
games

Article

The Exact Query Complexity of Yes-No
Permutation Mastermind

Mourad El Ouali 1,* and Volkmar Sauerland 2

1 Polydisciplinary Faculty Ouarzazate, University Ibn Zohr, Agadir 80000, Morocco
2 Department of Mathematics, Kiel University, 24118 Kiel, Germany; sauerland@math.uni-kiel.de
* Correspondence: elouali@math.uni-kiel.de

Received: 14 February 2020; Accepted: 4 April 2020; Published: 13 April 2020
����������
�������

Abstract: Mastermind is famous two-player game. The first player (codemaker) chooses a secret code
which the second player (codebreaker) is supposed to crack within a minimum number of code guesses
(queries). Therefore, the codemaker’s duty is to help the codebreaker by providing a well-defined
error measure between the secret code and the guessed code after each query. We consider a variant,
called Yes-No AB-Mastermind, where both secret code and queries must be repetition-free and the
provided information by the codemaker only indicates if a query contains any correct position at
all. For this Mastermind version with n positions and k ≥ n colors and ` := k + 1− n, we prove a
lower bound of ∑k

j=` log2 j and an upper bound of n log2 n + k on the number of queries necessary to
break the secret code. For the important case k = n, where both secret code and queries represent
permutations, our results imply an exact asymptotic complexity of Θ(n log n) queries.

Keywords: Mastermind; permutation; query complexity

MSC: 91A46

1. Introduction

Mastermind is a popular two-player board game invented by Mordecai Meirowitz and released
in 1971 [1,2]. Its idea is that a codemaker chooses a secret code of fixed length n, where each position
is selected from a set of k colors. The second player, codebreaker, has to identify the secret code by a
finite sequence of corresponding code guesses (queries), each of which is replied with the number of
matching positions and the number of further correct colors. The original game is played by picking
pegs of k = 6 different colors and placing them into rows with n = 4 holes, where the number of rows
(allowed queries) for the codebreaker is limited.

Generalizing the situation to arbitrarily many positions and colors, the codemaker selects a vector
y ∈ [k]n and the codebreaker gives in each iteration a query in form of a vector x ∈ [k]n. In the
original setting, the codemaker’s reply is the so called black-white error measure, consisting of a pair of
numbers, where the first number, black(x, y), is the number of positions in which x and y coincide
and the second number, white(x, y), is the number of additional colors which appear in both x and y,
but at different positions. In this paper, we consider a variant, called Yes-No AB-Mastermind, which is
defined by the following properties

• Both secret code and queries must be repetition-free. This property is indicated by the prefix AB
and stems from the AB game, better known as “Bulls and Cows” (cf. [1]), which was even known
prior to the commercial version of Mastermind with color repetitions.

• The provided information by the codemaker only answers the question whether or not a query
contains any correct position at all. This property is introduced by us and referred to by the
term “Yes-No”.

Games 2020, 11, 19; doi:10.3390/g11020019 www.mdpi.com/journal/games

http://www.mdpi.com/journal/games
http://www.mdpi.com
https://orcid.org/0000-0003-3787-111X
http://www.mdpi.com/2073-4336/11/2/19?type=check_update&version=1
http://dx.doi.org/10.3390/g11020019
http://www.mdpi.com/journal/games

Games 2020, 11, 19 2 of 11

Related Works: Mastermind and its variants have been analyzed under different aspects. One of
the first analyses of the commercial version with n = 4 positions and k = 6 colors is by Knuth [3] and
shows that each code can be cracked in at most 5 queries. Even before the appearance of Mastermind
as a commercial game, Erdős and Rényi [4] analyzed the asymptotic query complexity of a similar
problem with two colors in 1963 to be Θ(n log n). After Knuth’s analysis of the commercial game,
many different variants of Mastermind with arbitrary code length n and number of colors k have been
investigated. For example, Black-Peg Mastermind restricts its error measure between two codes x
and y to the single value black(x, y) (i.e., the exact number of positions where both codes coincide).
This version was introduced in 1983 by Chvátal [5] for the case k = n, who provides a deterministic
adaptive strategy using 2ndlog2 ke+ 4n queries. Improved upper bounds for this variant and arbitrary
n and k where given by Goodrich [6] (ndlog2 ke+ d(2− 1/k)ne+ k) and later by Jäger and Peczarski [7]
(ndlog2 ne+ k for k ≤ n and ndlog2 ne+ k− n + 1 for k > n) but remained in the order of O(n log2 n).
Doerr et al. [8] provided a randomized codebreaker strategy that only needs O(n log log n) queries
in expectation and showed that this asymptotic order even holds for up to n2 log log n colors, if both
black and white information is allowed. A first upper bound for AB Mastermind was given by Ker-I
Ko and Shia-Chung Teng [9] for the case k = n, i.e., secret code and queries represent permutations of
[n]. Their non-constructive strategy yields an upper bound of 2n log2 n + 7n queries. A constructive
strategy by El Ouali and Sauerland [10] reduced this upper bound by a factor of almost 2 and also
included the case k > n of Black-Peg AB-Mastermind. The term Black-Peg labels the situation that
the error measure between secret code and queries is only “black” information, i.e., the number of
coinciding positions, while the “white” information (see above) is omitted. El Ouali et al. [11] combined
their upper bound of (n− 3)dlog2 ne+ 5

2 n− 1 queries for k = n and (n− 2)dlog2 ne+ k + 1) queries
for k > n with a lower bound of n queries, which is implied by a codemaker strategy. It improved
the lower bound of n− log log n by Berger et al [12]. However, a gap between Ω(n) and O(n log2 n)
remains for this Mastermind variant. Some facts indicate that closing this gap means to improve
both bounds. On the one hand, a careful consideration of the partition of the remaining searchspace
with respect to all possible codemaker replies might yield a refined codemaker strategy and possibly
increase the lower bound. On the other hand, overcoming the sequential learning process of the
codebreaker’s binary search strategy might decrease the upper bound. The latter presumption is
reinforced by the results of Afshani et al. [13], who consider another permutation-based variant of
Mastermind. There, the secret code is a combination of a binary string and a permutation, (both
of length n), queries are binary strings of length n, and the error measure returns the number of
leading coincidences in the binary string with respect to the order of the permutation. For this setting,
which is also a generalization of the popular leading ones test problem in black box optimization, the
authors prove an exact asymptotic query complexity of Θ(n log n) for deterministic strategies but a
randomized query complexity of Θ(n log log n).

One of the ultimate goals in the analysis of Mastermind variants is to prove the exact asymptotic
query complexity. As mentioned above, closing the asymptotic gap between the lower Ω(n) bound
and the upper O(n log2 n) bound is an unsolved problem for Black-Peg AB Mastermind. A related
open question is whether the same asymptotic number of queries is required for both (Black-Peg)
Mastermind with color repetition and (Black-Peg) AB Mastermind.

Our Contribution: We consider a new variant of AB-Mastermind which is more difficult to play
for the codebreaker since the error-measure provided by the codemaker is less informative. Here,
for a secret code y the answer info(σ, y) to a query σ is “yes” if some of its positions coincide with
the secret code, otherwise the answer is “no”. We first analyze the worst-case performance of query
strategies for this Mastermind variant and give a lower bound of ∑k

j=` log2 j queries for k ≥ n, which
becomes n log2 n− n in the case k = n. The lower bound even holds if the codebreaker is allowed
to use repeated colors in his queries. We further present a deterministic polynomial-time algorithm
that identifies the secret code. This algorithm is a modification of the constructive strategy of El
Ouali et al. [11]. It returns the secret code in at most (n− 3) log2 n + 5

2 n− 1 queries in the case k = n

Games 2020, 11, 19 3 of 11

and in less than (n− 2) log2 n + k + 1 queries in the case k > n. For the important case k = n, our
results imply the exact asymptotic query complexity of Θ(n log2 n). Since the considered “Yes-No”
error measure implies a new variant of AB-Mastermind, there is no previous reference to compare our
results to.

2. Results

2.1. Lower Bound on the Number of Queries

To simulate the worst case, we allow the codemaker to “cheat” in a way that after every query he
may decide for a new secret code that is still in agreement with all information he gave so far.

Theorem 1. Let k, n ∈ N, k ≥ n and ` := k + 1− n. Every strategy for Yes-No AB-Mastermind needs at

least
k
∑

j=`
log2 j queries in the worst case.

Proof. We give a codemaker strategy that implies the lower bound. For i ∈ N let Mi denote the set
of secrets that are still possible after the i-th query has been answered, starting with M0 := {y ∈
[k]n | ∀i 6= j ∈ [n] : yi 6= yj}. Let Myes

i ⊂ Mi be the set of secrets that lead to a yes-answer to the
(i + 1)-th query and Mno

i := Mi \Myes
i the set of secrets that lead to a no-answer. The strategy of the

codemaker in round i + 1 is as follows:

• If |Myes
i | ≥ |M

no
i |, pick a secret from Myes

i (and give the answer yes)
• Otherwise pick a secret from Mno

i (and give the answer no)

By using this strategy, the codemaker achieves for every round i that

|Mi| = |M
yes
i |+ |M

no
i | ≤ 2 max(|Myes

i |, |M
no
i |) = 2|Mi+1|.

This implies |Mi| ≥ 2−i|M0|. So, for any i < log2(|M0|) we have

|Mi| > 2− log2(|M0|)|M0| =
|M0|
|M0|

= 1,

which means that there are still at least two possible secrets left. Since

log2(|M0|) = log2

(
k

∏
j=`

j

)
=

k

∑
j=`

log2 j,

we obtain the claimed lower bound.

Corollary 1. Every strategy for Yes-No Permutation-Mastermind (the case k = n) needs at least

n

∑
j=1

log2 j ≥ n log n− n
log 2

queries in the worst case.

We also note that the lower bound on the query complexity of Yes-No AB-Mastermind remains of
the asymptotic order n log n if the number of colors is polynomial in the number of positions (k = P(n),
P a polynomial).

Games 2020, 11, 19 4 of 11

2.2. Upper Bound on the Number of Queries

Theorem 2. Let k, n ∈ N, k ≥ n and ` := k + 1− n. For k = n, there is a strategy for Yes-No AB-Mastermind
that identifies every secret code in at most (n− 3) log2 n + 5

2 n− 1 queries and for k > n, there is a strategy
that identifies every secret code in less than (n− 2) log2 n + k + 1 queries.

Corollary 2. The exact asymptotic query complexity of Yes-No Permutation-Mastermind is Θ(n log2 n).

The proof of Theorem 2 resembles the proof of a corresponding result concerning Black-Peg
AB-Mastermind [11], except that the information whether a given query contains a correct but
unidentified position is not derived directly but requires special querying outlined by Algorithm 1 below.
In a nutshell (including both cases k = n and k > n), the strategy consists of k distinct initial queries,
each of which consists of the first n positions of a circularly shifted version of the vector (1, 2, . . . , k).
From the answers of the initial queries, we will be able to learn the secret code position-wise, keeping
record about the positions that have already been identified. As long as there are consecutive initial
queries a and b with the property that a coincides with the secret code in at least one yet unidentified
position but b does not, we can apply a binary search for the next unidentified position in a, using
O(log2 n) further queries. Such initial queries a and b exist ever after one (usually after zero) but not
all positions of the secret code have been identified.

Proof of Theorem 2. The case k = n: We give a constructive strategy that identifies the positions of
the secret code y ∈ [n]n one-by-one. In order to keep record about identified positions of the secret
code we deal with a partial solution vector x that satisfies xi ∈ {0, yi} for all i ∈ [n]. We call the
non-zero positions of x fixed and the zero-positions of x open. The fixed positions of x are the identified
positions of the secret code. Remember, that for a query σ = (σ1, . . . , σn) we denote by

info(σ, y) :=

{
yes if {i ∈ [n] | σi = yi} 6= ∅

no otherwise

the information if there is some position in which σ coincides with the secret code y. For Yes-No
AB-Mastermind the related information whether a query σ contains a correct but unidentified position
cannot always be derived directly but must be obtained by guessing one or two modifications of σ,
rearranging those positions that coincide with the partial solution x. The required query procedure is
summarized as Algorithm 1.

Example 1. Figure 1 illustrates the four distinct cases that are considered by infoP. In the first and easiest
case (panel (a)) the actual query σ does not coincide with the partial solution x. Thus, σ contains a correct
unidentified position if and only if it contains a correct position at all, i.e., infoP(σ, x, y) = info(σ, y). In the
second case (panel (b)), σ and x coincide in more than one position, namely the positions with colors 3, 9 and 10.
The modified query ρ is obtained from σ by rearranging these positions in a way that all identified positions get
a wrong color while leaving all open positions of σ unchanged. This implies that infoP(σ, x, y) = info(ρ, y).
Panels (c) and (d) deal with the case that σ and x coincide in exactly one position, say i. If x already contains a
further non-zero position j, we obtain ρ from σ by swapping positions i and j in σ (the positions with colors
3 and 5 in panel (c)). Again, we obtain that infoP(σ, x, y) = info(ρ, y). Finally, if position i is the only yet
identified position of the secret code we have to ask two different modified queries to derive infoP(σ, x, y) (panel
(d)). We obtain the two queries ρ1 and ρ2, each by swapping the identified position (here 3) with another position
in σ, (here with 1 and 2, respectively). While the color of the identified position is wrong in both modifications ρ1

and ρ2, every other position of σ coincides with the corresponding position of at least one modification. Therefore,
infoP(σ, x, y) = no if and only if info(ρ1, y) = info(ρ2, y) = no.

Games 2020, 11, 19 5 of 11

Algorithm 1: Function infoP
input :Query σ, partial solution x and secret code y
output : Information whether σ contains a correct unidentified position

1 if σ and x do not coincide then answer := info(σ, y);
2 else if σ and x coincide in more than one position then
3 Let I ⊆ [n] be the set of indices where σ and x coincide;
4 Let π : I → I be a derangement (a permutation without any fixed position);
5 Obtain guess ρ from σ by replacing σi with σπ(i) for all i ∈ I;
6 answer := info(ρ, y);

7 else
8 Let i be the unique index with σi = xi;
9 if x has more then one non-zero position then

10 Let j 6= i be another index with xj 6= 0;
11 Obtain guess ρ from σ by swapping positions i and j;
12 answer := info(ρ, y);

13 else
14 Choose j1 6= i and j2 6= i with j1 6= j2;
15 Obtain guess ρ1 from σ by swapping positions i and j1;
16 Obtain guess ρ2 from σ by swapping positions i and j2;
17 if info(ρ1, y) = info(ρ2, y) = no then answer := no;
18 else answer := yes;

19 return answer;

(a)
x • • 3 • • 6 7 • 9 10
σ 10 1 2 3 4 5 6 7 8 9

(b)
x • • 3 • • 6 7 • 9 10
σ 1 2 3 4 5 7 6 8 9 10
ρ 1 2 10 4 5 7 6 8 3 9

(c)
x • • 3 • • 6 7 • 9 10
σ 1 2 3 10 4 5 6 7 8 9
ρ 1 2 5 10 4 3 6 7 8 9

(d)

x • • 3 • • • • • • •
σ 1 2 3 4 5 6 7 8 9 10
ρ1 3 2 1 4 5 6 7 8 9 10
ρ2 1 3 2 4 5 6 7 8 9 10

Figure 1. Illustrating the cases considered by infoP. Panel (a): query σ does not coincide with the
partial solution x; infoP(σ, x, y) = info(σ, y). Panel (b): σ and x coincide in more than one position; ρ

rearranges these positions of σ; infoP(σ, x, y) = info(ρ, y). Panel (c): σ and x coincide in exactly one
position i, but more positions are identified already; ρ is obtained from σ by swapping position i with
another identified position j; infoP(σ, x, y) = info(ρ, y). Panel (d): Exactly one position is identified
and appears to be correct in σ; two modified queries ρ1 and ρ2 must be defined, each by swapping the
identified position with another one; infoP(σ, x, y) = no if and only if info(ρ1, y) = info(ρ2, y) = no.

The codebreaker strategy that identifies the secret code y has two phases. In the first phase the
codebreaker guesses an initial sequence of n queries that has a predefined structure. In the second

Games 2020, 11, 19 6 of 11

phase, the structure of the initial sequence and the corresponding information by the codemaker enable
us to identify correct positions yi of the secret code one after another, each by using a binary search.
We denote the vector x restricted to the set {s, . . . , `} with (xi)

`
i=s, s, ` ∈ [n].

Phase 1 Consider the n queries, σ1, . . . , σn, that are defined as follows: σ1 represents the identity
map and for j ∈ [n− 1], we obtain σj+1 from σj by a circular shift to the right. For example, if n = 4,
we have σ1 = (1, 2, 3, 4), σ2 = (4, 1, 2, 3), σ3 = (3, 4, 1, 2) and σ4 = (2, 3, 4, 1). The codebreaker guesses
σ1, . . . , σn.

Phase 2. Now, the codebreaker identifies the values of y one after another, using a binary search
procedure, that we call findNext. The idea is to exploit the information that for 1 ≤ i, j ≤ n− 1 we
have σ

j
i = σ

j+1
i+1 , σn

i = σ1
i+1, σ

j
n = σ

j+1
1 and σn

n = σ1
1 . findNext is used to identify the second correct

position to the last correct position in the main loop of the algorithm.
After the first position of y has been found and fixed in x, there exists a j ∈ [n] such that

infoP(σj, x, y) = no. As long as we have open positions in x, we can either find a j ∈ [n− 1] with
infoP(σj, x, y) = yes but infoP(σj+1, x, y) = no and set r := j + 1, or we have infoP(σn, x, y) = yes
but infoP(σ1, x, y) = no and set j := n and r := 1. We call such an index j an active index. Let j
be an active index and r its related index. Let c be the color of some position of y that is already
identified and fixed in the partial solution x. With `j and `r we denote the position of color c in σj and
σr, respectively. The color c serves as a pivot color for identifying a correct position m in σj that is
not fixed, yet. There are two possible modes for the binary search that depend on the fact if m ≤ `j.
The mode is indicated by a Boolean variable leftS and determined by lines 5–9 of findNext. Clearly,
m ≤ `j if `j = n. Otherwise, the codebreaker guesses

σj,0 :=
(

c, (σj
i)

`j−1

i=1 , (σj
i)

n

i=`j+1

)
=

(
σ

j
`j

, (σj
i)

`j−1

i=1 , (σj
i)

n

i=`j+1

)
.

By the information σ
j
i = σr

i+1 we obtain that (σj
i)

`j−1

i=1 ≡ (σr
i)

`j
i=2. We further know that every open

color has a wrong position in σr. For that reason, infoP(σj,0, x, y) = no implies that m ≤ `j. The binary
search for the exact value of m is done in the interval [a, b], where m is initialized as n and [a, b] as

[a, b] :=

{
[1, `j] if leftS

[`r, n] else

(lines 10–15 of findNext). In order to determine if there is an open correct position on the left side of
the current center ` of [a, b] in σj we can define a case dependent query:

σj,` :=


(
(σ

j
i)

`−1

i=1 , c, (σr
i)

`j
i=`+1, (σj

i)
n

i=`j+1

)
if leftS(

(σr
i)

`r−1
i=1 , (σj

i)
`−1

i=`r
, c, (σr

i)
n
i=`+1

)
else

In the first case, the first `− 1 positions of σj,` coincide with those of σj. The remaining positions of
σj,` cannot coincide with the corresponding positions of the secret code if they have not been fixed, yet.
This is because the `-th position of σj,` has the already fixed value c, positions `+ 1 to `j coincide with
the corresponding positions of σr which satisfies infoP(σr, x, y) = no and the remaining positions have
been checked to be wrong in this case (cf. former definition of leftS in line 5 and line 9, respectively).
Thus, there is a correct open position on the left side of ` in σj, if and only if infoP(σj,`, x, y) = yes.
In the second case, the same holds for similar arguments. Now, if there is a correct open position to the
left of `, we update the binary search interval [a, b] by [a, `− 1]. Otherwise, we update [a, b] by [`, b].

Games 2020, 11, 19 7 of 11

Algorithm 2: Function findNext
input :Secret code y, partial solution x 6= 0 and an active index j ∈ [n]
output :A correct open position in σj

1 if j = n then r := 1;
2 else r := j + 1;
3 Choose the color c of some non-zero position of x;
4 Let `j and `r be the positions with color c in σj and σr, respectively;
5 if `j = n then leftS := true;
6 else

7 σj,0 :=
(

c, (σj
i)

`j−1

i=1 , (σj
i)

n

i=`j+1

)
=

(
σ

j
`j

, (σj
i)

`j−1

i=1 , (σj
i)

n

i=`j+1

)
;

8 if infoP(σj,0, x, y) then leftS := false;
9 else leftS := true;

10 if leftS then
11 a := 1;
12 b := `j;

13 else
14 a := `r;
15 b := n;

16 while b > a do
17 ` := d a+b

2 e; // position for color c

18 if leftS then σj,` :=
(
(σ

j
i)

`−1

i=1 , c, (σr
i)

`j
i=`+1, (σj

i)
n

i=`j+1

)
;

19 else σj,` :=
(
(σr

i)
`r−1
i=1 , (σj

i)
`−1

i=`r
, c, (σr

i)
n
i=`+1

)
;

20 if infoP(σj,`, x, y) then b := `− 1;
21 else a := `;

22 return b;

Example 2. Suppose, that for n = 10 the secret code y and the partial solution x are given as in the top panel
of Figure 2 and that we have first identified the position with color 1, such that 1 is our pivot color. The initial
10 queries σ1, . . . , σ10 together with their current infoP measures are given in the mid panel of Figure 2. We see
that the highlighted queries, σ4 and σ5, can be used for the binary search with findNext, since σ4 has a correct
not yet identified position but σ5 has not. So the active indices are j = 4 and r = 5 and the corresponding pivot
color positions in σ4 and σ5 are `j = 4 and `r = 5. The first query of findNext (cf. lower panel of Figure 2) is σa.
It begins with the pivot color, followed by the first 3 positions of σ4 (positions 2 to 4 of σ5) and positions 5 to 10
of σ4 (cf. line 7 of findNext). Since infoP(σa, x, y) = yes, the left most correct but unidentified position in σ4 is
none of its first 4 positions. Thus, the binary search is continued in the interval [5, 10]. It is realized by queries
σb, σc, and σd, which are composed according to line 20 of findNext (in this case), and finally identifies position
8 with color 5 of the secret code (generally the position left to the left most pivot color position that receives the
answer “yes” in the binary search).

The Main Algorithm. The main algorithm is outlined as Algorithm 3.
It starts with an empty partial solution and finds the positions of the secret code y one-by-one.

The vector v keeps record about which of the initial queries σ1, . . . , σn coincides with the secret code
y in some open position. Thus, v is initialized by vi := info(σi, y), i ∈ [n]. The main loop always
requires an active index. For that reason, if vi = yes for all i ∈ [n] in the beginning, we first identify the
correct position in σ1 (which is unique in this case) by b n

2 c+ 1 queries (each swapping two positions
of σ1) and update x and v, correspondingly. After this step, there will always exist an active index.

Games 2020, 11, 19 8 of 11

Every call of findNext in the main loop augments x by a correct solution value. One call of findNext
requires at most 1 + dlog2 ne queries if the partial solution x contains more than one non-zero position,
and at most 2 + 2dlog2 ne queries (two queries for each call of infoP) if x has exactly one non-zero
position. Thus, Algorithm 3 does not need more than (n− 2)dlog2 ne+ 5

2 n− 1 queries to break the
secret code inclusive the n− 1 initial queries, b n

2 c+ 1 queries to find the first correct position, n− 3
calls of findNext and 2 final queries.

(a)
y
x

9 10 6 8 4 2 7 5 1 3
• • 6 8 • 2 • • 1 3

(b)

σ1 1 2 3 4 5 6 7 8 9 10
σ2 10 1 2 3 4 5 6 7 8 9
σ3 9 10 1 2 3 4 5 6 7 8
σ4 8 9 10 1 2 3 4 5 6 7
σ5 7 8 9 10 1 2 3 4 5 6
σ6 6 7 8 9 10 1 2 3 4 5
σ7 5 6 7 8 9 10 1 2 3 4
σ8 4 5 6 7 8 9 10 1 2 3
σ9 3 4 5 6 7 8 9 10 1 2
σ10 2 3 4 5 6 7 8 9 10 1

yes
yes
yes
yes

no
no
no
no
no
no

initial queries infoP

(c)
σa

σb

σc

σd

1 8 9 10 2 3 4 5 6 7
7 8 9 10 2 3 1 4 5 6
7 8 9 10 2 3 4 1 5 6
7 8 9 10 2 3 4 5 1 6

yes

no
no
yes

queries of findNext infoP

Figure 2. Panel (a): secret code y and partial solution vector x. Panel (b): the initial queries σj and their
responses infoP(σj, x, y), indicating if a query and the secret code coincide in any position that has not
been identified, yet (i.e., in any 0-position of x). Panel (c): binary search queries to identify the next
secret position. The highlighted subsequences correspond to the subsequences of the initial queries
that have been selected to apply the binary search.

Algorithm 3: Codebreaker Strategy for Permutations

1 Initialize x := (0, 0, . . . , 0);
2 Guess the queries σi, i ∈ [n− 1];
3 Initialize v ∈ {yes, no}n by vi := info(σi, y), i ∈ [n];
4 if vi = yes ∀i ∈ [n] then
5 Find position m with a correct color in σ1 by at most b n

2 c+ 1 queries;
6 xm := σ1

m;
7 v1 := no;

8 while |{i ∈ [n] | xi = 0}| > 2 do
9 Use v to choose an active index j ∈ [n]; // (vj = yes, vj+1 = no)

10 m := findNext(x, y, j);

11 xm := σ
j
m;

12 vj := infoP(σj, x, y);

13 Make at most two more queries to find the remaining two unidentified colors;

Games 2020, 11, 19 9 of 11

The case k > n: Let y = (y1, . . . , yn) be the code that must be found. We use the same notations
as above.

Phase 1. Consider the k queries σ1, . . . , σk, where σ1 represents the identity map on [k] and
for j ∈ [k − 1], we obtain σj+1 from σj by a circular shift to the right. We define k codes σ1, . . . , σk

by σj = (σ
j
i)

n

i=1, j ∈ [k]. For example, if k = 5 and n = 3, we have σ1 = (1, 2, 3), σ2 = (5, 1, 2),
σ3 = (4, 5, 1), σ4 = (3, 4, 5) and σ5 = (2, 3, 4). Within those k codes, every color appears exactly once at
every position and, thus, there are at least k− n initial queries that do not contain any correct position.
Since k > n, this implies

Lemma 1. There is a j ∈ [k] with info(σj, y) = no.

Phase 2. Having more colors than positions, we can perform our binary search for a next correct
position without using a pivot color. The corresponding simplified version of findNext is outlined as
Algorithm 4.

Algorithm 4: Function findNext for k > n
input :Code y, partial solution x 6= 0 and an active index j ∈ [k]
output :A position m that is correct in σj

1 if j = n then r := 1;
2 else r := j + 1;
3 a := 1, b := n;
4 while b > a do
5 ` := d a+b

2 e; // mid position of current interval

6 Guess σ :=
(
(σr

i)
`−1
i=1 , (σj

i)
n

i=`

)
;

7 s := infoP(σ, x, y);
8 if s = yes then a := `;
9 else b := `− 1;

10 return a;

Using that version of findNext also allows to simplify our main algorithm (Algorithm 3) by
adapting lines 2 and 3, and, due to Lemma 1, skipping lines 4–7, as findNext can be already applied to
find the first correct position. Thus, for the required number of queries to break the secret code we
have: the initial k− 1 queries, a call of the modified findNext for every but the last two positions and
one or two final queries. This yields that the modified Mastermind Algorithm breaks the secret code in
at most (n− 1)dlog2 ne+ k + 1 queries.

3. Conclusions

We showed that deterministic algorithms for the identification of a secret code in Black-Peg
AB-Mastermind can be modified and applied to Yes-No AB-Mastermind. The latter is a new
variant of AB-Mastermind which is harder to play for the codebreaker since a less informative
error measure is provided. The Yes-No measure only returns the information whether a query
and the secret code coincide in any position, while the Black-Peg measure is the number of
positions in which both codes coincide. Nevertheless, we proved that the best known asymptotic
upper bound for Black-Peg AB-Mastermind does also apply to Yes-No AB-Mastermind, by
adapting the corresponding constructive querying strategy. Utilizing a simple codemaker strategy,
we further derived corresponding lower bounds for Yes-No AB-Mastermind. Another challenge with
AB-Mastermind is that no color repetition is allowed in a query whereas most strategies for other
Mastermind variants exploit the property of color repetition. While for most Mastermind variants
there is a gap between lower and upper bounds on the worst case number of queries to break the

Games 2020, 11, 19 10 of 11

secret code, our results imply that this number is Θ(n log n) for the most popular case k = n of Yes-No
AB-Mastermind, which is also referred to as Yes-No Permutation-Mastermind. The same is true for the
case k = c · n with constant c. To our knowledge, this result is a first exact asymptotic query complexity
proof for a multicolor Mastermind variant, where both secret code and queries are chosen from the
same set, here [k]n.

A future challenge will be studying the static variant of Yes-No AB-Mastermind (where the
codebreaker must give all but one queries in advance of codemaker’s answers). Lower and
upper bounds for static Black-Peg AB-Mastermind were provided as Ω(n log n) and O(n1.525),
respectively [14].

Codeavailability: We provide Matlab/Octave implementations of the codebreaker strategy via GitHub,
a permanent version of which is archived in a public zenodo repository [15].

Author Contributions: Conceptualization, M.E.O. and V.S.; methodology, M.E.O.; software, V.S.; validation,
M.E.O. and V.S; writing—original draft preparation, M.E.O. and V.S.; writing—review and editing, M.E.O. and
V.S.; visualization, V.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received financial support by DFG within the funding programme Open Access
Publizieren.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wikipedia Website about Mastermind. Available online: https://en.wikipedia.org/wiki/Mastermind_
(board_game) (accessed on 27 March 2020).

2. Wikipedia Website about Mordecai Meirowitz. Available online: https://en.wikipedia.org/wiki/Mordecai_
Meirowitz (accessed on 27 March 2020).

3. Knuth, D.E. The computer as a master mind. J. Recreat. Math. 1977, 9, 1–5.
4. Erdős, P.; Rényi, C. On Two Problems in Information Theory. Publ. Math. Inst. Hung. Acad. Sci. 1963,

8, 229–242.
5. Chvátal, V. Mastermind. Combinatorica 1983, 3, 325–329. [CrossRef]
6. Goodrich, M.T. On the algorithmic complexity of the Mastermind game with black-peg results.

Inf. Process. Lett. 2009, 109, 675–678. [CrossRef]
7. Jäger, G.; Peczarski, M. The number of pessimistic guesses in Generalized Black-peg Mastermind.

Inf. Process. Lett. 2011, 111, 993–940. [CrossRef]
8. Doerr, B.; Doerr, C.; Spöhel, R.; Thomas, H. Playing Mastermind with Many Colors. J. ACM 2016, 63, 1–23.

[CrossRef]
9. Ko, K.; Teng, S. On the Number of Queries Necessary to Identify a Permutation. J. Algorithms 1986, 7, 449–462.

[CrossRef]
10. El Ouali, M.; Sauerland, V. Improved Approximation Algorithm for the Number of Queries Necessary to

Identify a Permutation. In Proceedings of the 24th International Workshop on Combinatorial Algorithms
(IWOCA 2013), Rouen, France, 10–12 July 2013; Lecroq, T., Mouchard, L., Eds.; Number 8288 in Lecture
Notes in Computer Science; Springer: Berlin, Germany, 2013; pp. 443–447.

11. El Ouali, M.; Glazik, C.; Sauerland, V.; Srivastav, A. On the Query Complexity of Black-Peg AB-Mastermind.
Games 2018, 9, 2. [CrossRef]

12. Berger, A.; Chute, C.; Stone, M. Query Complexity of Mastermind Variants. arXiv 2016, arXiv:1607.04597.
13. Afshani, P.; Agrawal, M.; Doerr, B.; Doerr, C.; Larsen, K.G.; Mehlhorn, K. The query complexity of a

permutation-based variant of Mastermind. Discret. Appl. Math. 2019, 260, 28–50. [CrossRef]

https://en.wikipedia.org/wiki/Mastermind_(board_game)
https://en.wikipedia.org/wiki/Mastermind_(board_game)
https://en.wikipedia.org/wiki/Mordecai_Meirowitz
https://en.wikipedia.org/wiki/Mordecai_Meirowitz
http://dx.doi.org/10.1007/BF02579188
http://dx.doi.org/10.1016/j.ipl.2009.02.021
http://dx.doi.org/10.1016/j.ipl.2011.06.009
http://dx.doi.org/10.1145/2987372
http://dx.doi.org/10.1016/0196-6774(86)90013-1
http://dx.doi.org/10.3390/g9010002
http://dx.doi.org/10.1016/j.dam.2019.01.007

Games 2020, 11, 19 11 of 11

14. Glazik, C.; Jäger, G.; Schiemann, J.; Srivastav, A. Bounds for Static Black-Peg AB Mastermind. In Proceedings
of the 11th International Conference on Combinatorial Optimization and Applications (COCOA 2017), Part
II, Shanghai, China, 16–18 December 2017; Gao, X., Du, H., Han, M., Eds.; Number 10628 in Lecture Notes in
Computer Science; Springer: Berlin, Germany, 2017; pp. 409–424. [CrossRef]

15. El Ouali, M.; Sauerland, V. GitHub repositry yn-ab-mastermindv1.0: Codebreaker strategies for Yes-No
AB-Mastermind (Matlab/Octave). arXiv 2020, arXiv:2003.11538.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-71147-8_28
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Lower Bound on the Number of Queries
	Upper Bound on the Number of Queries

	Conclusions
	References

