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Abstract: In this paper, a new approach to solve Chance Constrained Problems (CCPs) using huge
data sets is proposed. Specifically, instead of the conventional mathematical model, a huge data set is
used to formulate CCP. This is because such a large data set is available nowadays due to advanced
information technologies. Since the data set is too large to evaluate the probabilistic constraint of CCP,
a new data reduction method called Weighted Stratified Sampling (WSS) is proposed to describe a
relaxation problem of CCP. An adaptive Differential Evolution combined with a pruning technique
is also proposed to solve the relaxation problem of CCP efficiently. The performance of WSS is
compared with a well known method, Simple Random Sampling. Then, the proposed approach is
applied to a real-world application, namely the flood control planning formulated as CCP.

Keywords: chance constrained problem; data reduction; differential evolution; big data

1. Introduction

In real-world applications, a wide range of uncertainties have to be taken into account. Therefore,
optimization problems under uncertainties have been studied for many years. Generally speaking,
there are two types of formulations for handling uncertainties in optimization problems. The first
one is the deterministic optimization problem [1]. The second one is the stochastic optimization
problem [2]. The robust optimization problem is a well-known deterministic formulation [1]. The robust
optimization problem always considers the worst-case performance under uncertainties. Therefore,
the overestimation of uncertainties may lead to a conservative decision in practice.

The Chance Constrained Problem (CCP), which is also referred to as the probabilistic constrained
problem [3], is one of the possible formulations of the stochastic optimization problem. CCP is a
risk-averse formulation of problem under uncertainties. Specifically, CCP ensures that the probability
of meeting all constraints is above a certain level. Since the balance between optimality and reliability
can be designated by CCP, many real-world applications have been formulated as CCPs [3–5].

CCP has been studied in the field of stochastic programming for many years [2]. In stochastic
programming, the optimization methods of the nonlinear programming [6] have been used to solve
CCP. Recently, Evolutionary Algorithms (EAs) have also been reported for solving CCPs [7–9].
However, in the conventional formulation of CCP, a well known probability distribution such as
the normal distribution is used widely as a mathematical model of unknown uncertainties. Then,
the pseudo data generated randomly by using the Monte Carlo method based on the mathematical
model are used to represent uncertainties [10]. In some cases, the mathematical model is used to
derive a deterministic formulation of CCP [2,11]. Otherwise, very few data, or scenarios, observed
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actually are used to represent uncertainties. As a drawback of the conventional formulation of CCP,
the estimation error of uncertainties is unavoidable in the evaluation of solutions. In other words, if
CCP is defined incompletely, the solution is also defective. Then, we cannot enjoy the benefit of CCP.

In recent years, due to advanced information technologies such as Wireless Sensor Networks (WSN)
and Internet of Things (IoT) [12], huge data sets called “big data” have been easily obtained in various
fields including culture, science, and industry [13]. In many real-world applications, the variance of
observed data is caused by some uncertainties. These applications are probably formulated as CCP
more accurately by using a large data set instead of the mathematical model.

In this paper, CCP was formulated by using a large data set called a full data set. However, we
assumed that the full data set is too large to solve CCP practically. Therefore, in order to evaluate
solutions of CCP, we had to reduce the size of the full data set. Clustering is a popular data reduction
technique [14]. Clustering divides a data set into some subsets in order to meet two requirements:
“Internal cohesion” and “External isolation”. As a drawback of clustering, the result of clustering
depends on the structure of data. Moreover, it is not good at dealing with a huge data set [15].

Sampling is another technique of data reduction. In particular, Simple Random Sampling (SRS) is
widely used due to its easy execution and simplicity [16]. SRS selects a few samples randomly from a
huge data set and discards most of data. As a drawback of SRS, the key information in many data is
likely to be lost. Therefore, a new data reduction method called Weighted Stratified Sampling (WSS)
has been proposed by authors to use the full data set completely for solving CCP [17].

By using the new data reduction method called WSS, the above CCP based on the full data set is
converted into a relaxation problem of CCP. In order to solve the relaxation problem of CCP efficiently,
a new optimization method based on Differential Evolution (DE) [18] is also contrived in this paper. In
the new optimization method, a pruning technique is introduced into an adaptive DE [19] for reducing
the number of candidate solutions to be examined on the process of the optimization.

The proposed approach is applied to a real-world application, namely the flood control planning
formulated as CCP [5]. In addition to the conventional reservoir, the water-retaining capacity of the
forest is considered in the flood control planning. Incidentally, various reservoir systems have been
studied for protecting a downstream area of river from flood damage [20–22]. Even though historical
data are used in these studies, many of them have been limited to dealing with problems of deterministic
formulation. A stochastic formulation such as CCP is generally a more realistic representation of the
flood control planning because stream flows have randomness and are stochastic in nature.

This paper is an extended version of the paper presented in ICIST2019 [17] and differs from
the conference paper in the following three points: (1) The necessary sample size for SRS is derived
theoretically. Then, it is shown that the theoretical sample size is too large in practice; (2) By using
larger data sets, the performance of WSS is examined more intensively by comparison with SRS. Then,
it is proven that WSS outperforms SRS in the accuracy of the estimated probability; (3) The ability of
the pruning technique to reduce the run time of the adaptive DE is evaluated. Then, it is shown that
the effect of the pruning technique increases proportionally to the sample size of WSS.

The remainder of this paper is organized as follows. Section 2 formulates CCP from a full data set.
Section 3 explains two data reduction methods, namely the conventional SRS and the proposed WSS.
By using a data reduction method, a relaxation problem of CCP is also derived. Section 4 proposes an
adaptive DE combined with a pruning technique for solving the relaxation problem of CCP efficiently.
Section 5 examines the performance of WSS intensively by comparison with SRS. Section 6 applies the
proposed approach to a real-world application, namely the flood control planning formulated as CCP.
Section 7 evaluates the ability of the pruning technique to reduce the run time of the adaptive DE on a
personal computer. Finally, Section 8 concludes this paper and provides future work.

2. Problem Formulation

In this paper, uncertainties are represented by a vector of random variables ξ ∈ Ω with a sample
space Ω ⊆ <K. The collection of vectors ξ ∈ Ω ⊆ <K is independent and identically distributed (i.i.d.).
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It is not necessarily that the collection of the elements ξ j ∈ < of each vector ξ ∈ <K is i.i.d. We suppose
that both the sample space Ω ⊆ <K and the distribution of ξ ∈ Ω are unknown. However, a full data
set B ⊆ Ω including a huge number of data ξ` ∈ B is available. Incidentally, the full data set can be
regarded as a kind of “big data”. Symbols used in this paper are defined as follows:

• A vector of decision variables x = (x1, · · · , xD) ∈ X ⊆ <D

• A vector of random variables ξ = (ξ1, · · · , ξK) ∈ Ω ⊆ <K

• A huge number of data, or a full data set ξ` ∈ B ⊆ Ω

• Measurable function for constraints gm : X ×Ω→ <, m = 1, · · · , M
• Objective function to be minimized f : X → <
• Sufficiency level given by a probability α ∈ (0, 1).

2.1. Chance Constrained Problem (CCP)

Let Pr(A) be the probability that an eventA occurs. The joint probability meeting all probabilistic
constraints gm(x, ξ) ≤ 0, m = 1, · · · , M for a solution x ∈ X is described as

p(x, Ω) = Pr(∀ξ ∈ Ω : gm(x, ξ) ≤ 0, m = 1, · · · , M). (1)

By using the probability in (1), CCP is formulated as

min
x∈X

f (x) sub. to p(x, Ω) ≥ α (2)

where a sufficiency level α ∈ (0, 1) is given by an arbitrary probability.
In real-world applications, both the sample space Ω ⊆ <K and the distribution of ξ ∈ Ω are

usually unknown. Therefore, it is impossible to solve CCP in (2) directly.

2.2. Equivalence Problem of CCP

As stated above, due to advanced information technology, we can suppose that a huge data set
B = {ξ`} ⊆ Ω is available for estimating the unknown probability p(x, Ω) in (1) empirically.

First of all, the indicator function is defined as

1l(gm(x, ξ`) ≤ 0) =

{
1 if gm(x, ξ`) ≤ 0

0 otherwise.
(3)

By using the indicator function in (3), the unknown probability p(x, Ω) in (1) can be evaluated
empirically from a huge number of data ξ` ∈ B for a solution x ∈ X as

p̂(x, B) =
1
|B| ∑

ξ`∈B

(
M

∏
m=1

1l(gm(x, ξ`) ≤ 0)

)
(4)

where |B| denotes the size of the data set B, or the total number of data ξ` ∈ B.
From the law of large numbers [23], we can expect that p(x, Ω) ' p̂(x, B) holds. Therefore, by

using the empirical probability in (4), CCP in (2) can be rewritten as

min
x∈X

f (x) sub. to p̂(x, B) ≥ α. (5)

It is difficult to solve CCP in (5). In real-world applications, the function value gm(x, ξ`) in (4)
has to be evaluated for each of the data ξ` ∈ B through a time-consuming computer simulation. Thus,
the full data set B is too large to evaluate the empirical probability in (4). In order to solve CCP in (5)
practically, we need to reduce the number of data ξ` ∈ B included in the full data set.
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3. Data Reduction Methods

In order to reduce the number of data ξ` ∈ B included in the full data set B ⊆ <K, we explain two
data reduction methods. Firstly, Simple Random Sampling (SRS) is the most popular method [24]. SRS
is widely used due to its easy execution and simplicity [25]. Secondly, Weighted Stratified Sampling
(WSS) is a new data reduction method proposed by authors in ICIST 2019 [17].

3.1. Simple Random Sampling (SRS)

3.1.1. Procedure of SRS

Some samples ξn ∈ B, n = 1, · · · , N are selected randomly from the full data set for making a
sample set Ξ = {ξ1, · · · , ξN} ⊆ B. The sample size N is far smaller than the data size |B|. By using
samples ξn ∈ Ξ, n = 1, · · · , N selected by SRS, an empirical probability is calculated as

p̂(x, Ξ) =
1
N

N

∑
n=1

(
M

∏
m=1

1l(gm(x, ξn) ≤ 0)

)
. (6)

The empirical probability p̂(x, Ξ) in (6) can be used to approximate p̂(x, B) in (4).

3.1.2. Theoretical Sample Size

Supposing that p̂(x, B) ' p(x, Ω) holds, we can estimate theoretically a necessary sample size
for SRS. Let x ∈ X be a solution of CCP in (5). By using random samples ξn ∈ Ξ ⊆ B, n = 1, · · · , N,
the empirical probability p̂(x, Ξ) in (6) is evaluated from yn ∈ {0, 1} defined as

yn =
M

∏
m=1

1l(gm(x, ξn) ≤ 0). (7)

The values of yn ∈ {0, 1} in (7), which depend on random samples ξn ∈ Ξ, n = 1, · · · , N, are
regarded as random variables obeying a binomial distribution. From the central limit theorem, the
binomial distribution can be approximated by a normal distribution [23]. Therefore, for any ε ∈ (0, 1)
and δ ∈ (0, 1), the confidence interval of the unknown probability p̂(x, B) in (4) is described as

Pr (| p̂(x, B)− p̂(x, Ξ)| ≤ ε) ≥ 1− δ. (8)

Let Φ : < → [0, 1] be the Cumulative Distribution Function (CDF) of the standard normal
distribution. From (8), the risk of failure δ ∈ (0, 1) is derived as

δ ≥ 2 Φ

(
−ε

√
N

p̂(x, B) (1− p̂(x, B))

)
. (9)

From (9), the margin of error ε ∈ (0, 1) is also derived as

ε ≥ zδ/2

√
p̂(x, B) (1− p̂(x, B))

N
(10)

where zδ/2 ∈ [0.5, ∞) is defined as zδ/2 = −Φ−1(δ/2).
From (10), the sample size N necessary for the confidence interval in (8) is derived as

N ≥
( zδ/2

ε

)2
p̂(x, B) (1− p̂(x, B)). (11)

Figure 1 shows the margin of error given by (10) for the sample size N and the value p ∈ (0, 1) of
p̂(x, B). Figure 2 shows the sample size given by (11) for the value of p̂(x, B) and ε ∈ (0, 1).
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Even if the value of p̂(x, B) in (11) is unknown, the right side of the formula (11) takes its biggest
value when p̂(x, B) = 0.5. Therefore, the necessary sample size for SRS is obtained from (11) as

N ≥ 1
4

( zδ/2

ε

)2
. (12)

Unfortunately, the sample size of SRS obtained theoretically by (12) is too large in practice. For
example, the sample size in (12) becomes N = 16, 587 for δ = 0.01 and ε = 0.01.

Figure 1. Error for sample size.

Figure 2. Sample size for probability.

3.2. Weighted Stratified Sampling (WSS)

Since every sample ξn ∈ Ξ ⊆ B of SRS has the same probability of being chosen from the full data
set B, few samples ξn ∈ Ξ are taken from the sparse part of B. In addition to the defect of SRS, the
majority of data ξ` ∈ B are neglected by SRS even though the full data set B is very large.

In order to use the full data set B completely, we proposed a new data reduction method called
WSS [17]. In the sampling technique called stratified sampling, which is often used in statistical
survey [24], a data set is divided into some strata, or homogeneous subsets. This process is called
stratification. Then, a few samples are selected from every stratum. Contrarily to clustering techniques
used to divide a data set into some subsets [24], the stratification requires only “Internal cohesion” but
not “External isolation”. Therefore, we can choose an arbitrary number of strata for WSS.

3.2.1. Procedure of WSS

A sample set Θ ⊆ <K is generated from the full data set B ⊆ <K as follows:

Step 1: By using a K-dimensional histogram, the full data set B ⊆ <K is divided exclusively into some
strata Bn ⊆ B, n = 1, · · · , N as

B = B1 ∪ · · · ∪ Bn ∪ · · · ∪ BN (13)

where Bn ⊆ <K and Bn 6= ∅, n = 1, · · · , N.
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Specifically, the K-dimensional histogram is a K-dimensional hypercube that contains the full
data set B ⊆ <K. On each side of the K-dimensional hypercube, the entire range of data is
divided into a series of intervals. In this paper, the number of intervals is the same on all
sides. Moreover, all intervals on each side have equal widths. Therefore, the K-dimensional
histogram is an equi-width histogram [26]. Each bin of the K-dimensional histogram is
also a K-dimensional hypercube. Then, nonempty bins are used to define strata Bn ⊆ B,
n = 1, · · · , N.

Step 2: A new sample point θn ∈ <K is generated for each stratum Bn ⊆ <K, n = 1, · · · , N. Then,
the sample set Θ ⊆ <K is defined as Θ = {θ1, · · · , θn, · · · , θN}.

Step 3: The weight wn ∈ < of each sample θn ∈ Θ is given by the size of Bn as wn = |Bn|.

By using a set of samples θn ∈ Θ, n = 1, · · · , N and their weights wn ∈ < obtained by WSS, an
empirical probability is calculated to approximate p̂(x, B) in (4) as

p̂(x, Θ) =
1

W

N

∑
n=1

wn

(
M

∏
m=1

1l(gm(x, θn) ≤ 0)

)
(14)

where W = w1 + · · ·+ wn + · · ·+ wN and wn > 0, n = 1, · · · , N.

3.2.2. Sample Generation by WSS

Each of the samples θn ∈ Θ of WSS is not necessary to be a sample from the stratum Bn ⊆ B.
For generating samples θn ∈ Θ, n = 1, · · · , N in Step 2, we think about the optimality of the sample
set Θ ⊆ <K. The best sample set Θ ⊆ <K minimizes the error metric of histogram [27] defined as

eH(Θ, B) =
N

∑
n=1

eH(θ
n, Bn) =

N

∑
n=1

∑
ξ`∈Bn

(θn − ξ`)2. (15)

In order to minimize the error metric of histogram in (15), we will solve the following differential
equation about θn ∈ Θ because each term eH(θ

n, Bn) in (15) is convex.

∂eH(θ
n, Bn)

∂θn = 2

|Bn| θn − ∑
ξ`∈Bn

ξ`

 = 0. (16)

By solving the differential equation in (16), we can obtain the optimal sample θn ∈ <K as

θn =
1
|Bn| ∑

ξ`∈Bn

ξ`. (17)

Consequently, in Step 2 of WSS, we have only to generate a new sample θn ∈ <K by using the
average point of all data ξ` ∈ Bn included in the stratum Bn ⊆ B as shown in (17).

3.3. Relaxation Problems of CCP

As stated above, the equivalence problem of CCP in (5) is hard to solve. That is because the
full data set B is too large. Therefore, a data reduction method, namely SRS or WSS, is employed
to formulate a relaxation problem of CCP. By using p̂(x, Ξ) in (6) or p̂(x, Θ) in (14) to approximate
p̂(x, B) in (4), the relaxation problem of CCP is formulated as

min
x∈X

f (x) sub. to p̂(x, S) ≥ β (18)

where the sample set S ⊆ <K denotes either Ξ ⊆ <K or Θ ⊆ <K. The correction level β ∈ (0, 1] is
chosen as β ≥ α to compensate the margin of error ε ∈ (0, 1) caused by SRS or WSS.
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4. Adaptive Differential Evolution with Pruning Technique

Differential Evolution (DE) has been proven to be one of the most powerful global optimization
algorithms [28,29]. Unfortunately, cardinal DE [18] is only applicable to unconstrained problems.
Moreover, the performance of DE is significantly influenced by its control parameter settings. Therefore,
in order to solve the relaxation problem of CCP shown in (18) efficiently, a new optimization method
called Adaptive DE with Pruning technique (ADEP) is proposed. In the proposed ADEP, three
techniques are introduced into cardinal DE [18]: (1) Adaptive control of parameters [19]; (2) Constraint
handling based on feasibility rule [30]; and (3) Pruning technique in selection [17].

4.1. Strategy of DE

As well as cardinal DE [18], ADEP has a set of candidate solutions xi ∈ Pt, i = 1, · · · , NP called
population in each generation t. Each candidate solution xi ∈ X is a vector of decision variables.
The initial population xi ∈ P0 ⊆ X is randomly generated according to a uniform distribution.

At each generation t, every xi ∈ Pt is assigned to a target vector in turn. By using the basic
strategy of DE called “DE/rand/1/bin” [18], a trial vector zi ∈ X is generated from the target vector
xi ∈ Pt. Specifically, except for the current target vector xi ∈ Pt, three other distinct vectors, say xr1, xr2,
and xr3, i 6= r1 6= r2 6= r3, are selected randomly from the population Pt. By using the three vectors,
the differential mutation generates a new real vector vi ∈ <D called mutated vector as

vi = xr1 + F (xr2 − xr3) (19)

where F ∈ [0.1, 1] is a control parameter called scale factor.
The binomial crossover between the mutated vector vi ∈ <D and the target vector xi ∈ Pt

generates another real vector zi = (z1,i, · · · , zD,i) ∈ X called trial vector. Specifically, each component
zj,i ∈ <, j = 1, · · · , D of the trial vector zi ∈ X is inherited from either vi ∈ X or xi ∈ Pt as

zj,i =

{
vj,i if randj ≤ CR ∨ j = jr
xj,i otherwise

(20)

where CR ∈ [0, 1] is a control parameter called crossover rate. randj ∈ [0, 1] denotes a uniformly
distributed random value. The subscript jr ∈ [1, D] is selected randomly every time, which ensures
that the newborn vector zi ∈ X differs from the existing one xi ∈ Pt at least one element.

4.2. Adaptive Control of Parameters

The performance of DE depends on control parameters, namely the scale factor F ∈ [0.1, 1] in (19)
and the crossover rate CR ∈ [0, 1] in (20). Therefore, various parameter adaptation mechanisms have
been reported [28,29,31]. ADEP employs an adaptive parameter control mechanism in which feedback
from the evolutionary search is used to dynamically change the control parameters [19].

According to the adaptive parameter control mechanism [19], all vectors xi ∈ Pt, i = 1, · · · , NP
have their own control parameters, namely Fi,t ∈ [0.1, 1] and CRi,t ∈ [0, 1], at each generation t. Then,
these control parameters are initialized as Fi,0 = 0.5 and CRi,0 = 0.9, i = 1, · · · , NP.

For generating the mutated vector vi ∈ <D as shown in (19), the scale factor F ∈ < is decided by
using the control parameter Fi,t ∈ [0.1, 1] associated with the target vector xi ∈ Pt as

F =

{
0.1 + rand1 0.9 if rand2 < 0.1

Fi,t otherwise
(21)

where randj ∈ [0, 1], j = 1, 2 are uniformly distributed values.
Similarly, for generating the trial vector ui ∈ <D as shown in (20), the crossover rate CR ∈ < is

decided by using the control parameter CRi,t ∈ [0, 1] associated with the target vector xi ∈ Pt as
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CR =

{
rand3 if rand4 < 0.1

CRi,t otherwise
(22)

where randj ∈ [0, 1], j = 3, 4 are uniformly distributed values.
The trial vector zi ∈ X generated by using F ∈ [0.1, 1] in (21) and CR ∈ [0, 1] in (22) is compared

with the target vector xi ∈ Pt as described below. If zi ∈ X is better than xi ∈ Pt, zi ∈ X is selected for
a new vector xi ∈ Pt+1 of the next generation, and the control parameters of xi ∈ Pt+1 are decided as
Fi,t+1 = F and CRi,t+1 = CR. Otherwise, the target vector xi ∈ Pt survives to the next generation, and
the control parameters of xi ∈ Pt+1 are inherited from xi ∈ Pt as Fi,t+1 = Fi,t and CRi,t+1 = CRi,t.

4.3. Constraint Handling and Pruning Technique in Selection

Evolutionary Algorithms (EAs) including DE are typically applied to problems in which bounds
are the only constraints. Therefore, a number of Constraint Handling Techniques (CHTs) have been
proposed in order to apply EAs to constrained optimization problems [32]. Among those CHTs,
the feasibility rule [30] is one of the most widely used CHTs because of its simplicity and efficiency.
Thus, ADEP uses a feasibility rule with the amount of constraint violation defined from (18) as

h(xi) = max{β− p̂(xi, S), 0} (23)

where the candidate solution xi ∈ Pt of CCP in (18) is feasible if h(xi) = 0 holds.
At each generation t, the trial vector zi ∈ X, i = 1, · · · , NP is compared with the corresponding

target vector xi ∈ Pt. Then, either the trial vector zi ∈ X or the target vector xi ∈ Pt is selected for a
vector xi ∈ Pt+1 of the next generation. First of all, if the following condition is satisfied,

(h(xi) = 0) ∧ ( f (xi) < f (zi)) (24)

the trial vector zi ∈ X is discarded immediately because xi ∈ Pt is better than zi ∈ X. Then, the trial
vector xi ∈ Pt survives to the next generation. Since the pruning technique based on the condition
in (24) does not require the value of h(zi), it is very effective to reduce the run time of ADEP.

Only when the condition in (24) is not satisfied, the probability p̂(zi, S) is evaluated by using the
sample set S ⊆ <K to get the value of h(zi). If either of the following conditions is satisfied,[

h(zi) < h(xi)

(h(zi) = h(xi)) ∧ ( f (zi) ≤ f (xi))
(25)

the trial vector zi ∈ X is selected for a new vector xi ∈ Pt+1 of the next generation. Otherwise,
the current target vector xi ∈ Pt survives to the next generation and becomes a vector xi ∈ Pt+1.

4.4. Proposed Algorithm of ADEP

The algorithm of ADEP is described as follows. The maximum number of generations NT is
given as the termination condition. The population size NP is chosen as NP = 5 D [18].

Step 1: Randomly generate the initial population xi ∈ P0 ⊆ X, i = 1, · · · , NP. t = 0.
Step 2: For i = 1 to NP, evaluate f (xi) and h(xi) for each vector xi ∈ P0.
Step 3: If t = NT holds, output the best solution xb ∈ Pt and terminate ADEP.
Step 4: For i = 1 to NP, generate the trial vector zi ∈ X from the target vector xi ∈ Pt.
Step 5: For i = 1 to NP, evaluate f (zi) for the trial vector zi ∈ X.
Step 6: For i = 1 to NP, evaluate h(zi) for zi ∈ X only if the condition in (24) is not satisfied.
Step 7: For i = 1 to NP, select either zi ∈ X or xi ∈ Pt for xi ∈ Pt+1. t = t + 1.
Step 8: Go back to Step 3.
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5. Performance Evaluation of WSS

We evaluate the performance of the proposed WSS by comparison with the conventional SRS.
Specifically, by using WSS and SRS, we estimate the probability meeting g(x, ξ`) ≤ γ as

p̂(x, B) =
1
|B| ∑

ξ`∈B

1l(g(x, ξ`) ≤ γ) (26)

where g : X ×Ω→ < is a measurable function.
From (9) to (11), the performance of SRS depends on the value of the probability p̂(x, B) to be

estimated. Therefore, by changing the value of γ ∈ < in (26), we change the value of the probability to
be estimated by SRS and WSS. From a full data set B ⊆ <K, the sample sets Ξ ⊆ <K and Θ ⊆ <K are
generated, respectively, by using SRS and WSS. Then, the estimation error is defined as

εp(S, B) = | p̂(x, S)− p̂(x, B)| (27)

where the sample set S ⊆ <K denotes either Ξ ⊆ <K or Θ ⊆ <K.

5.1. Case Study 1

Each value ξi ∈ < of practical data ξ ∈ Ω in (2) usually has a range. Therefore, a full data set
ξ` = (ξ1, ξ2) ∈ B ⊆ <2 is generated randomly by using a truncated normal distribution as

ξ j ∼ N (µj, σ2
j , µj − 3 σj, µj + 3 σj), j = 1, 2 (28)

where the mean is µ = (µ1, µ2) = (1, 2) and the variance is σ2 = (σ2
1 , σ2

2 ) = (0.12, 0.22).
The truncated normal distribution in (28) is the probability distribution derived from that of a

normally distributed random variable by bounding the random variable as ξ j ∈ [µj − 3 σj, µj + 3 σj].
The correlation matrix of the random variables ξ j ∈ <, j = 1, 2 is also given as

R =

(
1.0 ρ12

ρ21 1.0

)
=

(
1.0 −0.8
−0.8 1.0

)
. (29)

Please notice that the full data set ξ` ∈ B is i.i.d. even if the elements of ξ` ∈ B have a correlation.
The size of the full data set B ⊆ <2 generated randomly is |B| = 107. Figure 3 shows the spatial
patterns of the full data ξ` ∈ B and the random samples ξn ∈ Ξ ⊆ B, n = 1, · · · , N selected by SRS.
Figure 4 also shows the full data ξ` ∈ B and the weighted samples θn ∈ Θ generated by WSS.

From Figures 3 and 4, we can see that the weighted samples θn ∈ Θ, n = 1, · · · , N of WSS are
scattered more widely as compared to the random samples ξn ∈ Ξ of SRS. Especially, SRS has not
taken any samples ξn ∈ Ξ from the sparse part of the full data set B ⊆ <2 in Figure 3.

(a) (ξ`1, ξ`2) ∈ B with |B| = 107. (b) (ξn
1 , ξn

2 ) ∈ Ξ with N = 33. (c) (ξn
1 , ξn

2 ) ∈ Ξ with N = 82.

Figure 3. Patterns of the full data ξ` ∈ B ⊆ <2 and the random samples ξn ∈ Ξ selected by SRS.
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(a) (ξ`1, ξ`2) ∈ B with |B| = 107. (b) (θn
1 , θn

2 ) ∈ Θ with N = 33. (c) (θn
1 , θn

2 ) ∈ Θ with N = 82.

Figure 4. Patterns of the full data ξ` ∈ B ⊆ <2 and the weighted samples θn ∈ Θ generated by WSS.

For the probability p̂(x, B) in (26), a function g(x, ξ`) is defined as

g(x, ξ`) =
x1 ξ1 + x2 ξ2

2
=

ξ1 + ξ2

2
(30)

where the vector of decision variables is given as x = (x1, x2) = (1, 1).
The probability in (26) becomes p̂(x, B) ' 0.933 when γ = 1.6 is chosen. Then, the estimation

errors in (27), namely εp(Θ, B) and εp(Ξ, B), are evaluated 100 times for each sample size by using
different full data sets B ⊆ <2 and summarized in Figure 5. From Figure 5, the average value and the
standard deviation of εp(Θ, B) are smaller than those of εp(Ξ, B) for any sample sizes. Furthermore,
εp(Θ, B) converges to almost zero faster than εp(Ξ, B) on average. Consequently, we can say that the
proposed WSS outperforms the conventional SRS in the accuracy of the estimated probability.

(a) Average (Ave) (b) Standard Deviation (SD)

Figure 5. Estimation error for sample size when p̂(x, B) ' 0.933 (K = 2).

The probability in (26) becomes p̂(x, B) ' 0.773 when γ = 1.55 is chosen. The estimation errors
in (27) are evaluated for WSS and SRS with the probability p̂(x, B) ' 0.773 as stated above and
summarized in Figure 6. The probability in (26) becomes p̂(x, B) ' 0.500 when γ = 1.5 is chosen.
The estimation errors in (27) are also evaluated for WSS and SRS with the probability p̂(x, B) ' 0.500
and summarized in Figure 7. From Figures 6 and 7, the standard deviation of εp(Θ, B) is always
smaller than that of εp(Ξ, B). On the other hand, in the average value of the estimation errors, WSS
seems to lose the advantage over SRS when the probability value gets closer to p̂(x, B) = 0.5.

From Figures 5–7, the performance of WSS depends not only on the sample size but also on the
probability value to be estimated. Then, WSS outperforms SRS when the probability value is large.
A large value is usually chosen for the probability meeting all constraints in CCP. Consequently, we
can say that WSS is more suitable for formulating the relaxation problem of CCP in (18).
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(a) Average (Ave) (b) Standard Deviation (SD)

Figure 6. Estimation error for sample size when p̂(x, B) ' 0.773 (K = 2).

(a) Average (Ave) (b) Standard Deviation (SD)

Figure 7. Estimation error for sample size when p̂(x, B) ' 0.500 (K = 2).

5.2. Case Study 2

A full data set ξ` = (ξ1, ξ2, ξ3) ∈ B ⊆ <3 is generated randomly as

ξ j ∼ N (µj, σ2
j , µj − 3 σj, µj + 3 σj), j = 1, 2, 3 (31)

where µ = (µ1, µ2, µ3) = (1.5, 2.0, 1.0) and σ2 = (σ2
1 , σ2

2 , σ2
3 ) = (0.22, 0.12, 0.12).

The correlation matrix of the random variables ξ j ∈ <, j = 1, 2, 3 is also given as

R =

 1.0 ρ12 ρ13

ρ21 1.0 ρ23

ρ31 ρ32 1.0

 =

 1.0 0.6 0.0
0.6 1.0 −0.4
0.0 −0.4 1.0

 . (32)

The size of the full data set B ⊆ <3 generated randomly is |B| = 107. Figure 8 shows the spatial
patterns of the full data ξ` ∈ B and the random samples ξn ∈ Ξ ⊆ B, n = 1, · · · , N selected by SRS.
Figure 9 also shows the full data ξ` ∈ B and the weighted samples θn ∈ Θ generated by WSS.

From Figures 8 and 9, we can see that the weighted samples θn ∈ Θ, n = 1, · · · , N of WSS are
scattered more widely than the random samples ξn ∈ Ξ of SRS. Some weighted samples θn ∈ Θ shown
in Figure 9 seem to be overlapped each other due to the high dimensionality K = 3 of them. However,
we can recognizable the uniformity in the pattern of the weighted samples θn ∈ Θ.

For the probability p̂(x, B) in (26), a linear function g(x, ξ`) is defined as

g(x, ξ`) =
x1 ξ1 + x2 ξ2 + x3 ξ3

3
=

ξ1 + ξ2 + ξ3

3
(33)

where the vector of decision variables is given as x = (x1, x2, x3) = (1, 1, 1).
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(a) (ξ`1, ξ`2) ∈ B with |B| = 107. (b) (ξn
1 , ξn

2 ) ∈ Ξ with N = 53. (c) (ξn
1 , ξn

2 ) ∈ Ξ with N = 407.

(d) (ξ`2, ξ`3) ∈ B with |B| = 107. (e) (ξn
2 , ξn

3 ) ∈ Ξ with N = 53. (f) (ξn
2 , ξn

3 ) ∈ Ξ with N = 407.

Figure 8. Patterns of the full data ξ` ∈ B ⊆ <3 and the random samples ξn ∈ Ξ selected by SRS.

(a) (ξ`1, ξ`2) ∈ B with |B| = 107. (b) (θn
1 , θn

2 ) ∈ Θ with N = 53. (c) (θn
1 , θn

2 ) ∈ Θ with N = 407.

(d) (ξ`2, ξ`3) ∈ B with |B| = 107. (e) (θn
2 , θn

3 ) ∈ Θ with N = 53. (f) (θn
2 , θn

3 ) ∈ Θ with N = 407.

Figure 9. Patterns of the full data ξ` ∈ B ⊆ <3 and the weighted samples θn ∈ Θ generated by WSS.

The probability in (26) becomes p̂(x, B) ' 0.986 when γ = 1.7 is chosen. Then, the estimation
errors in (27), namely εp(Θ, B) and εp(Ξ, B), are evaluated 100 times for each sample size by using
different full data sets B ⊆ <3 and summarized in Figure 10. From Figure 10, the average value and
the standard deviation of εp(Θ, B) are smaller than those of εp(Ξ, B) for any sample sizes. From these
results, we confirm that the proposed WSS outperforms the conventional SRS in this case.

5.3. Case Study 3

A full data set B ⊆ <3, |B| = 107 is generated randomly as shown in (31) and (32). For the
probability p̂(x, B) in (26), a non-linear function g(x, ξ`) is defined as

g(x, ξ`) =
x1 ξ2

1 + x2 ξ2
2 + x3 ξ2

3
3

=
ξ2

1 + ξ2
2 + ξ2

3
3

(34)

where the vector of decision variables is given as x = (x1, x2, x3) = (1, 1, 1).
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The probability in (26) becomes p̂(x, B) ' 0.817 when γ = 1.7 is chosen. The estimation errors
in (27) are evaluated for WSS and SRS with the probability p̂(x, B) ' 0.817 as stated above and
summarized in Figure 11. From Figure 11, WSS is also better than SRS because the average value and
the standard deviation of εp(Θ, B) are smaller than those of εp(Ξ, B) for any sample sizes.

From Figures 10 and 11, we can see that the margin of error provided by WSS converges fast,
and then it does not decrease even if the sample size is increased. Therefore, WSS can estimate the
probability accurately with a small sample size if we choose the sample size properly.

(a) Average (Ave) (b) Standard Deviation (SD)

Figure 10. Estimation error for sample size with the linear function in (33).

(a) Average (Ave) (b) Standard Deviation (SD)

Figure 11. Estimation error for sample size with the non-linear function in (34).

6. Flood Control Planning

6.1. Formulation of CCP

Reservoirs are constructed to protect an urban area at the lower part of river from the flood
damage caused by torrential rain. The flood control reservoir system design has been formulated as
CCP [33]. In addition to the reservoir, the water-retaining capacity of forest is counted to prevent the
flood caused by heavy rainfall. Thereby, the flood control planning is formulated as CCP [5].

Figure 12 shows a topological river model. Symbol© denotes a forest considered in the flood
control planning. There are three forests in watersheds. The gross area of each forest aj, j = 1, 2, 3
is a constant. The amount of rainfall ξ j ∈ < per unit area in each of the forests is a random variable.
The water-retaining capacity of forest xj ∈ <, j = 1, 2, 3 per unit area is regarded as a decision variable
because it can be controlled through the forest maintenance such as afforestation. According to the
model of the forest mechanism [34], the inflow of water qj ∈ < from each forest to the river is

qj(xj, ξ j) = aj (ξ j − xj (1− exp(−ξ j/xj))) (35)

where the effect of past rainfall is not considered in the model [34].
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Symbol M in Figure 12 denotes a reservoir. Three reservoirs are constructed in the river.
The capacity of each reservoir xj ∈ <, j = 4, 5, 6 is also a decision variable. From qj(xj, ξ j) ∈ < in (35),
the inflow of water from the river to the town located at the lower part of the river is calculated as

g(x, ξ) = max{max{max{q3 − x6, 0}+ q2 − x5, 0}+ q1 − x4, 0} (36)

where qj ∈ <, j = 1, 2, 3 denotes qj(xj, ξ j) ∈ < defined by (35).

Figure 12. Topological river model.

The probability of meeting g(x, ξ) ≤ 0 has to be greater than α ∈ (0, 1). The maintenance cost of
a forest is proportional to its capacity. The construction cost of a reservoir is proportional to the square
of its capacity. Then, the flood control planning to minimize the total cost is formulated as

min
x∈X

f (x) =
3

∑
j=1

aj xj +
6

∑
j=4

x2
j

sub. to Pr (∀ ξ ∈ Ω : gm(x, ξ) ≤ 0, m = 1, 2, 3) ≥ α

0.5 ≤ x1 ≤ 1.5, 0.5 ≤ x2 ≤ 1.5, 0.5 ≤ x3 ≤ 1.5,
0 ≤ x4 ≤ 3, 0 ≤ x5 ≤ 3, 0 ≤ x6 ≤ 4

(37)

where aj = 2, j = 1, 2, 3. From (36), functions gm(x, ξ), m = 1, 2, 3 are derived as

 g1(x, ξ) = q1(x1, ξ1)− x4

g2(x, ξ) = q1(x1, ξ1) + q2(x2, ξ2)− x4 − x5

g3(x, ξ) = q1(x1, ξ1) + q2(x2, ξ2) + q3(x3, ξ3)− x4 − x5 − x6.

(38)

6.2. Comparison of SRS and WSS

We suppose that the amount of rainfall ξ ∈ Ω in (37) is given as “big data”. For convenience,
the full data set ξ` = (ξ1, ξ2, ξ3) ∈ B ⊆ Ω is generated randomly by using the truncated normal
distribution shown in (31). Please notice that ξ` ∈ B denotes the amount of rainfall in one period, but
the river flow depending on an actual time. The inflow of water qj ∈ < is derived from ξ j ∈ < as
shown in (35). Therefore, the full data set ξ` ∈ B is i.i.d. On the other hand, a set of ξ j ∈ <, j = 1, 2, 3
is not i.i.d. The correlation matrix of the amounts of rainfalls ξ j ∈ <, j = 1, 2, 3 is given as

R =

 1.0 ρ12 ρ13

ρ21 1.0 ρ23

ρ31 ρ32 1.0

 =

 1.0 0.5 0.0
0.5 1.0 0.3
0.0 0.3 1.0

 . (39)
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The size of the full data set B ⊆ <3 generated randomly is |B| = 107. Figure 13 shows the spatial
patterns of the full data ξ` ∈ B, the random samples ξn ∈ Ξ ⊆ B, n = 1, · · · , N selected by SRS, and
the weighted samples θn ∈ Θ, n = 1, · · · , N generated by WSS.

From Figure 13, we can see that the weighted samples θn ∈ Θ, n = 1, · · · , N of WSS are scattered
more widely than the random samples ξn ∈ Ξ, n = 1, · · · , N of SRS. Some weighted samples θn ∈ Θ

of WSS seem to be overlapped each other in Figure 13 due to the high dimensionality K = 3 of them.
However, we can recognizable the uniformity in the pattern of the weighted samples θn ∈ Θ.

(a) (ξ`1, ξ`2) ∈ B with |B| = 107. (b) (ξn
1 , ξn

2 ) ∈ Ξ with N = 485. (c) (θn
1 , θn

2 ) ∈ Θ with N = 485.

(d) (ξ`2, ξ`3) ∈ B with |B| = 107. (e) (ξn
2 , ξn

3 ) ∈ Ξ with N = 485. (f) (θn
2 , θn

3 ) ∈ Θ with N = 485.

Figure 13. Patterns of the full data set, the random samples of SRS, and the weighted samples of WSS.

The flood control planning formulated as CCP in (37) is transformed into an equivalence problem
of CCP as shown in (5) by using the above full data set B ⊆ <3, |B| = 107. For a solution x ∈ X of the
equivalence problem of CCP, the joint probability defined by (4) and (37) becomes p̂(x, B) ' 0.906. By
using SRS and WSS respectively, we estimate the value of the joint probability p̂(x, B).

The estimation errors in (27), namely εp(Θ, B) and εp(Ξ, B), are evaluated 100 times for each
sample size by using different full data sets B ⊆ <3 and summarized in Figure 14. From Figure 14,
the average value and the standard deviation of εp(Θ, B) are smaller than those of εp(Ξ, B) for any
sample sizes. From these results, we confirm that WSS outperforms SRS in this case too.

(a) Average (Ave) (b) Standard Deviation (SD)

Figure 14. Estimation error for sample size in the flood control planning.
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6.3. Solution of CCP

By using the weighted samples θn ∈ Θ, n = 1, · · · , N of WSS, the flood control planning
formulated as CCP in (37) is transformed into a relaxation problem of CCP as shown in (18). That is
because the result in Figure 14 shows that WSS estimates the value of p̂(x, B) using fewer samples
than SRS. From the average value of εp(Θ, B) in Figure 14, the sample size is chosen as N ' 482.

The proposed ADEP is coded in MATLAB [35]. The parameters of ADEP and WSS are chosen
as shown in Table 1. As stated above, the sample size is chosen as N ' 482. For a sufficiency level
α ∈ (0, 1) in (37), the correction level in (18) is chosen as β = α+ 0.03. The population size is decided as
NP = 5 D by recommendation of the literature [18]. The maximum number of generations is decided
as NT = 80 through a preliminary experiment. Figure 15 shows the convergence graph of ADEP when
the sufficiency level is chosen as α = 0.9 or α = 0.6. The horizontal axis of Figure 15 is the number of
generations. The vertical axis is the best objective function value achieved at each generation. From
Figure 15, we can confirm that NT = 80 is a sufficiently large number of generations.

(a) Sufficiency level: α = 0.9 (b) Sufficiency level: α = 0.6

Figure 15. Convergence graph of ADEP.

Table 1. Parameters of ADEP and WSS for the relaxation problem of CCP.

Generation: NT Population Size: NP Sample Size: N Correction Level: β

80 30 482 α + 0.03

ADEP is applied to the relaxation problem of CCP 50 times. For the respective runs of ADEP,
different full data sets B ⊆ <3 and initial populations P0 ⊆ X are generated randomly. Every solution
xb ∈ X obtained by ADEP for the relaxation problem of CCP is checked whether it also satisfies the
constraint of the equivalence problem of CCP. From the ratio of the infeasible solutions xb ∈ X that do
not meet the constraint p̂(xb, B) ≥ α, the risk of failure δ ∈ (0, 1) in (8) is evaluated empirically.

Table 2 shows the results of the experiments conducted for several sufficiency levels α ∈ (0, 1)
in which f (xb) denotes the objective function value of the best solution xb ∈ X obtained by ADEP
for a given α ∈ (0, 1); p̂(xb, Θ) and p̂(xb, B) are empirical probabilities provided by xb ∈ X; εp(Θ, B)
is the estimation error defined by (27); δ̂ ∈ [0, 1] is the risk of failure evaluated empirically as stated
above. Except the risk of failure δ̂ ∈ [0, 1], the results in Table 2 are averaged over 50 runs.

Table 2. Solutions obtained by ADEP for CCP in (37).

α β f (xb) p̂(xb, Θ) p̂(xb, B) εp(Θ, B) δ̂

0.9 0.93 14.438 0.934 0.921 0.012 0.00
0.8 0.83 13.725 0.837 0.809 0.028 0.00
0.7 0.73 13.355 0.737 0.725 0.012 0.00
0.6 0.63 12.949 0.636 0.609 0.027 0.16
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From Table 2, we can confirm the usefulness of the proposed method. Even though the sample
size N of WSS is small, the value of p̂(xb, Θ) is very close to p̂(xb, B), and εp(Θ, B) < 0.03 holds for
every α ∈ (0, 1). Moreover, the majority of the solutions xb ∈ X satisfy the constraint p̂(xb, B) ≥ α.
Therefore, if we suppose that p̂(xb, B) ' p(xb, Ω) holds, the solution xb ∈ X is regarded as a feasible
solution of CCP in (37). We also see the trade-off between the optimality of the solution xb ∈ X
evaluated by f (xb) and the reliability specified by α ∈ (0, 1). From the value of δ̂ ∈ [0, 1], it seems to
be hard to obtain feasible solutions of CCP in (37) for a small sufficiency level: α = 0.6. That is because
WSS is suitable for estimating a large value of p̂(xb, B) as shown in Figures 5–7.

7. Performance Evaluation of ADEP

For solving the relaxation problem of CCP efficiently, the pruning technique shown in (24) is
introduced into an Adaptive DE (ADE) and ADEP is proposed. By comparing ADE with ADEP,
the ability of the pruning technique to reduce the run time of ADE is evaluated. The flood control
planning formulated as CCP in (37) is used to draw a comparison between ADE and ADEP. Therefore,
the control parameters of them are given by Table 1 except the sampe size N. Thereby, ADE and ADEP
are executed on a personal computer (CPU: Intel(R) Core(TM) i7-3770@3.40GHz, Memory: 16.0GB).

By changing the value of β ∈ (0, 1) with a sample size N ' 482, ADE and ADEP are applied to
the relaxation problem of CCP, respectively, 50 times. Table 3 shows the results of the experiments
average over 50 runs in which f (xb) is the objective function value of the best solution xb ∈ X; p̂(xb, Θ)

is the empirical probability provided by xb ∈ X. The run time of each algorithm except the generation
of the full data set B ⊆ <3, |B| = 107 is also shown in Table 3. Rate in Table 3 means the percentage of
the trial vectors zi ∈ X which are discarded by the pruning technique used in ADEP. Furthermore,
the numbers in parenthesis indicate the standard deviations of the respective values in Table 3.

From Table 3, we confirm that the pruning technique works well for reducing the run time of
ADEP. Besides, the high rate in Table 3 shows that more than half of the trial vectors zi ∈ X are
eliminated by the pruning technique without evaluating the value of h(zi) in (23). From the values
of f (xb) and p̂(xb, Θ) in Table 3, we can also see that ADE and ADEP find the same solution xb ∈ X.
Therefore, the pruning technique dose not harm the quality of the solution obtained by ADEP.

Table 3. Comparison between ADE and ADEP with sample size N ' 482.

ADE ADEP

β f (xb) p̂(xb, Θ) Time [s] f (xb) p̂(xb, Θ) Time [s] Rate

0.93 14.438 0.934 0.263 14.438 0.934 0.189 0.509
(0.035) (0.001) (0.023) (0.035) (0.001) (0.013) (0.015)

0.83 13.725 0.837 0.267 13.725 0.837 0.190 0.514
(0.034) (0.002) (0.011) (0.034) (0.002) (0.010) (0.013)

0.73 13.355 0.737 0.263 13.355 0.737 0.186 0.521
(0.032) (0.009) (0.015) (0.032) (0.009) (0.012) (0.015)

0.63 12.949 0.636 0.265 12.949 0.636 0.185 0.519
(0.032) (0.009) (0.018) (0.032) (0.009) (0.009) (0.013)

By using a larger sample size N ' 1304, ADE and ADEP are applied to the relaxation problem of
CCP again 50 times. Table 4 shows the results of the experiments in the same way with Table 3. From
Table 4, we can also confirm the effectiveness of the pruning technique used in ADEP.

Form Tables 3 and 4, the run times of ADE and ADEP depend on the sample size N of WSS.
The pruning technique of ADEP is more effective when a large sample size is required. We can also see
that the sample size N = 482 is large enough for solving the flood control planning because there is
not much difference between the qualities of the solutions shown in Tables 3 and 4.

The advantage of the pruning technique might not be demonstrated well enough due to the
short run times of ADE shown in Tables 3 and 4. The short run time of ADE is attributable to the
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simple forest mechanism model given by (35). If the inflow of water is estimated through a complex
mathematical computation taking hours [36] or the amount of rainfall is predicted from a huge weather
data set [37], we must realize the advantage of the pruning technique that surely reduces the run time
of ADE without harming the quality of the obtained solution. In any case, we can confirm the expected
performance of the pruning technique from the high rates shown in Tables 3 and 4.

Table 4. Comparison between ADE and ADEP with sample size N ' 1304.

ADE ADEP

β f (xb) p̂(xb, Θ) Time [s] f (xb) p̂(xb, Θ) Time [s] Rate

0.93 14.480 0.932 0.335 14.480 0.932 0.223 0.512
(0.036) (0.001) (0.012) (0.036) (0.001) (0.011) (0.014)

0.83 13.790 0.834 0.335 13.790 0.834 0.223 0.513
(0.026) (0.003) (0.011) (0.026) (0.003) (0.011) (0.014)

0.73 13.341 0.732 0.337 13.341 0.732 0.222 0.516
(0.025) (0.002) (0.016) (0.025) (0.002) (0.010) (0.015)

0.63 13.002 0.633 0.334 13.002 0.633 0.222 0.520
(0.023) (0.002) (0.009) (0.023) (0.002) (0.013) (0.014)

8. Conclusions

For solving CCP formulated from a huge data set, or a full data set, a new approach is proposed.
By using the full data set instead of the mathematical model simulating uncertainties, the estimation
error of uncertainties caused by the mathematical model can be eliminated. However, the full data set
is usually too large to solve CCP practically. Therefore, a relaxation problem of CCP is derived by using
a data reduction method. As a new data reduction method based on the stratified sampling, WSS is
proposed and evaluated in this paper. Contrary to the well-known SRS, WSS can use the information
of the full data set completely. Besides, it is shown that WSS outperforms SRS in the accuracy of the
estimated probability. In order to solve the relaxation problem of CCP efficiently, an Adaptive DE
combined with a Pruning technique (ADEP) is also proposed. The proposed approach is demonstrated
through a real-world application, namely the flood control planning formulated as CCP.

Since huge data sets are available in various fields nowadays, many real-world applications can
be formulated as CCPs without making mathematical models. Therefore, the combination of ADEP
and WSS seems to be a promising approach to CCP formulated by using a huge data set. Especially,
ADEP is applicable to any CCP in which the probabilistic constraint has to be evaluated empirically
from a set of samples. On the other hand, there are the following open problems about WSS.

• How to properly make the strata from a full data set for WSS: The performance of WSS depends on
the stratification method such as the number of strata and the shape of each stratum. By improving
the stratification method, the optimal sample size of WSS will also be found.

• How to feedback the values of functions gm(x, θn) to generate samples θn ∈ Θ: If we can use the
function values effectively, we must be able to make the strata for WSS adaptively.

• How to cope with high-dimensional data sets: Since the similarity of data ξ` ∈ Bn which are
assigned in the same stratum Bn ⊆ B is reduced in proportion to the dimensionality of the full
data set, it may be hard to represent all data ξ` ∈ Bn only by one sample θn ∈ Θ.

In our future work, we will tackle the above open problems about WSS. Moreover, we would like
to demonstrate the usefulness of the proposed approach through the various real-world applications
which are formulated as CCPs by using huge data sets. In particular, it is necessary that the proposed
approach to CCP be evaluated by using real data sets [36]. We also need to compare ADEP with
state-of-the-art optimization methods such as Ant Colony Optimization (ACO) algorithm [38].
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Abbreviations

The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
ADE Adaptive Differential Evolution
ADEP Adaptive Differential Evolution with Pruning technique
CCP Chance Constrained Problem
CHT Constraint Handling Technique
DE Differential Evolution
EA Evolutionary Algorithm
SRS Simple Random Sampling
WSS Weighted Stratified Sampling
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