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Abstract: Evolution of distribution of strategies in game theory is an interesting question that has been
studied only for specific cases. Here I develop a general method to extend analysis of the evolution
of continuous strategy distributions given a quadratic payoff function for any initial distribution in
order to answer the following question—given the initial distribution of strategies in a game, how will
it evolve over time? I look at several specific examples, including normal distribution on the entire
line, normal truncated distribution, as well as exponential and uniform distributions. I show that
in the case of a negative quadratic term of the payoff function, regardless of the initial distribution,
the current distribution of strategies becomes normal, full or truncated, and it tends to a distribution
concentrated in a single point so that the limit state of the population is monomorphic. In the case of
a positive quadratic term, the limit state of the population may be dimorphic. The developed method
can now be applied to a broad class of questions pertaining to evolution of strategies in games with
different payoff functions and different initial distributions.

Keywords: continuous strategy space; quadratic payoff function; evolution of distribution;
HKV method

1. Introduction

Game-theoretic approach to population dynamics developed by Maynard Smith [1,2] and many
other authors (see, for example, Reference [3]) assumes that individual fitness results from payoffs
received during pairwise interactions that depend on individual phenotypes or strategies.

The approach to studying strategy-dependent payoffs in the case of a finite number of strategies
is as follows. Assume π(x, y) is the payoff received by an individual using strategy x against one using
strategy y. If there is a finite number of possible strategies (or traits), then π(x, y) is an entry of the
payoff matrix. Alternatively, the number of strategies may belong to a continuous rather than discrete
set of values. The case when individuals in the population use strategies that are parameterized by
a single real variable x that belongs to a closed and bounded interval [a, b] was studied in [4–10]
as well as many others. A brief survey of recent results on continuous state games can be found in
Reference [6].

Specifically, the case of quadratic payoff function was considered in References [11,12] and
some others.

Taylor and Jonker [13] offered a dynamical approach for game analysis known as replicator
dynamics that allows tracing evolution of a distribution of individual strategies/traits. Typically, it is
assumed that every individual uses one of finitely many possible strategies parameterized by real
numbers; in this case, the Taylor-Jonker equation can be reduced to a system of differential equations
and solved using well-developed methods, subject to practical limitations stemming from possible
high dimensionality of the system.
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Here, I extend the approach of studying games with strategies that are parameterized by
a continuous set of values to study the evolution of strategy (trait) distributions over time.
Specifically, I develop a method that allows computing the current distribution for games
with quadratic, as well as several more general payoff, functions at any time and for any initial
distribution. The approach is close to the HKV (after hidden keystone variables) method developed
in References [14–16] used for modeling evolution of heterogeneous populations and communities.
It allows generation of more general results than have previously been possible.

2. Results

2.1. Master Model

Consider a closed inhomogeneous population, where every individual is characterized by
a qualitative trait (or strategy) x ∈ X, where X ⊆ R is a subset of real numbers. X can be a closed
and bounded interval [a, b], a positive set of real numbers R+ or the total set of real numbers R.
Parameter x describes an individual’s inherited invariant properties; it remains unchanged for any
given individual but varies from one individual to another. The fitness (per capita reproduction
rate) F(t, x) of an individual depends on the strategy x and on interactions with other individuals in
the population.

Let l(t, x) be population density at time t with respect to strategy x; informally, l(t, x) is the number
of individuals that use x-strategy.

Assuming overlapping generations and smoothness of l(t, x) in t for each x ∈ X, the population
dynamics can be described by the following general model:

dl(t,x)
dt = l(t, x)F(t, x)

N(t) =
∫
X

l(t, x)dx

P(t, x) = l(t,x)
N(t)

(1)

where N(t) is the total population size and P(t, x) is the pdf of the strategy distribution at time t.
The initial pdf P(0, x) and the initial population size N(0) are assumed to be given.

Letπ(x, y) be the payoff of an x-individual when it plays against a y-individual. Following standard
assumptions of evolutionary game theory, assume that individual fitness F(t, x) is equal to the expected
payoff that the individual receives as a result of a random pairwise interaction with another individual
in the population, that is,

F(t, x) =
∫

X
π(x, y)P(t, y)dy. (2)

Equations (1) and (2) make up the master model.
Here our main goal is to study the evolution of the pdf P(t, x) over time. To this end, it is

necessary to compute population density l(t, x) and total population size N(t), which will be done in
the following section.

2.2. Evolution of Strategy Distribution in Games with Quadratic Payoff Function

Assume that the payoff π(x, y) has the form

π(x, y) = −ax2 + bxy + cx + dy2 + ey + f , (3)

where f = f (N) is the “background” fitness term that depends on the total population size N but does
not depend on individuals’ traits and interactions; a, b, c, d, e are constant coefficients.
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Then

F(t, x) =
∫

X
π(x, y)P(t, y)dy = −ax2 + bxEt[x] + cx + dEt

[
x2

]
+ eEt[x] + f (N), (4)

where expected value is notated as Et[g(x)] =
∫

X g(x)P(t, x)dx.
Now population dynamics is defined by the equation

dl(t, x)
dt

= l(t, x)(−ax2 + bxEt[x] + cx + dEt
[
x2

]
+ eEt[x] + f (N)).

In order to solve this equation, apply the version of HKV method [14–16]. Introduce auxiliary
variables s(t), h(t), such that

ds
dt = Et[x],

dh
st = Et

[
x2

]
+ f (N(t))

s(0) = h(0) = 0.

(5)

Then
l(t, x) = l(0, x)e(es(t)+dh(t))e−atx2+x(ct+bs(t)), (6)

N(t) =
∫

X
l(t, x)dx = N(0)e(es(t)+dh(t))

∫
X

e−atx2+x(bs(t)+ct)P(0, x)dx, (7)

P(t, x) =
l(t, x)
N(t)

= P(0, x)
e−atx2+x(bs(t)+ct)∫

X e−atx2+x(bs(t)+ct)P(0, x)dx
. (8)

Notice that P(t, x) depends neither on h(t) nor on c, f , e. Therefore, if one is interested in the
distribution of strategies and how it changes over time rather than the density of x-individuals,
then one can replace the reproduction rate given by Equation (4) by the reproduction rate

F(t, x) = −ax2 + bxEt[x] + cx. (9)

Equivalently, one can use the payment function (3) in a simplified form

π(x, y) = −ax2 + bxy + cx. (10)

The model (1) with payoff function (10) and reproduction rate (9) has the same distribution of
strategies as model (1) with payoff (3) and reproduction rate (4).

Next, using Equation (8), one can write Et[x] in the form

Et[x] =
∫

X
xP(t, x)dx =

∫
X

xe−atx2+x(ct+bs(t))P(0, x)/
∫

X
e−atx2+x(ct+bs(t))P(0, x)dx. (11)

Now define the following function Φ(t,λ), such that

Φ(t,λ) =
∫

X
e−atx2+xλP(0, x)dx. (12)

Et[x] can now be expressed as

Et[x] =
∂Φ(t, ct + bs(t))

∂λ
/Φ(t, ct + bs(t)). (13)
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It is now possible to write the explicit equation for the auxiliary variable as

ds
dt

= Et[x] =
∂lnΦ(t,λ)

∂λ
/λ=bs(t)+ct. (14)

Next,

Et
[
x2

]
=
∂2Φ(t, bs(t) + ct)

∂λ2 /Φ(t, bs(t) + ct)

and therefore

Vart[x] =
∂2Φ(t, bs(t) + ct)

∂λ2 /Φ(t, bs(t) + ct) − (
∂Φ(t, bs(t) + ct)

∂λ
/Φ(t, bs(t) + ct))

2

. (15)

The moment generation function (mgf) of the current distribution of strategies as given by
Equation (8) is

Mt(δ) =

∫
X e−atx2+x(bs(t)+ct+δ)P(0, x)∫
X e−atx2+x(bs(t)+ct)P(0, x)dx

=
Φ(t, bs(t) + ct + δ)

Φ(t, bs(t) + ct)
. (16)

Equations (8)–(16) now provide a tool for studying the evolution of the distribution of strategies
of the quadratic payment model over time for any initial distribution.

2.3. Initial Normal Distribution

The evolution of normal distribution in games with the quadratic payoff function has already
been mostly studied; as shown by Oechssier and Riedel [6,8] and Cressman and Hofbauer [5], the class
of normal distributions is invariant with respect to replicator dynamics in games with quadratic payoff

functions (3) with positive parameter a.
This statement immediately follows from Equation (8) for the current distribution of traits.

Additionally, the class of normal distributions truncated in a (finite or infinite) interval [a, b] is also
invariant, see Section 2.6 for details and examples.

Now consider the dynamics of initial normal distributions in detail.
Let the initial distribution be normal with the mean m and variance σ2,

P(0, x) =
1

√

2πσ2
exp

− (x−m)2

2σ2

, ∞ < x < ∞; (17)

Its mgf is given by

M[δ] = exp(δm +
δ2σ2

2
) (18)

Denoting for brevity γ = 1
2σ2 , one can compute the function Φ(t,λ) :

Φ(t,λ) =
∫
∞

−∞
e−ax2t+xλP(0, x)dx =

√
γ/π

∫
∞

−∞
e−x2at+xλ−γ(x−m)2

dx =
√

γ
γ+at exp (

λ2+4γλm−4aγm2t
4(γ+at) ). (19)

Next,
∂Φ(t,λ)
∂λ

=

√
γ

γ+ at
2γm + λ

2(γ+ at)
exp (

λ2 + 4γλm− 4aγm2t
4(γ+ at)

) ,

So
∂Φ(t,λ)
∂λ

/Φ(t,λ) =
λ+ 2γm
2(γ+ at)

. (20)

Then, according to Equation (5), the following explicit equation for auxiliary keystone variable
emerges:

ds
dt

=
bs + ct + 2γm

2(γ+ at)
, s(0) = 0. (21)
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This equation can be solved analytically as follows:

s(t) =
c

b(2a− b)
(bt + 2γ

1− (1 +
at
γ
)

b
2a
− 2mγ

b

1− (1 +
at
γ
)

b
2a
. (22)

Now it is possible to compute the mean, variance, and current distribution of strategies using
Equations (12)–(15). In the case of normal initial distribution, the simplest way to do so is to use
Equation (16) for the current mgf.

Indeed, using formula (16) and after simple algebra, one can write the current mgf as

Mt(δ) =
Φ(t, ct + bs(t) + δ))

Φ(t, ct + bs(t)))
= exp (

δ(λ+ 2mγ)
2(γ+ at)

+
δ2

4(γ+ at)
).

It is exactly the mgf of the normal distribution (18) with the mean λ+2mγ
2(γ+at) and variance 1

2(γ+at) .
Remembering that λ = bs(t) + ct and using Equation (22), after some algebra the mean of the

current strategy distribution takes the form

Et[x] = (1 +
at
γ
)

b
2a−1

(m−
c

2a− b
) +

c
2a− b

. (23)

Proposition 1. Let the initial distribution of strategies in model (1), (9) be normal N(m, σ2). Then the
distribution of strategies at any time t is normal with the mean Et[x] given by Equation (23) and variance
Vart[x] = 1

2(γ+at) =
σ2

1+2atσ2 .

It is easy to see that if 2a− b > 0, then (1 + at
γ )

b
2a−1
→ 0 and Et[x]→ c

2a−b as t→∞ ; if 2a− b < 0,

then (1 + at
γ )

b
2a−1
→∞; therefore Et[x]→∞ if m > c

2a−b and Et[x]→ −∞ if m < c
2a−b as t→∞ .

Notice that Et[x]→ m + c
2a ln(1 + at

γ ) as b→ 2a , so Et[x]→∞ if 2a− b ≤ 0..
Figure 1 shows the dynamics of the mean of current distribution of traits.
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b = 3 (red), b = 1 (blue); other parameters: a = c = γ = 1. Et[x]→∞ when 2a− b ≤ 0; Et[x]→ c
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when 2a− b > 0.
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Figure 2 shows the evolution of the distribution of traits over time. The variance of the current
distribution Vart[x] = σ2

1+2atσ2 tends to 0; therefore, the distribution of traits over time tends to
a distribution concentrated at the point x = c

2a−b for 2a− b > 0.
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2.4. Exponential Initial Distributions

Let the initial distribution be exponential in [0,∞) , P(0, x) = ve−vx. Then

P(t, x) =
e−ax2t+x(λ−v)∫
∞

0 e−ax2t+x(λ−v)dx
= 2

√
at
π

e−at(x− λ−v
2at )

2

1 + Er f
[
λ−v
2
√

at

] , (24)

where λ = bs(t) + ct.
Equation (24) for any t > 0 describes the density of the normal distribution with the mean

m(t) = λ−v
2at =

bs(t)+ct−v
2at and varianceσ2(t) = 1

2at truncated on [0,∞) . Notably, the mean of the truncated
normal distribution (24) is not equal to m(t), and its variance is not equal to σ2(t). Instead, the mean
of distribution (24) is

Et[x] = m(t) +
e−

(ct+bs(t)−v)2

4at

√
πat(1 + Er f ( ct+bs(t)−v

2
√

at
))

. (25)

In order to compute the mean given by Equation (25) and the current distribution (24) as a function
of time one needs to solve for the auxiliary variable s(t) that can be done using the function Φ(t,λ):

Φ(t,λ) = v
∫
∞

0
e−ax2t+xλ−vxdx =

√
π

2
√

at
v(1 + Er f (

λ− v

2
√

at
))e

(λ−v)2

4at . (26)

Then, according to Equation (14),

ds
st

=
∂lnΦ(t,λ)

∂λ
/λ=bs(t)+ct =

ct + bs(t) − v
2at

+
e−

(ct+bs(t)−v)2

4at

√
πat(1 + Er f ( ct+bs(t)−v

2
√

at
))

, s(0) = 0. (27)

This equation can be solved numerically. Using the solution s(t), we can compute the distribution
(24) and all its moments.

It follows from Equation (25), that lim Et[x] = lim m(t) = c
2a +

b
2a lim s(t)

t as t→∞ . One can

show that lim s(t)
t = c

2a−b , therefore lim Et[x] = c
2a (

b
2a−b + 1). The variance of the current distribution
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tends to 0, so the limit distribution tends to a distribution concentrated in the point x = c
2a (

b
2a−b + 1).

This proves the following proposition.

Proposition 2. Let the initial distribution of strategies be exponential. Then the current distribution is normal
at any time t > 0 that tends to a distribution concentrated in the point x = c

2a (
b

2a−b + 1).

An example of the dynamics of the current mean and variance is given on Figure 3. Figure 4
shows the dynamics of the initial exponential distribution that turns to a truncated normal distribution
with its variance tending to 0. Therefore, the current distribution tends to a distribution concentrated
in the point limEt[x] = 1 as t→∞ .
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2.5. Uniform Initial Distribution

Now assume that the initial distribution is uniform in the interval [−1, 1]. Then

Φ(t,λ) =
∫ 1

−1
e−ax2t+xλdx =

1
2

√
π
at

exp (
λ2

4at
)

(
Er f (

−λ+ 2at

2
√

at
) + Er f (

λ+ 2at

2
√

at
)

)
(28)

and the current distribution

P(t, x) =
l(t, x)
N(t)

=
e−ax2t+x(ct+bs(t))

Φ(t, ct + bs(t))
. (29)
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The auxiliary variable s(t) can be computed using Equation (14), or, equivalently, directly using
the expression (29) for the current pdf:

ds
dt

= Et[x] =
∫ 1

−1
xP(t, x)dx =

ct + bs(t)
2at

+
1
√
πat

exp (−
(bs(t)+ct+2at)2

4at ) − exp (−
(bs(t)+ct−2at)2

4at )

Er f ( bs(t)+ct+2at
2
√

at
) + Er f (−bs(t)−ct+2at

2
√

at
)

. (30)

For a positive parameter a, the distribution P(t, x) is normal with the mean E(t) = ct+bs(t)
2at and

variance σ2(t) = 1
2at truncated in the interval [−1, 1]. However, for negative values of parameter a

the distribution (29) is not normal; more specifically, if parameter b is also negative, then the initial
distribution evolves towards a U-shaped distribution, as can be seen Figure 5 (right).
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2.6. Normal Initial Distribution Truncated in the Interval [−1, 1] 

Now assume the initial distribution is normal with zero mean, truncated in the interval [−1, 1]: 

Figure 5. Evolution of the distribution of strategies over time given initial uniform distribution in
[−1, 1]; left panel: a = 1, b = −10, c = 1; right panel: a = −1, b = −10, c = 1.

2.6. Normal Initial Distribution Truncated in the Interval [−1, 1]

Now assume the initial distribution is normal with zero mean, truncated in the interval [−1, 1]:

p(x) = Ce−(x/σ)2
,−1 ≤ x ≤ 1, (31)

with normalization constant C = 1/
[
σ
√
π Er f ( 1

σ )
]
.

Using the theory developed in Section 2.3, Equation (8), one can show that the current distribution
of strategies is given by the formula

P(t, x) =
2e−

(bs(t)+ct−2(γ+at)x)2

4(γ+at)
√
γ+ at

√
π(Er f [−bs(t)−ct+2(γ+at)

2
√
γ+at ]+Er f [ bs(t)+ct+2(γ+at)

2
√
γ+at ])

where γ = 1/σ2. (32)

The distribution (32) is again normal truncated in the interval [−1, 1]. The current mean value that
defines Equation (14) for the auxiliary variable s(t) can be computed using Equation (13) or using the
expression (32) for the current pdf. This way one can obtain a (rather bulky) equation for s(t) that can
be solved numerically. With this solution, one can trace the evolution of the initial truncated normal
distribution. It can be shown that for a > 0 the variance of the current distribution tends to 0; therefore,
the current distribution tends to a distribution concentrated in the point limEt[x] at t→∞ . The value
of limEt[x] depends on model parameters. Three examples of the evolution of strategy distribution are
given in Figure 6.
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Figure 6. Evolution of the distribution of strategies over time given the initial truncated normal
distribution. (A) a = 5, b = −2, c = −10, σ2 = 10; (B) a = −5, b = −2, c = 1, γ = 10; (C) a = 1, b =

−2, c = 1, γ = 10.

More generally, one can consider the normal distribution truncated in a finite interval [a, b] or
in a half-line [a,∞) . Then it follows from Equation (8) that the current distribution is also normal
truncated in that interval.

Proposition 3. The class of truncated normal distributions is invariant with respect to replicator dynamics in
games with quadratic payoff functions (3) with positive parameter a.

In contrast, one can observe another kind of evolution of the initial truncated normal distribution
for a < 0. Specifically, the current distribution has a U-shape and tends to a distribution concentrated in
two extremal points of the interval where the initial distribution is defined, as can be seen in Figure 7.

Games 2020, 11, x FOR PEER REVIEW 9 of 12 

 

In contrast, one can observe another kind of evolution of the initial truncated normal distribution 
for 𝑎 < 0. Specifically, the current distribution has a U-shape and tends to a distribution concentrated in 
two extremal points of the interval where the initial distribution is defined, as can be seen in Figure 7. 

 
Figure 7. Evolution of the distribution of strategies over time given the initial normal distribution 
truncated in [−1, 1]; 𝑎 = −10, 𝑏 = −6, 𝑐 = 1, 𝛾 = 10. 

2.7. Generalization 

The developed approach can be applied to a more general version of the payoff function: 𝜋(𝑥, 𝑦) =  𝑓ଵ(𝑥) + 𝑓ଶ(𝑥)𝑓ଷ(𝑦) + 𝑓ସ(𝑦).  (33) 

In this case ௗ௟(௧,௫)ௗ௧ = 𝑙(𝑡, 𝑥) ׬ ൫𝑓ଵ(𝑥) + 𝑓ଶ(𝑥)𝑓ଷ(𝑦) + 𝑓ସ(𝑦)൯𝑃(𝑡, 𝑦)𝑑𝑦௑ = 𝑙(𝑡, 𝑥)𝐹(𝑡, 𝑥),  

where 𝐹(𝑡, 𝑥) = 𝑓ଵ(𝑥) + 𝑓ଶ(𝑥)𝐸௧[𝑓ଷ] + 𝐸௧[𝑓ସ]. 
Let us introduce auxiliary variables ௗ௦ௗ௧ = 𝐸௧[𝑓ଷ], ௗ௛௦௧ = 𝐸௧[𝑓ସ], 𝑠(0) = ℎ(0) = 0.  (34) 

Then 𝑙(𝑡, 𝑥) = 𝑙(0, 𝑥) exp[𝑓ଵ(𝑥)𝑡 + 𝑓ଶ(𝑥)𝑠(𝑡) + ℎ(𝑡)], 𝑁(𝑡) = ׬ 𝑙(𝑡, 𝑥)𝑑𝑥 =௫ 𝑁(0)𝑒 ௛(௧) ׬ 𝑒௙భ(௫)௧ା௙మ(௫)௦(௧)𝑃(0, 𝑥)𝑑𝑥௑ , 𝑃(𝑡, 𝑥) = ௟(௧,௫)ே(௧) = 𝑃(0, 𝑥) ௘೑భ(ೣ)೟శ೑మ(ೣ)ೞ(೟)׬ ௘೑భ(ೣ)೟శ೑మ(ೣ)ೞ(೟)௉(଴,௫)ௗ௫೉ . 

(35) 

One can see that the pdf 𝑃(𝑡, 𝑥)  does not depend on the variable ℎ(𝑡)  and hence on the 
function 𝑓ସ(𝑦). 

It follows from (35) that 𝐸௧[𝑓ଷ] = ׬ 𝑓ଷ(𝑥)𝑃(𝑡, 𝑥)𝑑𝑥 =௫ ׬ 𝑓ଷ(𝑥)௫ 𝑒௙భ(௫)௧ା௙మ(௫)௦(௧)𝑃(0, 𝑥)/ ׬ 𝑒௙భ(௫)௧ା௙మ(௫)௦(௧)𝑃(0, 𝑥)𝑑𝑥௑ .  

Then the equation ௗ௦ௗ௧ = 𝐸௧[𝑓ଷ], 𝑠(0) = 0  (36) 

can be solved, at least numerically. 
Another equivalent approach may also be useful. Define the function Φ(𝑡, 𝜆, 𝛿) = ׬ 𝑒௙భ(௫)௧ାఋ௙మ(௫)ାఒ௙య(௫)𝑃(0, 𝑥)𝑑𝑥௫ .  (37) 

Then 𝐸௧[𝑓ଷ] = డ௟௡஍(௧,ఒ,ఋ)பఒ /ఒୀ଴,ఋୀ௦(௧).  

Figure 7. Evolution of the distribution of strategies over time given the initial normal distribution
truncated in [−1, 1]; a = −10, b = −6, c = 1, γ = 10.



Games 2020, 11, 14 10 of 12

2.7. Generalization

The developed approach can be applied to a more general version of the payoff function:

π(x, y) = f1(x) + f2(x) f3(y) + f4(y). (33)

In this case

dl(t, x)
dt

= l(t, x)
∫

X
( f1(x) + f2(x) f3(y) + f4(y))P(t, y)dy = l(t, x)F(t, x),

where F(t, x) = f1(x) + f2(x)Et[ f3] + Et[ f4].
Let us introduce auxiliary variables

ds
dt

= Et[ f3],
dh
st

= Et[ f4], s(0) = h(0) = 0. (34)

Then
l(t, x) = l(0, x) exp[ f1(x)t + f2(x)s(t) + h(t)],

N(t) =
∫

x l(t, x)dx = N(0)eh(t)
∫

X e f1(x)t+ f2(x)s(t)P(0, x)dx,

P(t, x) = l(t,x)
N(t) = P(0, x) e f1(x)t+ f2(x)s(t)∫

X e f1(x)t+ f2(x)s(t)P(0,x)dx
.

(35)

One can see that the pdf P(t, x)does not depend on the variable h(t) and hence on the function f4(y).
It follows from (35) that

Et[ f3] =
∫

x
f3(x)P(t, x)dx =

∫
x

f3(x)e f1(x)t+ f2(x)s(t)P(0, x)/
∫

X
e f1(x)t+ f2(x)s(t)P(0, x)dx.

Then the equation
ds
dt

= Et[ f3], s(0) = 0 (36)

can be solved, at least numerically.
Another equivalent approach may also be useful. Define the function

Φ(t,λ, δ) =
∫

x
e f1(x)t+δ f2(x)+λ f3(x)P(0, x)dx. (37)

Then

Et[ f3] =
∂lnΦ(t,λ, δ)

∂λ
/λ=0, δ=s(t).

This results in a closed equation for the auxiliary variable s(t) :

ds
st

= Et[ f2] =
∂lnΦ(t,λ, δ)

∂λ
/λ=0, δ=t+cs(t). (38)

Having the solution to equations (36) or (38), one can compute the current pdf (35) and all
statistical characteristics of interest, such as the current mean and variance of strategies given any
initial distribution.

Example 1 (see [12], Example 1). Let π(x, y) = −ax4 + 4xy. Then F(t, x) = −ax4 + 4xEt[x].
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Introduce the auxiliary variable using the equation ds
dt = Et[x]. Then

l(t, x) = l(0, x) exp (−ax4t + 4xs(t)),

N(t) =
∫

x l(t, x)dx = N(0)
∫

X exp (−ax4t + 4xs(t))P(0, x)dx,

P(t, x) = l(t,x)
N(t) = P(0, x) exp (−ax4t+4xs(t))∫

X exp (−ax4t+4xs(t))P(0,x)dx
.

(39)

Let Φ(t,λ) =
∫

x e−ax4t+λxP(0, x)dx.
Then

ds
dt

= Et[x] =
∂lnΦ(t,λ)

∂λ
/λ=4s(t).

This equation can be solved numerically, allowing one to then compute the pdf according to
Equation (39).

3. Discussion

Classical problems of evolutionary game theory are concentrated on studying equilibrium states
(such as evolutionarily stable states and Nash equilibria). Notably, it takes indefinite time to reach any
equilibrium when starting from a from non-trivial initial distribution of strategies in continuous-time
models. Therefore, the evolution of a given initial distribution over time may be of great interest and
potentially critical importance for studying real population dynamics.

Here I developed a method that allows extending the analysis of evolution of continuous strategy
distributions in games with a quadratic payoff function. Specifically, the method described here
allows us to answer the question: given an initial distribution of strategies in a game, how will it
evolve over time? Typically, the dynamics of population distributions are governed by replicator
equations, which appear both in evolutionary game theory, as well as in analysis of the dynamics of
non-homogeneous populations and communities. The approach suggested here is based on the HKV
(hidden keystone variable) method developed in References [9–11] for analysis of the dynamics of
inhomogeneous populations and finding solutions of corresponding replicator equations. The method
allows the computing of the current strategy distribution and all statistical characteristics of interest,
such as current mean and variance, of the current distribution given any initial distribution at any time.

I looked at several specific examples of initial distributions:

◦ Normal
◦ Exponential
◦ Uniform on [−1, 1]
◦ Truncated normal on [−1, 1]

Through the application of the proposed method, I confirm the existing results given in
References [5,6], that the family of normal distributions is invariant in a game with a quadratic
payoff function with negative quadratic term. Additionally, I derive explicit formulas for the current
distribution, its mean and variance. I show also that the class of truncated normal distributions is also
invariant with respect to replicator dynamics in games with quadratic payoff functions; as an example,
I consider in detail the case of initial normal distribution truncated in [−1, 1].

Notably and unexpectedly, in most cases, regardless of initial distribution, the current distribution
of strategies in games with negative quadratic term is normal, standard or truncated. Over time it
evolves towards a distribution concentrated in a single point that is equal to the limit values of the
mean of the current normal distribution. This can have implications for a broad class of questions
pertaining to evolution of strategies in games.

For instance, the question of whether the limit state of the population is mono - or polymorphic was
discussed in the literature. Here I show that for games with a quadratic payoff function, the population
tends to a monomorphic stable state if the quadratic term is negative. In contrast, if the quadratic term
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of the payoff function is positive and the initial distribution is concentrated in a finite interval, then the
current distribution can have a U-shape, and then the population tends to a di-morphic state.

In the last section I extend the developed approach to games with payoff functions of the form
π(x, y) = f1(x) + f2(x) f3(y) + f4(y). Formally, this framework can be applied to a very broad class of
payoff functions, which include exponential or polynomial payoff functions; however, in many cases
finding a solution to the equation for the auxiliary variable can be a difficult computational problem.

To summarize, the proposed method is validated against previously published results, and is
then applied to a previously unsolvable class of problems. Application of this method could help
expand the class of questions and answers that can now be obtained for a large class of problems in
evolutionary game theory.
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