu,v(t)]− [Eu[βu(t)] +Ev[βv(t)]]

=
wu,v(t)1+αu+αv

AB

− [wu,v(t)− xv(t)][xu(t)− xv(t)]αu A
AB

− [wu,v(t)− xu(t)][xu(t)− xv(t)]αv B
AB

,
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∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v, (u, v) ∈ E\M(t) and αu 6= αv. Finally, the Nash
bargaining solutions are equal to

x?u(t) = Eu[βu(t)] +Eu×v[su,v(t)]/2 (19)

=
wu,v(t)1+αu+αv

2AB

+
[wu,v(t)− xv(t)][xu(t)− xv(t)]αu A

2AB

− [wu,v(t)− xu(t)][xu(t)− xv(t)]αv B
2AB

,

x?v(t) = Ev[βv(t)] +Eu×v[su,v(t)]/2 (20)

=
wu,v(t)1+αu+αv

2AB

− [wu,v(t)− xv(t)][xu(t)− xv(t)]αu A
2AB

+
[wu,v(t)− xu(t)][xu(t)− xv(t)]αv B

2AB
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v, (u, v) ∈ M(t) and αu 6= αv.

Proposition 3. In exchange networks with stochastic matching and divergent expectations of
players, the bargaining outcome is stable and thus a generalized Nash bargaining solution.

Proof. Equivalent to that of Proposition 1. We have

x?u(t) + x?v(t) ≥ wu,v(t)⇔
wu,v(t)(1+αu+αv)2

(AB)1+αu+αv
(21)

≥ xu[xu(t)− xv(t)]αu A + xv[xu(t)− xv(t)]αv B.

Despite divergent expectations, when the surplus is intended to be split equally, both
[xu(t)− xv(t)]αu and [xu(t)− xv(t)]αv will tend to zero. In this way, the left-sided expression
has to be greater than or equal to zero, which is verified by xu(t)− xk(t) ≤ wu,v(t), for
xk(t) ≥ 0 and wu,v(t) ≥ xu(t). As a result, the generalized Nash bargaining solutions with
divergent expectations prove to be stable.

Proposition 4. In exchange networks with stochastic matching and divergent expectations of
players, the generalized Nash bargaining outcome converges to a fixed point.

Proof. Equivalent to that of Proposition 2. The rationale yields the following differen-
tial equation

(1 + αu + αv)wu,v(t)αu+αv w′u,v(t)
AB

= 0, (22)

where A = ∑(u,k)∈M(t)[xu(t)− xk(t)]αv + wu,v(t)αv and B = ∑(u,k)∈M(t)[xu(t)− xk(t)]αu +
wu,v(t)αu , the solution of which is a constant related to edge value wu,v(t) to be split
between u and alternative player k, the former being obtained by multiplying both sides
of the fraction by AB. As one runs the balancing dynamics, the Nash bargaining solution
converges. A convergence value dependent on the edge weight and on an alternative
player reflects the realignment toward the outside option of player u engaging into a new
negotiation. The same rationale applies to player v.
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2.3. Social Preferences

It is reasonable to expect that some nodes are likely to have more bargaining power
than others ([4,50]). One might also think about the contribution of social preferences
or ex-ante preferences for equity ([51]). Social preferences are based upon the postulate
that a player sacrifices a positive amount of its share to accommodate the other player’s
well-being. In such a context, a player decides to allocate a portion of its value to the other
player. Despite the general presumption that social preferences are ignored in settings
such as competitive markets, it fails to hold when uncertainty is important ([52]). While
maintaining the previous assumption of convergent beliefs, let φ ∈ [0, 1] be the outcome
share that player u keeps on the edge (u, v), so 1− φ would be the share value that player
v receives ([10,53]). In that case,

E[[φxu(t) + (1− φ)xv(t)] + xv(t)] = E[wu,v(t)] (23)

⇔ [[φxu(t) + (1− φ)xv(t)] + xv(t)]P[(u, v) ∈ M(t)]

= wu,v(t)P[(u, v) 6∈ M(t)],

∀t ≥ 0, for u, v = 1, ..., n and k ∈ nG(u)\v. When φ = 1, player u is only concerned by its
own outcome. Otherwise, when φ = [0, 1), it is also concerned by the allocation that player
v obtains. The stable outcome is in the form of

wu,v(t) (24)

≤ [[φxu(t) + (1− φ)xv(t)] + xv(t)][xu(t)− xv(t)]α]
1

1+α .

The corresponding option values are equal to

E[βu(t)] = βu(t)P[(u, v) ∈ M(t)] (25)

=
[wu,v(t)− xv(t)][xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

E[βv(t)] = βv(t)P[(u, v) ∈ M(t)] (26)

=
[wu,v(t)− [φxu(t) + (1− φ)xv(t)]][xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). The expected surplus from
exchange is now

E[su,v(t)] = E[wu,v(t)]− [E[βu(t)] +E[βv(t)]] (27)

=
wu,v(t)1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α

− [xu(t)− xv(t)]
α[2wu,v(t)− φxu(t)− (2− φ)xv(t)]

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t). Finally, the Nash bargaining
solutions endowed with social preferences amount to

x?u(t) = E[βu(t)] +E[su,v(t)]/2 (28)

=
1
2

φ[xu(t)− xv(t)]1+α + wu,v(t)1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,
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x?v(t) = E[βv(t)] +E[su,v(t)]/2 (29)

=
1
2

wu,v(t)1+α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α

−1
2
[(2φ− 1)xu(t)− φxv(t)][xu(t)− xv(t)]α

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ M(t).

Proposition 5. In exchange networks with stochastic matching and social preferences of players,
the bargaining outcome is stable and thus a generalized Nash bargaining solution.

Proof. Equivalent to that of Proposition 1. The condition for an outcome to be stable yields

x?u(t) + x?v(t) ≥ wu,v(t) (30)

⇔ wu,v(t)(1+α)2

∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α
≥ 0,

∀t ≥ 0, for u, v = 1, ..., n, k ∈ nG(u)\v and (u, v) ∈ E\M(t), with [xu(t)− xv(t)]α → 0. The
expression has to be non-negative, which is verified by xu(t)− xk(t) ≤ wu,v(t) given that
xk(t) ≥ 0 and wu,v(t) ≥ xu(t).

Proposition 6. In exchange networks with stochastic matching and social preferences of players,
the generalized Nash bargaining outcome converges to a fixed point.

Proof. Equivalent to that of Proposition 2. One obtains a time-derivative in the follow-
ing form:

φαwu,v(t)2αw′u,v(t)
C2 = 0, (31)

where C = ∑(u,k)∈M(t)[xu(t)− xk(t)]α + wu,v(t)α, the solution of which is a constant, pro-
portional to the surplus share φ decided by player u, related to edge value wu,v(t) to be
split between u and alternative player k, the latter being obtained by multiplying both sides
of the fraction by C. As one runs the balancing dynamics, the Nash bargaining solution
converges. With social preferences, a convergence value dependent on the edge weight and
on an alternative player reflects the realignment toward the outside option, supplemented
by the surplus share, of player u engaging into a new socially-oriented negotiation. The
same rationale applies to player v.

3. Simulations

Based on the properties and conditions previously obtained, the aim of this section
is to illustrate, through numerical simulations, the results previously obtained. Three
examples are presented, each of which respectively covers the generalized Nash bargaining
outcomes obtained with convergent expectations, divergent expectations and with social
preferences. For the purpose of triggering the bargaining process, consider the values of
model parameters to be fixed at wu,v(0) = 10.00, xu(0) = 5.10, xv(0) = 4.90, such that the
initial allocations are slightly unbalanced at t = 0. That way, the calibration score will be off
by at most 0.10, i.e., 5.10− 5.00 = 0.10 or 5.00− 4.90 = 0.10. We can thus choose the edge
weight to be convergent to the generalized Nash bargaining solution, which completes the
proof ([54]).

3.1. Convergent Expectations

Figure 1 depicts the levels of allocations with convergent expectations. Despite the
initial disparity between the allocations, we observe that the Nash bargaining solutions,
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which are x?u and x?v , lead to an equal split of surplus, or a stable outcome, for all levels of α.
As expected, the identical values of {5, 5} are obtained at α = 1. In addition to the validity
of Proposition 1, we also see that the continuum of Nash bargaining values takes the form
of a concave distribution function, with a bargaining outcome of half the allocation values
at α = 0.

Figure 1. Nash bargaining solutions (x?u, x?v) with convergent expectations. The x-axis corresponds to
the decay parameter (α). The y-axis denotes Nash allocations (xα

u, xα
u).

For illustrative purposes, Figure 2 represents the levels of option values. We denote
that, given the initial unbalance, the convergence of values alternative to Nash allocations
takes place as α→ 1. Even if outside options tend to 0 when the expectations head toward
1, they always remain strictly positive. Nevertheless, the continuum of values is subject
to an s-shaped distribution, with an inflection point at α = 0.37, which coincides with the
concave rise in the Nash bargaining solutions previously described. In addition, however,
the fall in option values is neither proportional nor symmetric to the increase in Nash
allocations. This can be justified through the equal split of the exchange value in the Nash
bargaining outcomes, the latter exceeding the outcomes obtainable with alternative players.

Figure 2. Option values (βu, βv) with convergent expectations. The x-axis corresponds to the decay
parameter (α). The y-axis denotes the values alternative to Nash allocations (βu(α), βv(α)).

The convergence dynamics of Nash bargaining solutions is outlined in Figure 3, which
has been simulated from the mean coordinates previously presented. The results show
a drop in Nash allocations at early time steps, which then stabilize, from t = 13, at the
levels of values alternative to Nash allocations observed at the inflection point located
at α = 0.37. Those are below the Nash bargaining solutions with null expectation of
being matched. Thereby, not only do we confirm Proposition 2, but we also find that long-
term Nash bargaining solutions are positioned at the coordinates of the outside options
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subject to iterative re-matching. This implies that, in the long-run, the convergence of Nash
bargaining solutions occurs at the levels of expected values in case the players fail to agree:
a property that has been found through the convergence toward the outside option.

Figure 3. Convergence dynamics of Nash allocations (x?u, x?v) for α = 0.50. The x-axis corresponds
to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of time
(x?u(t), x?v(t)).

Result 1. In exchange networks with stochastic matching and convergent expectations, the bar-
gaining outcome is stable and converges to the fixed value of the outside option.

3.2. Divergent Expectations

Figures 4 and 5 illustrate the levels of allocations with divergent expectations. As can
be noticed, the Nash bargaining solutions, which are x?u and x?v , rise up to the levels of
{5, 5} when both decay parameters equal 1. The respective values of solutions are found to
be similar at low values of αu and αv; they are identical at levels close to 1. For this reason,
we validate Proposition 3.

Figure 4. Nash bargaining solution (x?u) with divergent expectations. The left-sided x-axis corre-
sponds to the decay parameter of u (αu). The right-sided y-axis is the decay parameter of v (αv). The
z-axis denotes Nash allocations (x?u(αu, αv)).

The convergence dynamics in case of divergent expectations, where αu = 0.60 and
αv = 0.70, is pictured in Figure 6. Like in the previous case, we observe a decrease in
expected values at the early time interval, which then freeze, from t = 9, at the level observ-
able with the outside options with α = 0.37. We validate Proposition 4, and corroborate the
convergence of Nash bargaining solutions toward a constant relative to the outside option.
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Figure 5. Nash bargaining solution (x?v) with divergent expectations. The left-sided x-axis corre-
sponds to the decay parameter of u (αu). The right-sided y-axis is the decay parameter of v (αv). The
z-axis denotes Nash allocations (x?v(αu, αv)).

Figure 6. Convergence dynamics of Nash allocations (x?u, x?v) for αu = 0.60 and αv = 0.70. The x-axis
corresponds to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of
time (x?u(t), x?v(t)).

Result 2. In exchange networks with stochastic matching and divergent expectations, the bargain-
ing outcome is stable and converges to the fixed value of the outside option.

3.3. Social Preferences

With respect to the scenario dedicated to social preferences, Figures 7 and 8, which have
been differentiated—due to the inversely proportional share of allocations—by reversing
the values of the abscissa, show equivalent patterns of Nash allocations of both. Thus,
the simulation results confirm Proposition 5. Another interesting outcome provided by
the numerical simulations is that, in expectation, both Nash allocations tend to {10, 10}
when the share that u keeps to itself heads toward 0. This implies that, with stochastic
matching and social preferences, both obtain levels equal to the expected surplus from the
trading exchange.

This last result validates the soundness of the model based on reciprocity preferences
developed by [55] and extended by [56]. According to those, two players increase each
other’s payoffs when they expect to be treated by their partner fairly. In other words, given
that v benefits from the social concern of u, it behaves toward its counterpart in a similar
manner. Therefore, as α→ 1, they both end up having expected allocations that attain the
amount of the total surplus.

In case of social preferences, based on an expectation of match of 0.5, with a level
of share fixed to φ = 0.80, the convergence dynamics observed in Figure 9 validates the
statement of Proposition 6. After an early swinging in respective allocations, both obtain,
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from t = 4, identical Nash allocations throughout the time span. By that, because of
reciprocal preferences, the Nash bargaining solutions head toward a constant which—due
to the median expectation—is less than proportional to the equal split of the total surplus,
but greater than the outside option, for it amounts to a level almost two times higher.7

Figure 7. Nash bargaining solution (x?u) with social preferences. The left-sided x-axis corresponds
to the share of u (φ). The right-sided y-axis is the decay parameter (α). The z-axis denotes Nash
allocations (x?u(φ, α)).

Figure 8. Nash bargaining solution (x?v) with social preferences. The left-sided x-axis corresponds
to the share of v (1− φ). The right-sided y-axis is the decay parameter (α). The z-axis denotes Nash
allocations (x?v(1− φ, α)).

Figure 9. Convergence dynamics of Nash allocations (x?u, x?v) for α = 0.50 and φ = 0.80. The x-axis
corresponds to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of
time (x?u(t), x?v(t)).



Games 2023, 14, 2 15 of 18

Result 3. In exchange networks with stochastic matching and social preferences, the bargaining
outcome is stable and converges to the fixed value of the outside option supplemented by the
surplus share.

4. Conclusions

This work tried to prove that generalized Nash outcomes, as a result of interacting
on exchange networks or assignment markets, can be achieved in the case of a stochastic
matching subject to various forms of expectations, which, to the best of our knowledge,
has not been considered in the study of matching markets. The model outputs explain
the perenniality of market-driven economies grounded in a countless number of uncon-
strained and randomly established trade connections ([57]). Distinct types of expectations
of market players do not prejudice such long-term outcomes. The convergent fixed point
is also shown to be identical, both in allocations and in time quantiles, in the cases of
convergent and divergent expectations. Conversely, the social preferences’ scenario comes
with larger velocity toward convergence. Furthermore, the preferences for reciprocity
generate the highest expected outcomes between the three cases in point. Subsequently, the
concern for inequity aversion ([58,59]), promoted as a constitutive element of pathways
toward sustainable development, does find an economic justification in market-based
coordination mechanisms.

Unlike the assumption encountered in the literature, where agents are either fully
aware of the best alternatives of their neighborhood ([60]) or they lack knowledge about
the availability of a matching partner ([61]), we can consider our players to be pseudo-
strategic, for the probability of matching depends on the measurable difference between
the weights of edges. Put another way, players are provided with information on the best
alternative of their neighborhood: they can deduce the expectations of their neighborhood.
This attribute can give a reason for the stability of outcomes along the timeline. It also
provides consistency between our results—obtained inside networked architectures—and
those of [62,63], who justify, through the comparison of alternatives, the partitions between
two players. In consequence, our results do have a game-theoretic meaning. However, we
do not provide the informational assumption of common knowledge, which categorizes
them among the models of incomplete information and of bounded rationality.8 Even if
these characteristics prevent an immediate stable allocation ([65]), a stochastic process with
repeated re-matching leads to stochastically stable core allocations ([66]).

Despite the fact that our work can be considered as an extension of or as a complement
to the existing literature, complementary works on stochastic shocks and on risk-transfer
allocations ought to be conducted. Likewise, we do not take account the possibility of
having multiple simultaneous possibilities of matching. This topic could also be studied in
an additional work, by dint of implementation of an ordering rule, in the sense of [67] that
would sort out the subset of compatible partners. Taking into account a form of aversion
to fairness, which could be representative of the rational and selfish nature of economic
agents ([68,69]), could just as much be the subject of appended investigation. Finally, our
findings may, to some degree, be relevant for control engineering when it comes to decision-
making in uncertainty. For example, the blockchain technology proposed for smart grid
applications in the electricity sector could undergo specific negotiation protocols ([70]). The
consideration of cognitive radio networks with externalities may be a further interesting
study field ([29]).

In summary, let us state that the model is a simplified representation of stochastic
bargaining in real-world complex trading systems. We stress that our findings should be
read as those of an exploratory work. Therefrom, their interpretation must be undertaken
with a reasonable level of caution.
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Notes
1 The consolidation of partnership does not involve some form of obstinacy such as in [25]. Their paper shows that, in bargaining,

outside options may cancel out the effects of obstinacy.
2 In his coconut model, [38] has provided an example of the unlikelihood of witnessing a frictionless decentralized coordination

mechanism in labor markets.
3 The sum of probabilities equals 1, such that P[(u, v) 6∈ M(t)] = 1− P[(u, v) ∈ M(t)] when ∑(u,k)∈M(t)[xu(t)− xk(t)]α = [xu(t)−

xv(t)]α. We know that xk(t) = 0 for any unmatched node k 6∈ M(t). We observe that limxk(t)→0 ∑(u,k)∈M(t)[xu(t)− xk(t)]α[xu(t)−
xv(t)]−α = 1, where ∑(u,k)∈M(t)[xu(t)− xk(t)]α = 1/[xu(t)− xv(t)]−α, which holds true for a very large population of players.
Consequently, P[(u, v) ∈ M(t)] + P[(u, v) 6∈ M(t)] = 1 in the presence of an atomistic-type market structure:

4 An outside option is the best alternative that a player can command if it withdraws from the bargaining process in a unilateral
way ([8]).

5 Provided that only an actual match involves the surplus splitting between the players, the value into play in the negotiation, or
wu,v(t), is weighted by the probability that players do not match. Actually, the expected value to be exchanged depends on the
probability that it has not been the subject of previous trading:

6 Whereas, in a Nash form of game, the alternatives are given exogenously, the alternatives in the network bargaining game are
given endogenously:

7 Decreasing the level of φ increases the expected outcomes of both.
8 Hayek himself admitted that market mechanisms were based on bounded rationality ([64]).
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