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Abstract: Accurate speech recognition can provide a natural interface for human–computer interaction.
Recognition rates of the modern speech recognition systems are highly dependent on background
noise levels and a choice of acoustic feature extraction method can have a significant impact on system
performance. This paper presents a robust speech recognition system based on a front-end motivated
by human cochlear processing of audio signals. In the proposed front-end, cochlear behavior is first
emulated by the filtering operations of the gammatone filterbank and subsequently by the Inner
Hair cell (IHC) processing stage. Experimental results using a continuous density Hidden Markov
Model (HMM) recognizer with the proposed Gammatone Hair Cell (GHC) coefficients are lower for
clean speech conditions, but demonstrate significant improvement in performance in noisy conditions
compared to standard Mel-Frequency Cepstral Coefficients (MFCC) baseline.
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1. Introduction

Speech is the most important means of human communication and enabling computers and other
smart devices to communicate via speech would make significant progress in interaction with humans.
Speech perception and recognition have intrigued scientists from the early works of Fletcher [1] and
first speech recognition systems in Bell labs [2] to modern days, and yet machine recognition is still
outperformed by humans.

In quiet environments, high recognition accuracy can be achieved. However, in noisy environments,
performance of a typical speech recognizer degrades significantly, e.g., 50% in a cafeteria environment
and 30% in a car traveling at 90 km/h [3]. Influence of environment and other factors on speech
recognition are investigated in [4]. As the technology advances, speech recognition will be deployed
on more devices which are used in everyday life where environmental factors play an important role,
e.g., speech recognition applications for mobile phones [5], cars [6], automated access-control and
information systems [7], emotion recognition systems [8], monitoring applications [9], assistance for
handicapped people [10], and smart homes [11]. Besides speech, many applications of acoustics are also
important in various engineering problems [12–18]. To improve the performance in real-world noisy
environments, a noise reduction technique could be used [19–22].

Comparisons using many speech corpora demonstrate that word error rates of machines are often
more than an order of magnitude greater than those of humans for quiet, wideband, read speech.
Machine performance degrades further below that of humans in noise, with channel variability, and
for spontaneous speech [23]. Until the performance of automatic speech recognition (ASR) surpasses
human performance in accuracy and robustness, we stand to gain by understanding the basic principles
behind human speech recognition (HSR) [24].

Despite the progress in understanding auditory processing mechanisms, only a few aspects of
sound processing in the auditory periphery are modeled and simulated in common front-ends for
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ASR systems [25]. For example, popular parameterizations such as MFCC employ auditory features
like variable bandwidth filter bank and magnitude compression. Perceptual Linear Prediction (PLP)
coefficients are based on performing perceptual processing by employing critical-band resolution
curves, equal loudness scaling and cube root power law of hearing to linear prediction coefficients
(LPC) [26]. An example of auditory-motivated improvement of speech representation could include
synaptic adaptation. In [27], a simplified model of synaptic adaptation was derived and integrated into
conventional MFCC feature extraction. Results showed significant improvement in speech recognition
performance.

In [28], new Power Normalized Cepstral Coeffients (PNCC) based on auditory processing were
proposed. New features include the use of a power-law nonlinearity, a noise-suppression algorithm
based on asymmetric filtering and temporal masking. Experimental results demonstrated improved
recognition accuracy compared to MFCC and PLP processing. Another approach in feature extraction
is based on deep neural networks (DNN)—noise robustness of DNN-based acoustic models was
evaluated in [29]. In [30], Recurrent Neural Networks (RNN) were introduced to clean distorted input
features (MFCCs). The model was trained to predict clean features when presented with a noisy
input. To handle highly non-stationary additive noise, the use of LSTM-RNNs was proposed in [31].
A detailed overview of deep learning for robust speech recognition can be found in [32].

In order to better simulate human auditory periphery, standard MFC or PLP coefficients could
be replaced with coefficients based on some cochlear model. In [33], auditory front-ends based on
the models of Seneff [34] and Ghitza [35] were evaluated in clean and noisy speech and compared
with a control mel filter bank (MFB) based cepstral front-end. Results showed that front-ends based
on the human auditory system perform comparably to, and can slightly reduce the error rate of,
an MFB cepstral based speech recognition system for isolated words with noise and some spectral
variability conditions.

In this paper, we propose a front-end based on acoustic features obtained by the gammatone
filterbank analysis followed by the IHC processing stage. Gammatone filtering models the cochlea by
a bank of overlapping bandpass filters mimicking the structure of the peripheral auditory processing
stage. Its performance as speech recognition front-end was investigated in several papers and
improvement over MFC baseline was demonstrated [36–39]. Our idea is to further improve the model
by adding the IHC processing stage. IHC modeling transforms the basilar membrane displacements
into an auditory nerve firing pattern. We add the hair cell model to the back-end of a gammatone
filterbank to further mimic the human auditory periphery and form a more complete cochlear model.
Based on the model, new GHC coefficients are proposed. To evaluate the robustness of the proposed
front-end, we have developed a continuous speech HMM recognizer for Croatian speech.

2. Cochlear-Based Processing for ASR

Incoming sound pressure is transformed by the cochlea into vibrations of the basilar membrane
which are then transformed in a series of neural impulses. The cochlea can be seen as a system designed
to analyze frequency components in complex sounds as it acts as a frequency analyzer where each
position along the basilar membrane corresponds to a particular frequency.

The cochlea is shaped as a small tube, and is about 1 cm long and 3.5 cm wide. The main
structural element within the cochlea is a flexible basilar membrane which varies in width and
stiffness along the cochlea and separates two liquid-filled tubes. It contains the organ of Corti—a very
sophisticated structure which responds to basilar membrane vibrations and allows for transduction
into nerve impulses, Figure 1. Positioned along the organ of Corti are three rows of outer hair cells
(OHCs) and one row of inner hair cells (IHCs). The IHCs are the actual sensory receptors; through
mechanotransduction, hair cells detect movement in their environment and generate neural impulses.
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Figure 1. Cross-section of the cochlea with enlarged organ of Corti [40].

At the limits of human hearing, hair cells can faithfully detect movements of atomic dimensions
and respond in the tens of microseconds. Furthermore, hair cells can adapt rapidly to constant stimuli,
thus allowing the listener to extract signals from a noisy background [41].

2.1. Gammatone Filterbank

In auditory modeling, filterbank is one of the most common concepts used to resemble the
characteristics of the basilar membrane (BM). Since each position of the basilar membrane responds
to a particular frequency contained in speech signal, each bandpass filter is modeled by particular
frequency characteristics of the BM.

The gammatone filterbank contains non-uniform overlapping band pass filters, designed to mimic
the basilar membrane characteristics. It was first introduced by Johanesma [42]. A gammatone filter
impulse response is simply defined in time-domain as the product of a gamma distribution and a tone.
The gammatone function is defined as

g(t) = atn−1e−2πbt cos(2π fct + ϕ), (1)

where n is the order of the filter (affects the slope of the filter skirts), b is the bandwidth of the filter
(affects the duration of the impulse response, a defines the output gain, fc is the filter center frequency,
ϕ is the phase.

For the filter order in the range 3–5, Patterson [43] showed that gammatone filter is very similar
to that of the roex(p) filter commonly used to represent the magnitude characteristic of the human
auditory filter [44].

The equivalent rectangular bandwidth (ERB) of the filter is given with the equation [45]

ERB = 24.7(4.37 fc/1000 + 1). (2)

When the order is 4, the bandwidth b of the gammatone filter is 1.019 ERB.
Figure 2a shows a gammatone impulse response we obtained from Equation (1) of a single filter

centered at 1000 Hz. It can be regarded as a measure of the BM displacement at a particular position.
These filters are then combined to form an auditory filterbank used to simulate the motion of the

basilar membrane. Output of each filter models the frequency response of the basilar membrane at
a single place (Figure 2a). Filter center frequencies are equally distributed on the ERB scale [45].

Frequency domain responses of a gammatone filterbank with 20 filters whose center frequencies
are equally spaced between 100 Hz and 8 kHz on the ERB scale are shown in Figure 2b. Unlike
a traditional spectrogram, which has a constant bandwidth across all frequency channels, using the
gammatone model, we obtained a representation similar to cochlea’s frequency subbands, which get
wider for higher frequencies.
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(b) Frequency response of 20 gammatone filters.
Figure 2. Gammatone filter responses.

In this work, we used Slaney’s implementation of a gammatone filterbank [46], with default
64 filters spaced from 50 Hz to 8 kHz (speech is sampled at 16 kHz).

2.2. IHC Model

To further mimic the human auditory periphery and form a more complete auditory model, we
add the IHC model to the back-end of the gammatone filterbank. Our proposed front-end for ASR is
thus constructed by processing the output of each gammatone filter with the IHC model. We used the
Meddis’ model of hair cell transduction [47].

Each gammatone filter output is converted by the hair cell model into a probabilistic representation
of firing activity in the auditory nerve, incorporating well-known effects such as saturation
and adaptation.

IHC function is characterized in the Meddis model by describing the dynamics of neurotransmitter
at the hair cell synapse [48]. Transmitter is transferred between three reservoirs in a reuptake and
re-synthesis process loop (see Figure 3 and Equations (3)–(7)).

Figure 3. The Meddis inner hair cell model.

The equations representing the model are

k(t) = g[s(t)+A]
s(t)+A+B for s(t) + A > 0,

k(t) = 0, for s(t) + A ≤ 0,
(3)

dq
dt

= y [1 − q(t)] + xw(t)− k(t)q(t), (4)
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dc
dt

= k(t)q(t)− lc(t)− rc(t), (5)

dw
dt

= rc(t)− xw(t), (6)

prob(event) = hc(t)dt. (7)

The permeability of the cell membrane is represented by k(t), A, B, and g are the model constants,
s(t) is the instantaneous amplitude, q(t) is the level of available transmitter in the pool, y is the
replenishment rate factor (from the factory), c(t) is the transmitter content of the synaptic cleft, l is
a loss factor, and r is a return factor from the cleft.

The probability of the afferent nerve firing (Equation (7)) is assumed proportional to the remaining
level of transmitter in the cleft. The constant h is the proportionality factor used to scale the output for
comparison with empirical data.

When we apply the IHC model to a sequence of 1 kHz tone bursts, each 0.25 s long and ranging
in amplitude from 40 dB to 85 dB in 5 dB steps, the synaptic cleft contents resulting from a series of
such pulses are shown in Figure 4. Using this model enables replication of many well-known nerve
responses such as rectification, compression, spontaneous firing, and adaptation [49].
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Figure 4. IHC model response to 1-kHz tone bursts.

3. Speech Recognition Experiments

Our speech recognition system is based on continuous density HMM models, and is developed
using the HTK toolkit [50]. In order to evaluate the proposed cochlear based front-end, we have
constructed a system based on standard MFCC front-end and a system based on the cochlear based
front-end (including gammatone filtering and IHC processing).

Our speech database is based on the texts of short weather forecasts for the Adriatic coast. It was
recorded in a quiet office by 12 male speakers and contains 673 sentences in Croatian (5731 words)
sampled at 16 kHz with 16 bits. Vocabulary size is 362 words. The data and the speakers were divided
in two sets: one for training and one for testing.

Acoustical modeling was started with simple monophone continuous Gaussian density HMMs
with three states (left-right topology) and diagonal covariance matrix for each of the 30 Croatian
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phonemes. Models were trained with feature vectors of 39 elements (13 static + 13 velocity +
13 acceleration coefficients) representing 25 ms segments of speech, every 10 ms. We used a bigram
language model.

In the next step, context-dependent triphone models were constructed from monophone HMMs.
Context dependent models provide a better modeling accuracy, but there is a significant increase in
the number of models and the problem of insufficient training data arises. To handle this problem,
state tying strategy was applied, according to Croatian phonetic rules. Not only does this procedure
ensure enough acoustic material to train all context-dependent HMMs, but it also enables modeling of
acoustic units not present in the training data (simply by passing them down the phonetic decision
tree). The system was further refined by the conversion from single Gaussian HMMs to multiple
mixture components. We used six mixture components per state.

Besides standard MFCC based front-end, we have also developed a cochlear based front-end
where the speech signal is first processed by the gammatone filterbank and then the output of each
gammatone filter is processed by the IHC model. In order to obtain standard speech recognition
segmentation, output of the model is temporally integrated on 25 ms segments (every 10 ms) and
discrete cosine transform (DCT) is applied. Similarly, the DCT is applied during MFCCs calculation on
the “auditory” spectrum obtained after mel-warping of the frequency axis and logarithm calculation.
The number of coefficients used is chosen to be 13—the same as for the standard MFCC baseline.
We will refer to these new feature vectors as Gammatone Hair Cell (GHC) coefficients. Besides these
static spectral feature vectors, standard practice is to also use dynamic feature vectors (velocity and
acceleration) to better model the spectral dynamics. These vectors are concatenated with the static
vector and a combined feature vector is constructed.

Block diagram of the ASR system with the proposed cochlear based front-end is given in Figure 5.

Figure 5. HMM recognizer based on the GHC front-end. First, gammatone filtering is applied to the
speech signal; then, the output of each gammatone filter is processed by the IHC model resulting in
auditory representation of a speech signal from which GHC coefficients are constructed and used in
the HMM recognizer.

Depending on the number of coefficients used, the auditory spectrum will be approximated
with more or less detail. Although a higher number of coefficients means better approximation, it
doesn’t necessarily mean a better speech recognition performance. In fact, coefficients should be as
different as possible for different phonemes, but, at the same time, as similar as possible for the same
phonemes uttered in different words, at different intonations, from different speakers, and in different
recording conditions (noise). Figure 6 shows the effect of white noise on standard MFC and our GHC
based speech representations. It is clearly visible that GHC coefficients are more robust to noise than
standard MFCCs.
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Figure 6. Comparison of auditory spectrograms obtained from 13 MFCCs (top panels) and 13 GHCs
(bottom panels) for the same test sentence in clean (left column) and white noise conditions (middle
column signal-to-noise ratio (SNR) = 10 dB and right column SNR = 0 dB).

Table 1 shows the recognition results of the baseline MFCC, PLP and PNCC based front-ends
and our cochlear model (GHC coefficients) based front-end in clean and white noise conditions in
terms of correctness (Corr = N−D−S

N ) and accuracy (Acc = N−D−S−I
N ), where S, D, I represent the

number of substitution, deletion and insertion errors and N is the total number of words. Maximum
recognition rates for each condition are shown in bold. Besides comparison to standard MFCCs and
PLP coefficients, we also included PNC coefficients which are based on auditory processing and
include the use of a power-law nonlinearity, a noise-suppression algorithm based on asymmetric
filtering and temporal masking [28,51]. In addition, we also evaluated the average performance across
all conditions. Statistical significance of performance improvement over MFC baseline was assessed
using the difference of proportions significance test [52]. Accuracy comparison is also given in Figure 7.

Table 1. Recognition rates (%) with significance levels p (in parentheses) against the MFC baseline.

SNR (dB)
MFC PLP PNC GHC

Corr Acc Corr Acc Corr Acc Corr Acc

clean 93.9 91.6 93.3 (0.69) 90.2 (0.43) 93.7 (0.89) 91.4 (0.91) 87.2 (0.00) 82.6 (0.00)
25 92.9 91.2 92.0 (0.62) 89.1 (0.28) 92.5 (0.8) 90.2 (0.58) 87.2 (0.00) 82.6 (0.00)
20 91.4 88.1 90.6 (0.65) 86.8 (0.56) 91.4 (1.0) 88.7 (0.76) 86.6 (0.02) 82.2 (0.01)
15 81.1 62.9 81.1 (1.0) 80.5 (0.00) 89.7 (0.00) 84.1 (0.00) 86.6 (0.02) 81.3 (0.00)
10 42.8 26.0 47.4 (0.15) 42.1 (0.00) 87.0 (0.00) 74.8 (0.00) 83.9 (0.00) 72.3 (0.00)
5 4.8 1.5 4.2 (0.64) 1.5 (1.0) 75.7 (0.00) 52.8 (0.00) 77.4 (0.00) 54.7 (0.00)
0 1.3 0.0 0.0 (0.01) 0.8 (0.05) 45.1 (0.00) 17.4 (0.00) 62.5 (0.00) 34.8 (0.00)

Average 58.3 51.6 58.4 (1) 55.9 (0.19) 82.1 (0.00) 71.3 (0.00) 81.6 (0.00) 70.1 (0.00)

It can be observed that, in clean speech conditions, recognition performance of the GHC based
system is lower than for the other approaches. It should be noted here that the same number of
coefficients was used in GHC based system as in MFC based system, and it is possible that some
other number of coefficients would better fit the GHC based system. As the noise level increases,
the recognition rates of the cochlear model based front-end become higher than the standard MFCC
based front-end as well as the PLP front-end. The difference is statistically significant for all conditions
(p < 0.05). Our results are comparable with the state-of-the-art PNCC front-end which is also based
on auditory processing. Significance test between their average performances shows no statistically
significant difference (p > 0.05). When SNR is below 10 dB, recognition rates are close to 0% for MFC
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and PLP, and around 50% for a GHC based system. Average GHC based performance is ≈20 percentage
points higher than standard MFC baseline (p < 0.05).
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Figure 7. Comparison of recognition accuracy.

4. Conclusions

In this paper, we have proposed a speech recognition front-end motivated by cochlear processing
of audio signals. Cochlear behavior is first emulated by the filtering operations of the gammatone
filterbank and subsequently by the IHC processing stage. Experimental results using a continuous
density HMM recognizer clearly demonstrate the robustness of the proposed system, compared to
standard MFC and PLP front-ends. Although the recognition rates are lower for clean speech, they are
greatly improved in noisy conditions. We have also compared our system with the PNCC front-end
which is also based on auditory processing and we have achieved comparable results. Our future
work will include a more detailed analysis of the proposed approach with possible new improvements
(especially in clean speech conditions) and will include analysis in various types of additive noise on
a well-known database, other state-of-the-art front-ends and computational efficiency analysis.
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