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Abstract: Skin diseases cases are increasing on a daily basis and are difficult to handle due to the
global imbalance between skin disease patients and dermatologists. Skin diseases are among the top
5 leading cause of the worldwide disease burden. To reduce this burden, computer-aided diagnosis
systems (CAD) are highly demanded. Single disease classification is the major shortcoming in the
existing work. Due to the similar characteristics of skin diseases, classification of multiple skin
lesions is very challenging. This research work is an extension of our existing work where a novel
classification scheme is proposed for multi-class classification. The proposed classification framework
can classify an input skin image into one of the six non-overlapping classes i.e., healthy, acne, eczema,
psoriasis, benign and malignant melanoma. The proposed classification framework constitutes
four steps, i.e., pre-processing, segmentation, feature extraction and classification. Different image
processing and machine learning techniques are used to accomplish each step. 10-fold cross-validation
is utilized, and experiments are performed on 1800 images. An accuracy of 94.74% was achieved
using Quadratic Support Vector Machine. The proposed classification scheme can help patients in the
early classification of skin lesions.

Keywords: multi-class skin lesions classification; melanoma classification; acne classification; eczema
classification; psoriasis classification; automated classification; skin disease classification

1. Introduction

Skin lesions cases are increasing day by day and are a major cause of an increased global
disease burden. Skin lesions stand fourth among the major causes of the global disease burden [1].
The after-effects of the skin lesions are severe. The burden of skin lesions is multi-dimensional and
includes social, financial and psychological consequences on the patient’s life and society [2]. People of
all ages suffer from skin diseases, but young and elderly people suffer the most. Unemployment,
self-harm, emotional distress, relationship loss, increased alcoholism and suicide are some of the
prominent issues found in skin disease patients [3].

A huge difference exists between skin disease patients and the expertise to cope with them.
The resources include skilled dermatologists, equipment, medicines and researchers. According to
the World Health Organization, people living in rural areas suffer the most because of the lack of
resources [4]. Due to this gross imbalance among the skin patients and the expertise, automated expert
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systems for early skin lesions classification are required. These classification systems can help in the
early diagnosis of skin lesions and help patients living in resource-limited areas.

Fatal vs non-fatal, viral vs bacterial, etc. are some of the categorization of skin lesions.
Acne, eczema, psoriasis and melanoma are among the top five most frequently occurring skin
diseases [5]. Therefore, this research work investigates the multi-class method aimed at classifying
the above-mentioned diseases. This research work is an extension of our already existing work [6].
Acne is a chronic skin lesion and mostly found in adults. It occurs mostly on the face, back and
chest [7]. Acne contributes approximately 0.29% in the disability-adjusted life years (DALYs) [8].
The contribution of eczema towards the DALYs is 0.38% [8]. Eczema appears differently in different
people. Small patches can be seen in some people suffering from eczema whereas, others may have
eczema on full body. Eczema causes the skin to be red, sored, dry and cracked [9]. Malignant melanoma;
a kind of skin cancer is a fatal disease and caused by the excessive growth of melanin in melanocytic
cells [10]. Malignant melanoma is treatable if detected in the early stages. In 2018, approximately 99,550
new cases of malignant melanoma were diagnosed in the USA and 13,460 of them were incurable;
leading to death [11]. Malignant melanoma contributes 0.06% towards the DALYs [8]. Psoriasis is a
non-infectious skin problem which causes red patches having white scaly plaques with clear boundaries
around them [12]. Contribution of psoriasis in DALYs is 0.19% [8].

Most of the existing work done on skin lesion classification considers a single disease [13–18]
and inadequate work is done on multi-class skin lesions classification [19–25]. Due to the similar
characteristics of skin diseases, the computational analysis of multi-class classification is very
challenging. The core contribution of this research work is a novel intelligent expert classification
scheme to classify multiple diseases to provide dermatological care in resource-limited areas.
Another contribution of this research work is the bag of features that can be extracted from multiple
skin lesions. The proposed classification scheme will be very beneficial for the people living all around
the world in classifying skin lesions in their early stages.

The rest of the research article is structured as follows. State of the artwork is reviewed in Section 2.
The details of the images and their collecting resources are described in Section 3. The methodology of
the proposed classification scheme is presented in Section 4. Results are presented and discussed in
Section 5 and conclusion and future work is provided in Section 6.

2. Literature Review

Since the 1990s, researchers are working on the automated skin lesions classification [13–19].
The majority of work done in the literature can classify skin tumors [15,26–31] and limited work is done
on multi-disease classification [13,14,21–23,32,33]. Within this work, most of the work is performed
on the biopsy extracted features [13,21–23,32,33]. Additionally, researchers who have worked on
automated extracted features from images just considered single disease classification [19,20,34].

For classifying erythemato-squamous diseases, an automated classification scheme was proposed
by Guvenir and his colleague [20] by using three different classifiers. The proposed expert system was
trained on the biopsy features and 99.2% classification accuracy was achieved using the voting feature
algorithm. Same nature of work was proposed by Ubeyli et al. [21] to classify erythemato-squamous
diseases using a combined neural network approach. Their proposed methodology can classify the
erythemato-squamous diseases with an accuracy of 97.7%.

Work done by Chang et al. [22] utilize decision tree and artificial neural network(ANN) for diagnosis
of same diseases, and an accuracy of 92.62% was attained. For classifying erythemato-squamous
lesions on features extracted after a painful method i.e., biopsy; Xie et al. [23], Kumar et al. [24],
and Nanni et al. [25], proposed their classification schemes for multi-class skin lesions classification.
The classification scheme by Xie et al., achieved an accuracy of 98.61%, whereas the classification
accuracy of the other two approaches was 97.22% and 95%, respectively. As stated earlier,
the above-mentioned work regarding the erythemato-squamous disease classification was done
on the features extracted after a painful procedure, i.e., biopsy [35]. Clinical feature extraction is a
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painful, time-consuming and expensive procedure, which requires domain. It is very difficult to extract
these features for the people living with limited resources.

To detect malignancy, Erol et al. [36] extracted texture features of the region within the lesion
boundary; which was determined by active-contour segmentation. The extracted texture features
contain homogeneity, SD, and mean of pixel values. Artificial Neural Network(ANN) and Support
Vector Machine (SVM) classifiers were compared and the best performance they achieved was 78%
specificity on a dataset consists of 900 images with 173 malignant lesions using ANN. Schnurle et al. [37]
provide an automated approach to classify hand eczema. For balancing data, they used the
oversampling technique and then extract colour, texture and histogram features from the provided
images. For evaluating their approach, SVM was applied to the features extracted from 48 images.
An F-score of 58.6% and 43.8% was achieved for the front and back side of hands respectively.

A computer-aided classification system is proposed by Hameed et al. [38] for classification of
multiple skin lesions using a hybrid approach in which features are extracted using convolution neural
network (CNN) and classification is performed using SVM. As the features are extracted using CNN,
hence uninterpretable. Computer-aided classification systems presented by different scholars achieved
good accuracy but having the limitation in covering the scope of multiples diseases. Limitations in the
current literature indicate the demand for an intelligent classification system that can classify multiple
skin lesions with high accuracy.

3. Materials

For classifying different skin lesions, dataset plays a vital role. For experiments, an image
dataset is collected from different sources. Sources include online medical data repositories,
research challenges and researchers working in this domain. The online data repositories include
DermIS [26], DermQuest [27], DermNZ [28] and PH2 [29] dataset. “11k hands” publicly available
dataset repository is used for healthy images. Some of the images related to eczema and healthy category
are collected from researchers [30] working in the field of skin lesions classification. IEEE International
Symposium on Biomedical Imaging (ISBI) skin lesion challenge [31] is an international skin lesion
classification challenge organized every year since 2016. Some of the images related to benign and
malignant class were used from ISBI skin lesions repository. Figure 1 graphically presents the images
belonging to different categories. After collecting all the data from different sources, a uniformed
dataset has been created for this work.
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Figure 1. Graphical representation of dataset used in the research study.

Data imbalacncing is an important issue that needs to be addressed while training the classification
model as the model may incline towards the class having more images [1,32]. Considering this,
a stratified sampling technique was used to balance the dataset. Dataset downloaded from the
above-mentioned sources is organized based on the disease features and then a random down-sampling
technique is applied. Psoriasis category has the minimum number of images (N = 300) so the dataset
in other categories is downsampled to make the dataset balanced. After down-sampling, a total of
1800 images of size 227 × 227 × 3 were used to train and test the classification model. Detailed dataset
division used in this research work is presented in Table 1.
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Table 1. Number of images used in healthy, acne, eczema, psoriasis, benign and malignant categories.

Category No. of Images

Healthy 300
Acne 300

Eczema 300
Psoriasis 300
Benign 300

Malignant 300
Total 1800

4. Method

Pre-processing, segmentation, feature extraction and classification are the key phases of the CAD
system for medical image classification [10]. The classification scheme for multi-class skin lesions
classification is graphically illustrated in Figure 2, which comprises the phases of preprocessing,
segmentation, feature extraction and classification.
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4.1. Pre-Processing and Segmentation

Capturing and digitisation is a noisy process considering the facts of angle, lighting,
camera resolution and dimensional alignment. Because of the noisy capturing process, pre-processing
is the first step of the proposed classification scheme. In this stage, different kinds of noise are removed
in the steps of resizing, hair removal and smoothening of the images. The gathered images are
of different sizes and contain noise because they are captured using different devices in different
environments. The noise present in the images is in the form of hair. As the images are of different
size; therefore, for consistency, the images are resized into 227 × 227 × 3. For removing hairs from the
images, an already well-known technique titled “Dull Razor” [33] is used. To remove the other noise,
a filtering technique is applied and Gaussian filter with 3 × 3 filter size is used.

Segmentation of the multi-disease classification is very tough because of their different
characteristics and their location on the human body. Malignant melanoma and benign lesions
usually have a definite shape and boundary; therefore; shape and geometric features can be easily
extracted from them [1]. Diseases like acne, eczema, and psoriasis may cover full body area and have
no definite shape, therefore, extraction of geometric and boundary features is very challenging. Due to
the above-mentioned problem, in this research, segmentation is performed with respect to human
skin. Any non-skin area is discarded from the image and other part is extracted and considered as a
region of interest (ROI). ROI is segmented by using the methodology proposed by Phung et al. [34].
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The segmentation accuracy achieved is 81.24% as in some cases, the colour of the background and
skin matches.

4.2. Feature Extraction

Feature extraction for multi-disease classification is a very challenging and difficult task as the
different diseases may have similar features. It is also a challenging task due to the diverse nature of
the skin lesions, e.g., extraction of shape features is easy from skin cancer images as they have a clear
boundary and has a definite size, whereas same features are difficult to extract from acne, eczema,
and psoriasis images as they may cover whole body area in the captured image and have no clear
shape. In this research work, a bag of features that can be extracted from any skin lesion image is
proposed. In the feature extraction step, 35 colour and texture features are extracted from the skin
lesion images for multi-class classification.

4.2.1. Colour Features

In multi-disease classification, colour features play a vital role [33,34]. Colour features are one
of the important features used to distinguish between different skin diseases. This work explores
the RGB colour space, and different features are extracted from it. For this research work, minimum,
maximum, mean, mode, standard deviation, skewness, energy, entropy, and kurtosis of red, green,
and blue colour spaces are considered. The colour features along with their description and formulae
are given in Table 2.

Table 2. Different colour features extracted from red, green and blue colour space along with their description
and formulae. The colour features include minimum, maximum, mean, mode, standard deviation, skewness,
energy, entropy and kurtosis).

Feature Name Description Formula

Min Minimum pixel value of R, G and B colour Min(colour space)
Max Maximum pixel value of R, G and B colour Max(colour space)

Mean Measures image overall intensity M(g) =
∑

r
∑

c
I(r,c)

M

Mode Gives information about the most occurring
value Mode(colour space)

Standard
Deviation Presents the spread of the data σg =

√
W−1∑
g=0

(g− g)2P(g)

Skewness Measure asymmetry of the probability
distribution

= 1
σ3

W−1∑
g=0

(g− g)3P(g)

Energy Gives information about the spread of the
pixel values

=
W−1∑
g=0

[P(g)]2

Entropy Measure the required amount of
information to code the image data

= −
w−1∑
g=0

[
P(g) log2 P(g)

]
Kurtosis Measure of the peakness of the probability

distribution of an image
= 1

σ4

W−1∑
g=0

(g− g)4P(g)

Legends*: w is the number of intensity levels, g is the intensity level, r is the number of rows, c is the
number of columns in the image, g is the mean, σg is the standard deviation

4.2.2. Texture Features

In the existing literature, Grey level co-occurrence matrix (GLCM) is mostly used to extract
texture features [39]. In this research work, first the GLCM matrix [39] is computed and then contrast,
correlation, energy and homogeneity is calculated from it. The extracted GLCM features along with
their description and formula are given in Table 3.
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Table 3. GLCM features with their description and formulae. GLCM features include contrast,
correlation, energy and homogeneity.

Name Description Formula

ContrastGLCM Measure the local fluctuations of
grey levels of neighbor pixels

W−1∑
i, j=0

Pi j(i− j)2

CorrelationGLCM Measure the joint probability
occurrence of specified pair pixels

W−1∑
i, j=0

Pi j
(i−µ)( j−µ)

σ2

EnergyGLCM Measure the sum of squared
elements in the GLCM

−

w−1∑
g=0

[
P(g) log2 P(g)

]
HomogeneityGLCM Measures the local uniformity

W−1∑
i, j=0

Pi j

1+(i− j)2

Neighborhood grey-tone difference matrix (NGTDM) extracted features are also important and
provide the human perception of texture [40]. These features are not fully investigated for the
classification of multiple skin diseases. In this research, we have extracted four features from the
NGTDM. NGTDM is a column matrix formed by the greyscale image. Let f (k, l) be the grey-tone of
any pixel at (k, l) having grey-tone value i, the average grey-tone over a neighborhood is calculated
using Equation (1).

Ai = A(k, l) =
1

W − 1

 d∑
m=−d

d∑
n=−d

f (k + m, l + n)

, (m, n) , (0, 0) (1)

where d specifies the neighborhood size and W = (2d + 1)2 Then the ith entry in the NGTDM is
calculated using Equation (2).

(i) =


∑∣∣∣i−Ai

∣∣∣, f or i ∈ Ni i f Ni , 0

0 otherwise
(2)

where Ni is the set of all pixels having grey tone i. After calculating NGTDM, busyness, complexity,
contrast, and strength are extracted. The description along with their formula are given in Table 4.

Table 4. Features extracted from the Neighborhood grey-tone difference matrix along with their
description and formula.

Name Description Formula

Busyness Measure changes in grey levels
between neighboring voxels

=
∑Ng

i=1 p(i)s(i)∑Ng
i=1

∑Ng
j=1|ip(i)− jp( j)|

, p(i) , 0, p( j) , 0

Complexity Measure the non-uniformity and
rapid changes in grey-levels

= 1
Nv

Ng∑
i=1

Ng∑
j=1

∣∣∣i− j
∣∣∣ p(i)s(i)+p( j)s( j)

p(i)+p( j) ,

p(i) , 0, p( j) , 0

Contrast Measures the changes between
voxels and their neighborhood

=

 1
Np(1−Np)

Ng∑
i=1

Ng∑
j=1

p(i)p( j)(i− j)2
 1

Nv

Ng∑
i=1

s(i)


Strength Measure the primitives in an

image
=

∑Ng
i=1

∑Ng
j=1[p(i)+p( j)](i− j)2

ε+
∑Ng

i=1 s(i)
, p(i) , 0,

p( j) , 0

All the colour and texture features are stored in the feature vector which is then passed to the
classification step for training the classification model.
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4.3. Classification

Classification is the last phase of the computer-aided classification model. Classification step
is the step in which the inferences is made in order to produce a diagnosis about the input image.
The classification model is trained on the feature vector using supervised learning. Experiments are
performed using different classification models, and the one with the best performance is selected
to develop the computer-aided classification application. Different classification models utilized in
the classification step are Decision Tree, Support Vector Machine (SVM), K Nearest Neighbor (KNN)
and Ensemble methods. For each classifier, different kernels are employed. For decision tree; fine,
medium and coarse kernels are used. Linear, quadratic, cubic, fine Gaussian, coarse Gaussian kernels
are used for SVM. Kernels for KNN include fine, medium, coarse, cosine, cubic and weighted and for
ensemble classifier, boosted trees, bagged trees, subspace discriminant, subspace KNN and RUSBoosted
tree kernels are used [41]. The different kernels for each classifier are given in Table 5.

Table 5. Different classifiers along with their kernels used in the experiments.

Classifier Kernel

Tree
Fine Tree

Medium Tree
Coarse Tree

Support Vector Machine

Linear
Quadratic

Cubic
Fine Gaussian

Coarse Gaussian

k-Nearest Neighbors

Fine
Medium
Coarse
Cosine
Cubic

Weighted

Ensemble

Boosted Trees
Bagged Trees

Subspace Discriminant
Subspace KNN

RUSBoosted Trees

The performance of the classifiers is calculated from the confusion matrix. As the proposed CAD system
gives multi-class classification, a multi-class confusion matrix is obtained. First, the performance measure of
each class is computed, and then the overall performance is calculated. To calculate the performance of
the individual class, accuracy, sensitivity, and specificity are used. After calculating the individual class
performance, performance of overall classification is computed. Macro averaging [42] is used to calculate
the overall performance. The formulae to calculate the overall performance are given in Table 6.

Table 6. Performance measures along with their formulae (TP = True Positive, TN = True Negative,
FP = False Positive, FN = False Negative).

Measure Formula Description

Accuracy
l∑
i

TPi+TNi
TPi+TNi+FPi+FNi

Measure the number of correct classifications over the total
number of examples evaluated

Sensitivity
∑l

i
TPi

TPi+FNi
l

Measure the number of actual positive cases that are
correctly identified

Speci f icity
∑l

i
TNi

TNi+FPi
l

Measure the number of actual negative cases that are
correctly identified

Legends:
i = Individual class i.e. Healthy, acne, eczema, psoriasis, benign and malignant
l = Total Number of classes = 6
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5. Results and Discussion

The experiments were performed using the gathered dataset and the classification model was trained
and tested on 1800 images. K-fold (k = 10) cross-validation technique was used for training and testing
the classification model. In k-fold cross-validation, the data is divided into k equal subsets, and the
holdout method is repeated k times. Each time, the kth subset is used for the testing and k-1 subsets are
used for training, and finally, the average performance across all k trial is calculated. Using 35 colour
and texture features, SVM with quadratic kernel performed best among all classifiers. As mentioned
above, after performing classification, a multi-class confusion matrix was obtained for each classifier.
The confusion matrix for fine tree, quadratic SVM, weighted KNN and bagged trees are provided in the
Supplementary Material. The training time required by the SVM with the quadratic kernel was 3.0624 sec
whereas the prediction speed was approximately 8400 obs/sec (observations per second). Among decision
tree classifiers, fine tree gives the highest accuracy. The average per-class accuracy achieved by fine tree
was 88.40%. The sensitivity and specificity obtained by fine tree was 70.24% and 93.04% respectively.
The computational time for training the classification model was 3.4608 sec. The maximum number
of splits used while using fine tree was 10. As mentioned earlier, among the SVM, Quadratic kernel
performed better than others. The accuracy, sensitivity, and specificity achieved by quadratic SVM kernel
was 94.74%, 84.23% and 96.85%. The training time for quadratic SVM was 3.0624 sec. For the KNN,
weighted KNN performed better with an average per-class accuracy, sensitivity, and specificity of 92.80%,
78.38%, and 95.68% respectively. For weighted KNN, experiments were performed using Euclidean
distance and 10 neighbors. The performance of the bagged trees was almost similar to quadratic SVM,
and 94.16% accuracy, 82.48% sensitivity, and 96.49% specificity was attained. The results of the fine tree,
quadratic SVM, weighted KNN and bagged trees are given in Table 7.

The dispersion boxplot for fine tree, quadratic SVM, weighted KNN and bagged trees is graphically
presented in Figure 3 and a comparison of these classifiers is visually presented in Figure 4.
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Table 7. Performance of the different classifiers using the 10-fold cross-validation. Values depict the
mean score (Standard deviation). Values in bold show the best accuracy, sensitivity and specificity
score. All the score is in %.

Classifier Accuracy (SD) Sensitivity (SD) Specificity (SD)

Fine Tree 88.40 (0.27) 70.24 (0.83) 93.04 (0.17)
Quadratic SVM 94.74 (0.11) 84.23 (0.32) 96.85 (0.06)
Weighted KNN 92.80 (0.11) 78.38 (0.33) 95.68 (0.06)

Bagged Trees 94.16 (0.13) 82.48 (0.39) 96.49 (0.07)Computers 2019, 8, x FOR PEER REVIEW 11 of 14 
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Figure 4. Comparison of fine tree, quadratic SVM, weighted KNN and bagged trees.

Based on the performance, the model trained using quadratic SVM is chosen, and the CAD system
is developed. Two research works can be compared if they have used the same dataset. The proposed
research work is compared with the existing research work and their comparison is illustrated in
Table 8.

Table 8. Comparison of proposed classification framework with existing research work. All the results
are in %.

Reference Accuracy Sensitivity Specificity

[1] 83 NA NA
Proposed Work 94.74 84.23 96.85

For classifying a new image, an unseen image is sent to the trained model and is classified in a
fraction of a second. Currently, the proposed skin lesion classification system can only classify an
image into one of the six non-over lapping classes, i.e., healthy, acne, eczema, psoriasis, benign and
malignant. If a rarer image arises, it will be classified in one of the provided classes and hence the FPs
and FNs will be generated, which can be considered as the limitation of the proposed work. However,
it can be overcome by adding more classification diseases. Factors causing difficulties in segmentation
and classification are also identified in this work. One of the main hurdles is noise. Noise is present in
the form of hairs, black frames, circles, skin lines, etc. Homogenous characteristics of different skin
lesions is another reason. Some lesions can have the same colour and texture, which may adversely
affect the classification accuracy.
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6. Conclusions

In the literature, most of the work done on automated skin lesion classification considered only
malignant melanoma classification, and the area of multi-class skin lesions classification is neglected.
A novel multi-class skin lesions classification framework is proposed in this work for classification of
mostly occurred and prominent skin lesions. The proposed framework constitutes four steps; the first
step is pre-processing where skin images are pre-processed, and noise is removed from the images.
The second step is the segmentation where ROI is extracted from the provided skin lesion image.
From the ROI, 35 different features are extracted for the third step, and finally different classifiers are
used to train the classification model. Among the different classifiers, SVM with quadratic kernel
performed better, with an accuracy of 94.74%. The proposed classification scheme performed very well
on the images gathered from different sources. The proposed system can perform very well on new
unseen images as it is trained on images collected from different sources.

Segmentation of multi-class skin lesion classification needs more research investigation in order
to propose a unified classification scheme that can be applied to different skin lesions images. In this
research work, a bag of features was extracted manually, which was time-consuming. Future studies
are required for the automated feature extraction which can be easily understandable. The proposed
classification scheme is designed for desktop use; more research is required to make this classification
compatible with smartphone applications.
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Author Contributions: Conceptualization, N.H., A.S. and A.H.; data curation, N.H. and A.H.; formal analysis,
N.H. and S.K.; funding acquisition, A.H.; investigation, N.H., A.S., F.H. and S.K.; methodology, N.H., A.S., F.H.
and A.H.; project administration, A.H.; resources, S.C. and A.H.; software, N.H.; supervision, A.S., S.C. and A.H.;
validation, N.H. and S.C.; writing—original draft, N.H.; writing—review & editing, N.H., A.S., F.H. and S.K.

Funding: This research work was funded by Erasmus Mundus FUSION (Featured eUrope and South asIa mObility
Network) project Grant reference number: 2013-32541/001001. Without their financial support it would be not
possible for us to carry out this research work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.E. Global burden of skin disease: Inequities and innovations.
Curr. Dermatol. Rep. 2017, 6, 204–210. [CrossRef] [PubMed]

2. Hay, R.J.; Augustin, M.; Griffiths, C.E. The global challenge for skin health. Br. J. Dermatol. 2015, 172, 1469–1472.
[CrossRef] [PubMed]

3. Picardi, A.; Lega, I.; Tarolla, E. Suicide risk in skin disorders. Clin. Dermatol. 2013, 31, 47–56. [CrossRef]
[PubMed]

4. World Health Organization. New Report Shows that 400 Million Do not Have Access to Essential Health Services;
World Health Organization: Geneva, Switzerland, 2015.

5. 5 Most Common Skin Disorders. Available online: http://www.foxnews.com/story/2009/12/15/5-most-
common-skin-disorders.html (accessed on 1 June 2018).

6. Hameed, N.; Shabut, A.; Hossain, M.A. A Computer-aided diagnosis system for classifying prominent skin
lesions using machine learning. In Proceedings of the 10th Computer Science and Electronic Engineering
(CEEC), Colchester, UK, 19–21 September 2018; pp. 186–191.

7. Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [CrossRef]
8. Karimkhani, C.; Dellavalle, R.P.; Coffeng, L.E.; Flohr, C.; Hay, R.J.; Langan, S.M.; Nsoesie, E.O.; Ferrari, A.J.;

Erskine, H.E.; Silverberg, J.I.; et al. Global skin disease morbidity and mortality: An update from the global
burden of disease study 2013. JAMA Dermatol. 2017, 153, 406–412. [CrossRef] [PubMed]

9. Atopic Eczema. 2018. Available online: https://www.nhs.uk/conditions/atopic-eczema/ (accessed on 14 May 2018).

http://www.mdpi.com/2073-431X/8/3/62/s1
http://dx.doi.org/10.1007/s13671-017-0192-7
http://www.ncbi.nlm.nih.gov/pubmed/29226027
http://dx.doi.org/10.1111/bjd.13854
http://www.ncbi.nlm.nih.gov/pubmed/26036149
http://dx.doi.org/10.1016/j.clindermatol.2011.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23245973
http://www.foxnews.com/story/2009/12/15/5-most-common-skin-disorders.html
http://www.foxnews.com/story/2009/12/15/5-most-common-skin-disorders.html
http://dx.doi.org/10.1016/S0140-6736(11)60321-8
http://dx.doi.org/10.1001/jamadermatol.2016.5538
http://www.ncbi.nlm.nih.gov/pubmed/28249066
https://www.nhs.uk/conditions/atopic-eczema/


Computers 2019, 8, 62 11 of 12

10. Hameed, N.; Ruskin, A.; Hassan, K.A.; Hossain, M.A. A comprehensive survey on image-based computer
aided diagnosis systems for skin cancer. In Proceedings of the 10th International Conference on Software,
Knowledge, Information Management & Applications (SKIMA), Chengdu, China, 15–17 December 2016;
pp. 205–214.

11. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics 2018. CA Cancer J. Clin. 2018, 68, 7–30. [CrossRef]
[PubMed]

12. Al Abbadi, N.K.; Dahir, N.S.; Al-Dhalimi, M.A.; Restom, H. Psoriasis Detection Using Skin Color and Texture
Features 1. J. Comput. Sci. 2010, 6, 648–652. [CrossRef]

13. Umbaugh, S.E.; Moss, R.H.; Stoecker, W.V. Applying artificial intelligence to the identification of variegated
coloring in skin tumors. IEEE Eng. Med. Biol. Mag. 1991, 10, 57–62. [CrossRef]

14. Ercal, F.; Chawla, A.; Stoecker, W.V.; Lee, H.C.; Moss, R.H. Neural network diagnosis of malignant melanoma
from color images. IEEE Trans. Biomed. Eng. 1994, 41, 837–845. [CrossRef]

15. Nischik, M.; Forster, C. Analysis of skin erythema using true-color images. IEEE Trans. Med. Imaging
1997, 16, 711–716. [CrossRef]

16. Vasconcelos, C.N.; Vasconcelos, B.N. Experiments using deep learning for dermoscopy image analysis.
Pattern Recognit. Lett. 2017. [CrossRef]

17. Zhang, Z.; Stoecker, W.V.; Moss, R.H. Border detection on digitized skin tumor images. IEEE Trans. Med.
Imaging 2000, 19, 1128–1143. [CrossRef] [PubMed]

18. Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. The skin cancer classification using deep convolutional neural
network. Multimed. Tools Appl. 2018, 77, 9909–9924. [CrossRef]

19. Taufiq, M.A.; Hameed, N.; Anjum, A.; Hameed, F. m-Skin Doctor: A mobile enabled system for early
melanoma skin cancer detection using support vector machine. In Health 360◦; Springer: Cham, Switzerland,
2017; pp. 468–475.

20. Güvenir, H.A.; Emeksiz, N. An expert system for the differential diagnosis of erythemato-squamous diseases.
Expert Syst. Appl. 2000, 18, 43–49. [CrossRef]

21. Übeyli, E.D. Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst.
Appl. 2008, 35, 1733–1740. [CrossRef]

22. Chang, C.L.; Chen, C.H. Applying decision tree and neural network to increase quality of dermatologic
diagnosis. Expert Syst. Appl. 2009, 36, 4035–4041. [CrossRef]

23. Xie, J.; Wang, C. Using support vector machines with a novel hybrid feature selection method for diagnosis
of erythemato-squamous diseases. Expert Syst. Appl. 2011, 38, 5809–5815. [CrossRef]

24. Kumar, V.B.; Kumar, S.S.; Saboo, V. Dermatological disease detection using image processing and machine
learning. In Proceedings of the 2016 Third International Conference on Artificial Intelligence and Pattern
Recognition (AIPR), Lodz, Poland, 19–21 September 2016.

25. Nanni, L. An ensemble of classifiers for the diagnosis of erythemato-squamous diseases. Neurocomputing
2006, 69, 842–845. [CrossRef]

26. DermIS. Available online: http://www.dermis.net/dermisroot/en/home/index.htm (accessed on 29 June 2017).
27. Derm101 Image Library. Available online: https://www.derm101.com/image-library/ (accessed on 12 January 2018).
28. DermNZ-Image Library. Available online: https://www.dermnetnz.org/image-library/ (accessed on

13 January 2018).
29. PH2 Database. Available online: http://www.fc.up.pt/addi/ph2database.html (accessed on 12 January 2018).
30. Lam, M.N.; Munia, T.T.; Tavakolian, K.; Vasefi, F.; MacKinnon, N.; Fazel-Rezai, R. Automatic detection

and severity measurement of eczema using image processing. In Proceedings of the 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL,
USA, 16–20 August 2016.

31. Codella, N.C.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.;
Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017
international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration
(isic). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 August 2018.

32. Hameed, N.; Shabut, A.; Hameed, F.; Cirstea, S.; Hossain, M.A. An Intelligent Inflammatory Skin Lesions
Classification Scheme for Mobile Devices. In Proceedings of the IEEE International Conference on Computing,
Electronics & Communications Engineering, London, UK, 22–23 August 2019; pp. 83–88.

http://dx.doi.org/10.3322/caac.21442
http://www.ncbi.nlm.nih.gov/pubmed/29313949
http://dx.doi.org/10.3844/jcssp.2010.648.652
http://dx.doi.org/10.1109/51.107171
http://dx.doi.org/10.1109/10.312091
http://dx.doi.org/10.1109/42.650868
http://dx.doi.org/10.1016/j.patrec.2017.11.005
http://dx.doi.org/10.1109/42.896789
http://www.ncbi.nlm.nih.gov/pubmed/11204850
http://dx.doi.org/10.1007/s11042-018-5714-1
http://dx.doi.org/10.1016/S0957-4174(99)00049-4
http://dx.doi.org/10.1016/j.eswa.2007.08.067
http://dx.doi.org/10.1016/j.eswa.2008.03.007
http://dx.doi.org/10.1016/j.eswa.2010.10.050
http://dx.doi.org/10.1016/j.neucom.2005.09.007
http://www.dermis.net/dermisroot/en/home/index.htm
https://www.derm101.com/image-library/
https://www.dermnetnz.org/image-library/
http://www.fc.up.pt/addi/ph2 database.html


Computers 2019, 8, 62 12 of 12

33. Lee, T.; Ng, V.; Gallagher, R.; Coldman, A.; McLean, D. Dullrazor®: A software approach to hair removal
from images. Comput. Biol. Med. 1997, 27, 533–543. [CrossRef]

34. Phung, S.L.; Bouzerdoum, A.; Chai, D. Skin segmentation using color pixel classification: Analysis and
comparison. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 1, 148–154. [CrossRef]

35. UCI Machine Learning Repository: Dermatology Data Set. Available online: https://archive.ics.uci.edu/ml/
datasets/Dermatology (accessed on 27 April 2017).

36. Erol, R.; Bayraktar, M.; Kockara, S.; Kaya, S.; Halic, T. Texture based skin lesion abruptness quantification to
detect malignancy. BMC Bioinform. 2017, 18, 51–60. [CrossRef] [PubMed]

37. Schnürle, S.; Pouly, M.; vor der Brück, T.; Navarini, A.; Koller, T. On using Support Vector Machines for the
Detection and Quantification of Hand Eczema. In Proceedings of the 9th International Conference on Agents
and Artificial Intelligence (ICAART), Porto, Portugal, 24–26 February 2017; pp. 75–84.

38. Hameed, N.; Shabut, A.M.; Hossain, M.A. Multi-Class Skin Diseases Classification Using Deep Convolutional
Neural Network and Support Vector Machine. In Proceedings of the 12th International Conference
on Software, Knowledge, Information Management & Applications (SKIMA), Phnom Penh, Cambodia,
3–5 December 2018.

39. Texture Analysis Using the Gray-Level Co-Occurrence Matrix (GLCM). Available online: https:
//uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
(accessed on 23 June 2018).

40. Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern.
1989, 19, 1264–1274. [CrossRef]

41. Choose Classifier Options. Available online: https://uk.mathworks.com/help/stats/choose-a-classifier.html
(accessed on 12 January 2018).

42. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process.
Manag. 2009, 45, 427–437. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0010-4825(97)00020-6
http://dx.doi.org/10.1109/TPAMI.2005.17
https://archive.ics.uci.edu/ml/datasets/Dermatology
https://archive.ics.uci.edu/ml/datasets/Dermatology
http://dx.doi.org/10.1186/s12859-017-1892-5
http://www.ncbi.nlm.nih.gov/pubmed/29297290
https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
http://dx.doi.org/10.1109/21.44046
https://uk.mathworks.com/help/stats/choose-a-classifier.html
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Materials 
	Method 
	Pre-Processing and Segmentation 
	Feature Extraction 
	Colour Features 
	Texture Features 

	Classification 

	Results and Discussion 
	Conclusions 
	References

