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Abstract: How to sample training/validation data is an important question for machine learning
models, especially when the dataset is heterogeneous and skewed. In this paper, we propose a data
sampling method that robustly selects training/validation data. We formulate the training/validation
data sampling process as a two-player game: a trainer aims to sample training data so as to minimize
the test error, while a validator adversarially samples validation data that can increase the test
error. Robust sampling is achieved at the game equilibrium. To accelerate the searching process, we
adopt reinforcement learning aided Monte Carlo trees search (MCTS). We apply our method to a
car-following modeling problem, a complicated scenario with heterogeneous and random human
driving behavior. Real-world data, the Next Generation SIMulation (NGSIM), is used to validate
this method, and experiment results demonstrate the sampling robustness and thereby the model
out-of-sample performance.

Keywords: two-player game; Monte Carlo tree search; reinforcement learning; car-following modeling

1. Introduction

Algorithms, computing resource, and data are three pillars of current machine learning
(ML) models. While ML has witnessed significant breakthroughs in multiple domains
with the help of the state-of-the-art algorithms and powerful computing systems, data
collection and quality remains non-negligible issues, making data a bottleneck that hinders
the development of ML models. On one hand, collecting real-world data is difficult and
time-consuming. Even if several solutions have been proposed to address the data sparsity
issues, such one/zero shot ML [1] and physics-informed ML [2–5], data scarcity still limits
the development of ML model as abundant data is usually needed to train powerful
and reliable models. On the other hand, real-world data is noisy and imbalanced [6,7],
and adversarial attack may take advantage of it and poison training datasets, leading to
catastrophic predictions. Thus, it is important to consider how to better exploit existing
data by improving sampling methods.

Several methods have been proposed to tackle the data imbalance and heterogeneity.
Biased sampling puts more weights on the critical samples or corner cases. This branch of
methods decreases the sampling weights of the majority (i.e., downsampling) or increases
the chance of sampling the minority (i.e., upsampling), such as SMOTE [8] and importance
sampling [9]. Adversarial training aims to train robust neural networks that are robust
to adversarial attacks [10–12]. In particular, [11] integrates the selector, discriminator,
and adversarial attacker into one network leveraging generative adversarial nets. In this
work, a robust classifier is trained along with a robust adversarial example selector as a
by-product. These studies, however, only focus on changing the sampling proportions
of training data and randomly sampling validation data, underestimating the role of
validation data in training the ML models. Even if training data is incomplete and free
of noise, validation data can be biased in model performance evaluation. For instance, if
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the validation dataset contains the same regimes as those in the training data, the model
prediction may not be significantly affected. In other words, it is not only the training
data but the completeness of both training and validation data that determines the model
performance on the holdout test data. Thus, the strategic selection of both training and
validation datasets should be taken into account.

In this paper, we aim to develop a methodological framework for robustly training
ML models by strategically selecting training and validation data. Accordingly, we need to
model the actions of two game players, namely:

1. training data selector (trainer): selects an optimal set of training data that minimizes
the test error;

2. validation data selector (validator): selects another set of vehicle trajectory records
that maximizes test error.

In this game, the trainer selects the optimal training set, while the validator decides
a validation set that may deteriorate the model’s performance on a holdout test set. This
adversarially selected validation data serves as a complement to the trainer’s previously
selected training data. Each player is perfectly informed and takes turns to select the next
data point according to the previously selected ones. As the game continues, the data
traversed by two players will be intelligently balanced among data of different quality,
which ensures a stable model that will not overfit on specific regimes.

A neural network is developed to represent a complicated mapping from the game
state to a value function, where a Monte Carlo tree search (MCTS) [13] is used to estimate
a reward for each selection of the data. Reinforcement learning is used to update each
player’s strategy, and enables both players to collectively find an optimal model with
limited data availability in an accelerated fashion.

We apply the proposed sampling method to train an ML model (neural network) to
learn the human car-following (CF) behavior. The CF modeling problem is selected as it is
theoretically straightforward for demonstration but practically challenging because of the
driver’s random and heterogeneous behavior.

The remainder of this paper is organized as follows. In Section 2, related works are
introduced, including CF modeling and MCTS. In Section 3, the methodology is introduced,
including the two-player game, MCTS, and reinforcement learning. In Section 4, an example
experiment using NGSIM data, a real-world driver trajectory dataset, is presented. Finally,
conclusions and future works are presented in Section 5.

2. Related Works
2.1. Car-Following Models

Traditional CF models are not capable of predicting traffic oscillation [14]. In other
words, a driving model calibrated by one dataset may not be capable of predicting the
emergent dynamics arising from another dataset. Ref. [15] summarized eight levels of
trajectory completeness based on the number of driving regimes. They found that the
impact of completeness on CF modeling is model-specific and CF models perform better
on average if training datasets contain a higher number of complete trajectories. To capture
the complex decision-making process involved in human driving, an increasing amount
of studies have started using neural networks to represent a complex mapping from
information input to driving actions [16]. Since the present driving strategies are highly
correlated with previous traffic conditions, recurrent neural networks are further used to
model the driving behavioral sequence in [14]. To address the poor generalization issue,
reinforcement learning (RL) is applied in [17,18]. Instead of estimating parameters, RL
learns decision-making mechanism from training data, so as to achieve better generalization
capability. Nevertheless, all these studies assume training and validation data are randomly
sampled. This work also differs from existing works because we focus on how to enhance
the model performance merely by altering the sampling method.
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2.2. Reinforcement-Learning-Aided MCTS (RL-MCTS)

RL-MCTS is considered one of the key ingredients leading to the breakthrough in
AlphaGo Zero [19]. This method has also been applied to [20], which develops a two-player
cooperative sequential game for experiment design of material testing. Their game is
comprised of one modeler and one experimenter. The modeler aims to write a model to
reflect the elasto-plasticity, and the experimenter decides training and validation data to
improve the performance of model prediction. However, the selection of validation data
was only achieved by the partition of the original dataset, and validation data was always
the complementary set of the training data.

3. Methodology

In this section, we will define the problem of selecting data for training ML models.
Then, we will formulate this problem as a two-player game, which is followed by the
introduction of the states, actions, rules, scores, and rewards of the game.

3.1. Problem Statement

Suppose f is a machine learning model mapping features to labels, f : X → y.
Function f represents the general form of machine learning models like neural networks.
We consider a 1-dimensional label y for simplicity in this paper, and note that the results
and conclusion persist if a multi-dimensional label is considered.

Given a model f and a dataset D = {D(i)}N
i=1 = {(X(i), y(i))}N

i=1, the whole process
of machine learning is divided into three stages.

1. Sampling: The dataset D is divided into training, validation, and test sets, i.e.,
D = Dtrain ∪Dval ∪Dtest. The training set Dtrain is used to update the model pa-
rameter θ by implementing back-propagation algorithms. The validation set Dval is
used to monitor the model’s out-of-sample performance during training, and the test
set Dtest is for the final evaluation of model f after training. The sizes of the training,
validation, and test datasets are Ntrain, Nval , and Ntest, respectively.

2. Training: The training set Dtrain is used to update the model parameter θ, and the
validation set Dval is used to avoid overfitting.

3. Evaluation: The trained model f is evaluated using the test set Dtest.

The goal of this paper is to propose a new sampling method that makes the trained
model more robust and generalizes better on unseen data. To compare the effectiveness
of different sampling methods, the test set Dtest is pre-selected by random sampling. That
is, the sampling methods differ in their ways of splitting the training and validation sets,
and they use the same test set for evaluation. Following this, the problem of training an
ML model can be formulated as follows:

min
Ntest

∑
i
|y(i)test − f (X(i)

test|θ
∗)|2/Ntest

s.t. Dtrain,Dval = Sampling(D\Dtest)

θ∗ = Training( f ,Dtrain,Dval , θ0),

(1)

where θ0 and θ∗ are the initial and optimal parameters, respectively. This problem can also
be viewed as a bi-level optimization problem. In the high level, optimal sampling is found
to split the training and validation sets, which are then used to find the optimal model
parameter in the low level. In this paper, we focus on optimizing the sampling process,
and use the existing training method to update the parameter.

3.2. Two-Player Game

We formulate the sampling process as a two-player game, which is illustrated in
Figure 1. A trainer aims to select the training data that minimizes the test error, while the
validator selects the validation data to maximize the test error. The purpose of the validator
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is to provide adversarial examples during the training process so as to enhance the model
generalizability. The game information, including each player’s move and the game result,
is stored to update the strategy of each player. After several rounds of games and the
convergence of the player’s strategy, the equilibrium is achieved so that the optimal data
set components and sizes (i.e., Ntrain and Nval) are determined.

Figure 1. Illustration of sampling training and validation sets as a two-player game.

The game starts with empty training and validation sets, and the trainer and validator
take turns to select or skip the next data point (i.e., next feature-label pair) until all data
points have been chosen. Below is an example game built on a small dataset with 10 data
points in total. The validator moves first by selecting the first data points into the validation
sets, and the trainer then decides to skip the first data. The validator moves on according to
the historical moves of both the trainer and validator. After 10 turns, the validator selects
the 1st, 6th, and 8th data points into the validation set Dval , and the trainer selects the 2nd,
3rd, and 9th data points into the training set Dtrain. The training and evaluation processes
are followed to calculate the reward, which will be used to update the trainer and validator.
In the remainder of this section, we will introduce the details of the two-player game,
including its states, actions, rules and scores. The architecture of each game player, which
contains reinforcement learning (RL) and Monte Carlo tree search (MCTS) components,
will also be detailed.
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3.2.1. Game State

The game is fully observed, i.e., both the training and validation player has access to the
historical data selection. The current game state can be mathematically represented as a binary
indicator vector s = [t1, . . . , tN , v1, . . . , vN ] to indicate whether the corresponding training
and validation data points are selected, where N is the size of the dataset, ∑N

i=1 ti = Ntrain
and ∑N

i=1 vi = Nval . For example, t1 = 1 means the 1st data point is selected into the training
set, i.e., D(1) ∈ Dtrain. In the initial state, all elements of the game state are 0.

3.2.2. Game Action

In the example game, the actions of both players are the same: given the current state,
each player chooses whether to select the next data point or not. We denote the action set as
A = {0, 1}, where 0/1 indicates selecting/skipping the next data. Each player starts with
the first data, which corresponds to the leftmost side of the dataset, and determines the
choice of the next data by outputting the action a ∈ A. The player policy, i.e., the probability
of each action set element to be selected, will be discussed later as shown in Equation (4).

The player will not have legal moves when all data has been traversed, and the
game stops when both players don’t have any legal moves. The final state records our
data selection.

3.2.3. Game Rule

The game is initialized with an empty game state. The game starts with the validator
making the first move. Each player determines the action to select/skip the next data,
starting from the leftmost data point (i.e., D(1)). After making the selection, the current
player is switched. The game terminates when both players have considered all the data,
and the selected data is applied to train the model f , which will then be evaluated using
the holdout test set.

3.2.4. Game Score

In the example game, the mean squared error (MSE) is used to evaluate the perfor-
mance of the model, and thus can be considered as a score to evaluate the data selection.
If the score is high, the validator wins the game, and vice versa. Then, a non-trivial question
is how to determine the MSE threshold for claiming a winner. In contrast with traditional
two-player games, like chess and go games, the trainer and validator play asymmetric roles
in the game of sampling data. To address the matter, we first measure the average test
MSE of a random sampler, which we call the base MSE. We claim the trainer (validator)
as the winner if the test MSE is significantly lower (higher) than the base MSE. Suppose
our two players play randomly for sufficient games; the test MSE of the trained model is
then a random variable, denoted as M = ∑Ntest

i |y(i)test − f (X(i)
test|θ∗)|2/Ntest, where θ∗ is the

optimal parameter. The test MSEs of different games are independently and identically
distributed. The expectation of M, which is in fact the base MSE, should be a moderate
value because both players lack intelligence, and thus there is no guarantee one could
always outperform the other. To win the game, the test MSE should be significantly higher
(for validator) or lower (for trainer) than the base MSE E(M). In practice, we use the mean
of M to approximate E(M): ∑ Mi/n ≈ E(M), where n is the number of games played.

Another non-trivial question is that, in implementation the player may use as much
data as possible, which is a conservative policy. However, the redundant data will incur
computation costs and also may hide the essential one. To solve that, we penalize the
amount of data each player chooses. We encourage both players to choose as little data as
possible while trying to win the game. The benefit of this trick is to unveil the most optimal
and efficient data points. Our score definitions are as follows:{

Strain = MSE + α||s||0
Svalid = MSE− α||s||0

(2)
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where s is the final game state, α controls the penalty for the selected data size, and || · ||0 is
the L0 norm that computes the number of non-zero elements. It is hard to find a unified
form of the score for both the trainer and validator because they have opposite targets.
Therefore, scores are calculated for both the trainer and validator separately, and the means
of scores after sufficient games are Strain = ∑n

i=1 S(i)
train/n and Svalid = ∑n

i=1 S(i)
valid/n for the

trainer and validator, respectively.

3.2.5. Game Reward

The game reward, usually ranging from −1 to 1, describes how favorable the game
outcome is towards each player. As two players in our game play competitively, the rewards
for the trainer and validator are opposite. We adopt a mapping function to convert the
scores to rewards. Let Snew

train and Snew
valid denote the score of a new game. If both the scores are

bigger or lower than the average scores Strain and Svalid by a tolerance, we may announce a
winner, and reward for the winner is +1 and for the loser is −1. Otherwise, the game result
is a tie. The reward is defined as follows:

1. If Snew
train < Strain − tol and Snew

valid < Svalid − tol, then rewardtrain = 1 and
rewardvalid = −1

2. If Snew
train > Strain + tol and Snew

valid > Svalid + tol, then rewardtrain = −1 and
rewardvalid = 1

3. Otherwise, a piece-wise linear function is adopted to map the score to the reward,
which is shown in Figure 2. We randomly sample the training and validation data,
then train and evaluate a CF model (the CF model will be introduced in Section 4),
and Figure 2 shows the distribution of the test MSE (left y-axis). The blue line shows
the piece-wise mapping function of the reward (right axis), and the validator’s score-
to-reward mapping is the opposite of the trainer.

Figure 2. Score-reward mapping function of the trainer.

The range of tol is the same as the average scores Strain and Svalid. Otherwise, if tol is
too large, most games will end up with draws and return zero rewards; if tol is too small,
a win with a narrow margin will receive a high reward value, imposing fluctuation on the
game results. In experiments, tol is a hyperparameter to tune.

3.3. Monte Carlo Tree Search (MCTS)

In avoidance of myopic and greedy moves, a player always chooses its next action
considering its opponent’s future moves. In other words, each player solves a search
problem, where the size of the search tree grows exponentially if multiple moves ahead
are taken into consideration. To tackle this issue, MCTS iteratively explores the searching
space, and gradually adjusts its exploration towards the most promising region. Below, we
briefly introduce the tree components before moving on to the tree search strategy.

A node s represents the state of the game at a certain stage. For example, a root node
represents the initial game state with empty training and validation sets, and a termination
node represents the final game state where the training and validation sets are sampled.
All nodes, except for the termination node, connect to their children nodes through edges,
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which represent actions of the current player. A tree starts with the root node as its only
component and grows by appending one child node. The newly added child node is called
a leaf node, and it turns into a non-leaf node if one of its children nodes is also appended to
the tree. Note that either the leaf or non-leaf attribute is specifically for the existing nodes of
the tree. The termination node is not a leaf node until it is visited and appended to the tree.

The search iteration (Figure 3) involves traversing the existing tree from the root node
to one leaf node, together with extending the tree by appending a new leaf node. In Figure 4,
the red circle means the current player is the validator, and the blue square means the
current player is the trainer. Specifically, each iteration includes four phases:

• Selection. The first phase starts with the root node and sequentially selects the next
node to visit until a leaf node is encountered. Each selection is based on:

SELECT argmax
a
{r̄(s, a) + cpuct

√
∑b n(s, b)

1 + n(s, a)
}, (3)

where r̄(s, a) is the average reward gathered over all tree-walks, n(s, a) is the number
of visit of edge a , and ∑b n(s, b) is the number of visit of node s. cpuct is a constant
determining the level of exploration.

• Expansion. When a leaf node is encountered, one of its children nodes is appended
and the tree thus grows.

• Playout. After the expansion phase, a random playout is used to finish the remaining
search. That is, each player will randomly move in the rest of the game the termination
node is reached and computing the associated reward.

• Backup. The node and edge statistics are updated in the last phase of a searching
iteration. First, the number of the visit of all traversed nodes and edges are incremented
by one. Second, the current reward computed in the playout phase is back-propagated
along the traversed path, and is used to update the average reward r̄(s, a).

After the statistics of the nodes and edges are finished being backed up, MCTS starts
the next iteration from the root node. The searching process terminated when the number
of iterations reaches a preset value numIters, which is tuned to allow the game to reach
equilibrium while avoiding excessive iterations. Then, the current player makes its next
move based on the following policy

π(a|s) = n(s, a)1/τ

∑b n(s, b)1/τ
, (4)

where τ is a tunable hyperparameter that controls the level of exploration. A large τ
encourages random move selection, and a small τ prefers the move with the highest
number of visits. After that, the other player takes turns to continue the game.

Figure 3. Illustration of MCTS.
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Figure 4. Neural network CF model.

3.4. Reinforcement-Learning-Aided MCTS (RL-MCTS)

Taking inspiration from AlphaGo Zero [19], we adopt reinforcement learning (RL)
to further narrow down the searching space by gradually biasing the search to a more
promising region.

3.4.1. Value Network

The key idea of applying RL to MCST is to replace the random and time-consuming
playout with a function evaluation. When a leaf node is encountered, the current player
approximates the average reward by a surrogate model instead of using the random
playout. We employ two value network qT

θ (s, a) and qV
θ (s, a) for the trainer and validator,

respectively. The networks take in the game state and action, and return the position value
for the current player. We use the replay buffer to train the value network, where the states
traversed together with the game results are fed into the value network as the training
examples. As introduced in Section 2, the difference between two networks is that they are
fed with different rewards after the game is completed.

3.4.2. MCTS with Value Networks

Aided with RL, the RL-MCTS processes are updated as follows

• Selection. Each selection is based on:

SELECT argmax
a
{qθ(s, a) + cpuct

√
∑b n(s, b)

1 + n(s, a)
}. (5)

Compared with Equation (3), the difference of RL-MCTS’s selection phase is that the
average reward is replaced with the evaluation of the value function.

• Expansion. This phase is the same as the MCST.
• Playout. The reward attained from a random playout is replaced with the evaluation

of the q value function.
• Backup. The backup is the same as the MCTS, except for that the q value rather than

the average reward is the statistic to be updated.

3.5. Summary

The architecture consisting of a simulation platform and the two player game is bi-
level. The trainer and validator play the sequential competitive game. After the game
is finished and the data is generated, the test MSE is calculated at the simulation level,
in which a neural network CF model is trained with the trainer’s data and validated by the
validator’s data. The reward is then computed by the pre-defined rules and returned to
the game level as the target for training the value network. The whole process is shown in
Algorithm 1.
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Algorithm 1: Two-player game
Input: The components of the two-player game defined in Section 3.
Output: Two trained value networks for both players, which will manage to evaluate
the current position according to the current player.
Initialization:

1: Initialize empty sets of the training examples for the value network of trainer and
tester: trainExamples← [], validExamples← [].

2: Set the board limit for both players: posLimits = [n, n]
3: for i in [0, . . . , numIters − 1] do
4: Empty the game state: s = [0, . . . , 0︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
n

]

5: Initialize the current player: currentPlayer = 1 (1 for tester, 0 for trainer).
6: Initialize the current position for the trainer and tester to be the leftmost position:

posTrainValid = [0, 0].
7: Initialize empty tree of the Monte Carlo Tree Search, set the hyperparameter τ = 1

for “exploration and exploitation”
8: while True do
9:

10: if posTrainValid[currentPlayer] >= posLimits[currentPlayer] then
11: currentPlayer = −1 ∗ currentPlayer + 1. Continue to the next loop
12: end if
13: Check for all legal actions at current state s according to the game rules.
14: Given current state s, get the action probabilities π(s, ·) for all legal actions by

performing numMCTSSims times of MCTS simulations.
15: Sample action a ∈ {0, 1} from probabilities π(s, ·).
16:

17: if currentPlayer == 0 then
18: s[posTrainValid[currentPlayer]] = a
19: else
20: s[posTrainValid[currentPlayer] + m] = a
21: end if
22: if posTrainValid == posLimits then
23: break
24: end if
25: end while
26: Evaluate the score for the trainer and tester.
27: Evaluate the reward r for trainer and tester.
28: Append the history in this game episode [s, a, r] to trainExamples and

validExamples
29: Train the value networks qT

θ and qV
θ with trainExamples and validExamples.

The trained networks are used in the next game.
30: end for

4. Case Study: Car-Following Modeling

To evaluate the performance of our proposed sampling method in training ML models,
we train a neural network CF model, denoted as fθ , as a demonstration. The structure of
the CF model is shown in Figure 4.

The neural network takes the velocity, velocity difference, and the headway of current
time as the input, and returns the target acceleration for the next time step. According to
the general neural network model that is mentioned in the literature review, we use neural
network architecture shown in Figure 4. The vt

f , ∆vt, and ∆xt are the follower’s velocity,
velocity difference between follower and leader, and space headway at time t. Those values
are called the state of the follower.
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As for modeling the nonlinearity of car-following behaviours, we chose the Rectified
Linear Unit (ReLU) as the activation function in this neural network model. The equation
is as follows:

hm,n = Re LU(Wm,nx + bm,n) =

{
Wm,nx + bm,n; x > 0
0; x 6 0,

(6)

where hm,n denotes the nth hidden unit in the mth hidden layer, Wm,n and bm,n are the
weight matrix and bias for hm,n, and x is a vector of all inputs from the last layer.

As the acceleration is normally between −3 m/s2 and 3 m/s2, we add a Hyperbolic
Tangent Layer to constrain the scale of output acceleration. The Hyperbolic Tangent
activation function is defined as:

ât = tahn(Wm,nx + bm,n) = 3(
2

1 + e−2(Wm,nx+bm,n)
− 1) (7)

where ât is the output acceleration at time t, x is a vector of all input from the last hidden
layer in this architecture.

4.1. Data Description

The data is from the Next Generation Simulation (NGSIM) project, a national project
aiming at helping develop algorithms and datasets for the calibration and validation of
traffic models.

The NGSIM freeway database consists of vehicle trajectories on two test sites. The I-80
test section is a 0.4-mile six-lane freeway. The processed data include 45 min of vehicle
trajectories in transition (4:00–4:15 p.m.) and congestion (5:00–5:30 p.m.). The US101 site is
a 0.3 mile weaving section with five lanes. The processed data include 45 min of vehicle
trajectories in transition (7:50–8:05 a.m.) and congestion (8:05–8:35 a.m.). The data have
been extracted from video recordings using machine vision algorithms.

The oscillation area only counts a few parts for the whole dataset, but is hard to predict
very well. Here we take a closer look at this problem, with the aim of intelligently choosing
data for a stable, robust model.

The whole dataset we select consists of nine trajectory segments from free flow and
one trajectory segment from the oscillation area, which is consistent with the fact that
the oscillation data count only for a limited part of data in the NGSIM dataset and other
naturalistic datasets. The duration of these data is from 10 s to 15 s. To validate the
performance of the model, we choose a relatively complete trajectory, where the free flow,
acceleration, and deceleration share the almost same ratio.

The goal of this experiment is twofold: (1) to verify the ability to select data for both
players. This ability is verified by alternative activating one player and deactivating another,
and the active player will outplay (increasing prediction MSE for trainer and decreasing
MSE for validator) the other. (2) to verify the data generated from the alternative play
mentioned above is help to train a more stable model. The essence is that the role of the
validator is to explore the data which the trainer may ignore, and the trainer would find
more data to make up for it in the next turn. In this way, the model will less likely to overfit
on the majority genre of data, which in our case is the free-flow scenario.

4.2. Experiment Setting

We train two network car-following models with identical configurations, one denoted
as f B

θ that is trained with randomly sampled data, the other denoted as f G
θ that is trained

with RL-MCTS-sampled data. Both networks have three hidden layers, the size of which is
64, 64, and 32. The only difference is the data we feed into them. To expedite the self-play
process, we set the numMCTSSim to only two. The Adam optimizer is used to train the
neural networks.



Games 2023, 14, 13 11 of 13

4.3. Results

Figure 5 presents the model stability comparison. The left and right figures are the
error curves of the random and RL-MCTS sampling methods, respectively. The x-axis is
the training epoch and the y-axis is the test MSE. We can see that when training the model
with the randomly sampled data, the model overfits and the prediction MSE spikes during
the training. When training the model with the RL-MCTS sampled data, the overfitting is
mitigated, and both the training and test errors converge. This can be explained because the
RL-MCTS sampled training data already considers the data heterogeneity and thus is less
vulnerable to overfitting. To demonstrate that, Figure 6 compares the velocity distributions
of two sampling methods, the left and right for the random and RL-MCTS sampling,
respectively. The x-axis is the vehicle velocity and the y-axis is the probabilistic density. We
can see that the randomly sampled data clearly contains the major velocity and the minor
velocity, which also reflect the naturalistic velocity distribution of the human driving data.
The data sampled by RL-MCTS as a more balanced distribution, which can help mitigate
the overfitting.

Apart from the result illustration of one sampling, we are more interested in the overall
performance of several rounds of sampling. Thus, we repeat each experiment 100 times
with both the random and RL-MCTS sampling. The distributions of the test MSE and
reward are shown in Figure 7, where the blue and orange stand for the RL-MCTS and the
random sampling, respectively. We can see that model trained using the RL-MCTS sampled
data is more robust towards the data randomness.

(a) (b)

Figure 5. Error curves of the random (a) and the proposed sampling method (b).

(a) (b)

Figure 6. Velocity distributions of the random (a) and the proposed (b) sampling.
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(a) Scores (b) Rewards

Figure 7. Comparison of the scores (a) and reward (b) between random and the proposed sam-
pling methods.

5. Conclusions

The prediction performance of ML models depends on their training and validation
datasets. Thus, the strategic selection of training and validation datasets is crucial for the
robustness of the trained models. A case study of modeling human car-following driving
behavior has been understudied. This paper aims to develop an AI-guided experiment
design framework in which training and validation datasets are strategically selected so
that the model prediction performance can be optimized. We consider a CF modeling
problem comprised of three intelligent players, namely, the training data selector, and the
validation data selector, each of whom has different objectives. The training data selector
and the validation data selector play a non-cooperative game on the upper level as leaders.
The trainer aims to minimize the MSE of the estimated model outputs, while the validator
aims to maximize MSE to ensure the predictive power of the trained model. The action
spaces of the training data selector and the validation data selector are 0,1, standing for
whether to choose the next data or not. This is essentially a combinatorial problem. To
reduce the action search space, RL-aided MTCS is applied. We test the developed algorithm
using the neural network car-following model.

We select an optimal combination of training and validation datasets that achieves
the highest robustness of the model. The result shows that if we resample the original
dataset in the training step and add more weights to those data which will impair the
model performance, the model will become more robust.

This work provides an approach to robustly and efficiently exploit real-world long-tail
data. By training each player in a competitive game and penalizing the data size, the most
critical data points are discovered. The result indicates a potential application in the real-
world training and deployment of ML models, where the discovered critical data can help
accelerate the training process and reduce computational time.

Albeit novel, this work can be extended in the following ways:

1. We have only verified the algorithm in a small dataset. We can apply this algorithm to
a bigger dataset with diverse characteristics.

2. Transforming the original one-shot problem to a sequential one will lead to a sub-
optimal solution. This problem can be addressed if we allow the player to retract a
false move.
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