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Abstract: We present an accurate method to compute the minimum distance between a point and
an elliptical torus, which is called the orthogonal projection problem. The basic idea is to transform
a geometric problem into finding the unique real solution of a quartic equation, which is fit for
orthogonal projection of a point onto the elliptical torus. Firstly, we discuss the corresponding
orthogonal projection of a point onto the elliptical torus for test points at six different spatial
positions. Secondly, we discuss the same problem for test points on three special positions, e.g.,
points on the z-axis, the long axis and the minor axis, respectively.
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1. Introduction

In this paper, we discuss how to compute the minimum distance between a point and a spatial
parametric surface and to return the nearest point on the surface, as well as its corresponding
parameter, which is also called the point projection problem (the point inversion problem) of a
spatial parametric surface. This problem is very interesting due to its importance in geometric
modeling, computer graphics and computer vision [1]. Both projection and inversion are essential for
interactively selecting surfaces [1,2], for the surface fitting problem [1,2] and for the reconstructing
surfaces problem [3–5]. It is also a key issue in the ICP (iterative closest point) algorithm for the
shape and rendering of solid models with boundary representation [6] and projecting of a space curve
onto a surface for curve surface design [7]. Many algorithms have been developed by using various
techniques, including turning the problem into solving the root problem of polynomial equations,
geometric methods, subdivision methods and the circular clipping algorithm. For more details,
see [1–30] and the references therein. The elliptical torus in the geodetic science, machinery and
machine, biochemistry and biophysics, colloids and interfaces, antennas and propagation and other
subjects has certain applications [31–36].

In the various methods mentioned above, all of the iterative processes can produce one iterative
solution. Different from the above methods, we consider the special situation in which the test point
generates countless corresponding solutions for the orthogonal projection problem. We then present
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an accurate method for computing the minimum distance between a point and an elliptical torus,
which is called the orthogonal projection problem. The basic idea is to transform a geometric problem
into finding the unique real solution of a quartic equation, which is fit for the orthogonal projection
of a point onto the elliptical torus. Firstly, we will discuss the corresponding orthogonal projection
of a point onto the elliptical torus for test points at six different spatial positions. Secondly, we will
discuss the same problem for test points at three special positions, e.g., points at the z-axis, the long
axis and the minor axis, respectively.

2. The Accurate Method for Computing the Minimum Distance between a Point and an Elliptical
Torus

The parametric equation of an elliptical torus Γ can be defined as:
x(u, v) = (R + m cos(v)) cos(u)
y(u, v) = (R + m cos(v)) sin(u), 0 ≤ v ≤ 2π, 0 ≤ u ≤ 2π

z(u, v) = n sin(v)
(1)

where R > m > n > 0. The corresponding implicit function equation of Equation (1) is:

(
√

x2 + y2 − R)2

m2 +
z2

n2 = 1 (2)

where R > m > n > 0. We assume that the test point is (x0, y0, z0). Orthogonally projecting
the test point (x0, y0, z0) onto the x-y plane, the corresponding projecting point on the x-y plane
is (x0, y0, 0). It is not difficult to know that the corresponding orthogonal projection point for the
minimum distance between point (x0, y0, 0) and the major planar circle:{

x2 + y2 = R2

z = 0
(3)

is (x1, y1, 0) = (
x0R√
x2

0 + y2
0

,
y0R√
x2

0 + y2
0

, 0), which is set as the datum point. The plane determined by

the z-axis and the line that passes through the point (0, 0, 0) and the test point (x0, y0, z0) is:

x0y− y0x = 0 (4)

It is not difficult to find that the plane Equation (4) is perpendicular to the horizontal tangent
vector, which is determined by datum point (x1, y1, 0) at the major planar circle Equation (3).
Therefore, computing the minimum distance between the test point (x0, y0, z0) and the elliptical
torus Γ is equivalent to computing the minimum distance between the test point (x0, y0, z0) and the
planar ellipse:  (

√
x2 + y2 − R)2

m2 +
z2

n2 = 1

x0y− y0x = 0
(5)

The corresponding parametric equation of the planar ellipse Equation (5) is:

x =
x0(R + m cos(u))√

x2
0 + y2

0

y =
y0(R + m cos(u))√

x2
0 + y2

0

z = n sin(u)

(6)
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Therefore, the problem of finding the minimum distance between the test point (x0, y0, z0)

and the elliptical torus Γ is naturally transformed into finding the minimum distance between the
test point (x0, y0, z0) and the planar ellipse Equation (6). The tangent vector at the planar ellipse
Equation (6) is:

V1 = (
−x0m sin(u)√

x2
0 + y2

0

,
−y0m sin(u)√

x2
0 + y2

0

, n cos(u)) (7)

The vector determined by test point (x0, y0, z0) and one point on the ellipse is:

V2 = (x0 −
x0(R + m cos(u))√

x2
0 + y2

0

, y0 −
y0(R + m cos(u))√

x2
0 + y2

0

, z0 − n sin(u)) (8)

The inner product of the two vectors V1, V2 is:

〈V1, V2〉 = (m2 − n2) cos(u) sin(u) + cos(u)nz0 − sin(u)m(
√

x2
0 + y2

0 − R) = 0 (9)

The left side of the Equation (9) can be transformed into the form:

sin(u)(m(
√

x2
0 + y2

0 − R)− (m2 − n2) cos(u)) = cos(u)nz0 (10)

Let cos(u) = t; Equation (10) can be expressed as the form:

±
√

1− t2(m(
√

x2
0 + y2

0 − R)− (m2 − n2)t) = tnz0 (11)

Squaring both sides of the Equation (11) and simplifying, we get:

a0t4 + a1t3 + a2t2 + a3t + a4 = 0 (12)

where a0 = (m2 − n2)2, a1 = −2m(m2 − n2)(
√

x2
0 + y2

0 − R), a2 = m2((
√

x2
0 + y2

0 − R)2 − (m2 −

2n2)) − n2(n2 − z2
0),a3 = 2m(m2 − n2)(

√
x2

0 + y2
0 − R), a4 = −m2(

√
x2

0 + y2
0 − R)2. The simplified

Equation (12) is:
t4 + at3 + bt2 + ct + d = 0 (13)

where a =
a1

a0
, b =

a2

a0
, c =

a3

a0
, d =

a4

a0
. Let Y = t +

a
4

, then the Equation (13) can further be

simplified as:
Y4 + pY2 + qY + r = 0 (14)

where p = b− 3a2

8
, q = c− ab

2
+

a3

8
, r = d− ac

4
+

a2b
16
− 3a4

256
.

Lemma 1. Equation (14) can be factored into:

Y4 + pY2 + qY + r = (Y2 + λY + β)(Y2 − λY + γ) = 0 (15)

where λ, β, γ are three parameters to be determined by p, q, r.

Proof. We assume that the left-hand side of Equation (15) has four roots Y1, Y2, Y3, Y4, and then,
we have Y4 + pY2 + qY + r = (Y − Y1)(Y − Y2)(Y − Y3)(Y − Y4). Because the multiplication of
an arbitrary two of four factors (Y − Y1), (Y − Y2), (Y − Y3), (Y − Y4) must generate a quadratic
trinomial in which the coefficient of the first term is one, we will obtain the right side of the equation
in Equation (15).
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Theorem 1. The two real roots of the Equation (15) are:

Y1 =
−λ +

√
λ2 − 4β

2
, Y2 =

−λ−
√

λ2 − 4β

2

Proof. From Lemma 1, Formula (15) can be expressed in the following way,

Y4 + pY2 + qY + r = (Y2 + λY + β)(Y2 − λY + γ) = Y4 + (β + γ− λ2)Y2 + (λγ− λβ)Y + βγ = 0 (16)

Comparing coefficients in both sides of Formula (16), we get:
β + γ = λ2 + p

β− γ = − q
λ

βγ = r

(17)

Combining Equation (16) with Equation (17), it is not difficult to find that:
β =

1
2
(λ2 + p− q

λ
)

γ =
1
2
(λ2 + p +

q
λ
)

(18)

Substituting Formula (18) into the third formula of Equation (17) and simplifying it, we get:

λ6 + 2pλ4 + (p2 − 4r)λ2 − q2 = 0 (19)

We know that the following cubic equation for x:

x3 + Ax2 + Bx + C = 0 (20)

has only one real root:

x1 =
1
6

x0 +
(2A2 − 6B)

3x0
− A

3
(21)

and a pair of complex roots:
x2 = − 1

12
x0 +

(3B− A2)

3x0
− A

3
+

√
3

2
I(

1
6

x0 +
(6B− 2A2)

3x0
)

x3 = − 1
12

x0 +
(3B− A2)

3x0
− A

3
−
√

3
2

I(
1
6

x0 +
(6B− 2A2)

3x0
)

where x0 = (36AB− 108C− 8A3 + 12
√

12A3C− 3A2B2 − 54ABC + 12B3 + 81C2)
1
3 . It is easy to know

that a pair of complex roots x2 and x3 are not satisfied for Formula (19), because there is no imaginary
root fit for the orthogonal projection point, so we have to abandon them. Based on Equation (20),
the real root of Equation (19) is:

λ = λ1 =

√
1
6

λ0 +
(2A2 − 6B)

3λ0
− A

3

and:

λ = λ2 = −

√
1
6

λ0 +
(2A2 − 6B)

3λ0
− A

3
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where λ0 = (36AB − 108C − 8A3 + 12
√

12A3C− 3A2B2 − 54ABC + 12B3 + 81C2)
1
3 and A = 2p,

B = p2 − 4r, C = −q2. Substituting these results into the right-hand side of Formula (15), we get the
four roots Y1, Y2, Y3, Y4, namely, two real roots:

Y1 =
−λ +

√
λ2 − 4β

2
, Y2 =

−λ−
√

λ2 − 4β

2

and a pair of complex roots

Y3 =
−λ +

√
λ2 − 4γ

2
, Y4 =

−λ−
√

λ2 − 4γ

2

According to the result of Theorem 1 and the corresponding four roots of Formula (13), there are
two real roots,

t1 = t11 =
−λ +

√
λ2 − 4β

2
− a

4
(22)

t1 = t12 =
−λ−

√
λ2 − 4β

2
− a

4
(23)

and a pair of complex roots: 
t2 = t21 =

−λ +
√

λ2 − 4γ

2
− a

4

t2 = t22 =
−λ−

√
λ2 − 4γ

2
− a

4

(24)

respectively. We discard a pair of complex roots t21, t22 because Equation (19) has two real roots

λ = λ1 =

√
1
6

λ0 +
(2A2 − 6B)

3λ0
− A

3
and λ = λ2 = −

√
1
6

λ0 +
(2A2 − 6B)

3λ0
− A

3
. Therefore, there

are four real root solutions for t1, but only two of them are satisfied with the conditions by the point

projection problem. By verification, if
√

x2
0 + y2

0 > R, then the solution for Equation (13) is:

t1 = t11 =
−λ1 +

√
λ2

1 − 4β

2
− a

4
(25)

if
√

x2
0 + y2

0 < R, then the solution for Equation (13) is:

t1 = t12 =
−λ2 −

√
λ2

2 − 4β

2
− a

4
(26)

if
√

x2
0 + y2

0 = R, then the solution for Equation (13) is t1 = 0.
Furthermore, we have six cases with different test points (see Figure 1):

(1) If
√

x2
0 + y2

0 > R, z0 > 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0(R + mt11)√

x2
0 + y2

0

y2 =
y0(R + mt11)√

x2
0 + y2

0

z2 = n
√

1− t2
11
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(2) If
√

x2
0 + y2

0 > R, z0 < 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0(R + mt11)√

x2
0 + y2

0

y2 =
y0(R + mt11)√

x2
0 + y2

0

z2 = −n
√

1− t2
11

(3) If
√

x2
0 + y2

0 < R, z0 > 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0(R + mt12)√

x2
0 + y2

0

y2 =
y0(R + mt12)√

x2
0 + y2

0

z2 = n
√

1− t2
12

(4) If
√

x2
0 + y2

0 < R, z0 < 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0(R + mt12)√

x2
0 + y2

0

y2 =
y0(R + mt12)√

x2
0 + y2

0

z2 = −n
√

1− t2
12

(5) If
√

x2
0 + y2

0 = R, z0 > 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = n

(6) If
√

x2
0 + y2

0 = R, z0 < 0, then the corresponding orthogonal projection point (x2, y2, z2) is:



x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = −n



Computers 2016, 5, 4 7 of 14

Figure 1. Graph of orthogonal projection with test points given by six cases.

Remark 1. Because of the errors due to the floating-point numbers in the computer’s arithmetic
operation, in the program implementation, we must consider the case in which the roots t1 = t11,
t1 = t12 are complex roots. The specific approach is as follows:

because

λ0 = (36AB− 108C− 8A3 + 12
√

12A3C− 3A2B2 − 54ABC + 12B3 + 81C2)
1
3

if 12A3C − 3A2B2 − 54ABC + 12B3 + 81C2 < 0, then λ0 = (36AB − 108C − 8A3 +

12
√
−(12A3C− 3A2B2 − 54ABC + 12B3 + 81C2)i)

1
3 = (λ0r + λ0ii)

1
3 , where λ0r, λ0i denotes the real

part and the imaginary part of complex number λ0, respectively. Let r =
√

λ2
0r + λ2

0i, θ1 = acos( λ0r
r ),

R = r
1
3 ,

(1) If λ0i ≥ 0, then λ0 = R cos(θ1/3) + R sin(θ1/3)i
(2) If λ0i ≤ 0, then λ0 = R cos(θ1/3)− R sin(θ1/3)i.

Let (λ2 − 4β)
1
2 = (sr + sii)

1
2 , where sr, si represent the real part and imaginary part of complex

number λ2 − 4β, respectively. Therefore:

(1) If si ≥ 0, then (λ2 − 4β)
1
2 = (s2

r + s2
i )

1
4 cos(θ2/2) + (s2

r + s2
i )

1
4 sin(θ2/2)i

(2) If si ≤ 0, then (λ2 − 4β)
1
2 = (s2

r + s2
i )

1
4 cos(θ2/2) − (s2

r + s2
i )

1
4 sin(θ2/2)i, where

θ2 = acos(
sr

(s2
r + s2

i )
1
2
). In the process of computing the real roots, we delete the imaginary

part of the roots t1 = t11 =
−λ1 +

√
λ2

1 − 4β

2
− a

4
and t1 = t12 =

−λ2 −
√

λ2
2 − 4β

2
− a

4
.

Now, we begin to deal with the first special case in which the test point is on the z-axis, namely
test point is (0, 0, z0). We compute the corresponding orthogonal projection point (x2, y2, z2) on the
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specific planar ellipse


x = R + m cos(u),
y = 0,
z = n sin(u).

Because x0 = y0 = 0, this special case is satisfied

with
√

x2
0 + y2

0 < R, then the corresponding parameter value is t1 = t12 =
−λ2 −

√
λ2

2 − 4β

2
− a

4
.

Based on this parameter value, we present the corresponding orthogonal projection point (x2, y2, z2)

in the following with different test points on the z-axis of the elliptical torus (see Figure 2).

(1) If z0 > 0, then the corresponding orthogonal projection point (x2, y2, z2) is


x2 = R + mt12,
y2 = 0,

z2 = n
√

1− t2
12.

(2) If z0 < 0, then the corresponding orthogonal projection point (x2, y2, z2)

is


x2 = R + mt12,
y2 = 0,

z2 = −n
√

1− t2
12.

(3) If z0 = 0, then the corresponding orthogonal projection point (x2, y2, z2) is


x2 = R−m,
y2 = 0,
z2 = 0.

Figure 2. Graph of orthogonal projection with test points given by three cases.

According to these three cases, if z0 > 0, z0 < 0 or z0 = 0, the corresponding orthogonal
projection point set (x2, y2, z2) of test point (0, 0, z0) is:{

x2 + y2 = (R + mt12)
2

z = n
√

1− t2
12

(27)

{
x2 + y2 = (R + mt12)

2

z = −n
√

1− t2
12

(28)

and: {
x2 + y2 = (R−m)2

z = 0
(29)

respectively.
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We turn to discuss the second special case in which test point (x0, y0, z0) is on the long axis, and
its parametric equation is 

x =
x0R√
x2

0 + y2
0

+
x0m√
x2

0 + y2
0

s

y =
y0R√
x2

0 + y2
0

+
y0m√
x2

0 + y2
0

s,−1 ≤ s ≤ 1

z = 0

(30)

We then compute the corresponding orthogonal projection point (x2, y2, z2) in the following five
cases with different test points on the planar ellipse (see Figure 3).

Figure 3. Graph of orthogonal projection with test points given by five cases.

(1) If −1 ≤ s ≤ −m2 − n2

m2 , then the corresponding orthogonal projection point (x2, y2, z2) is
expressed as: 

x2 =
x0(R−m)√

x2
0 + y2

0

y2 =
y0(R−m)√

x2
0 + y2

0

z2 = 0

(31)
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(2) If −m2 − n2

m2 < s < 0, then the corresponding parameter value is t1 = t12 =
−λ2 −

√
λ2

2 − 4β

2
− a

4
,

so the corresponding orthogonal projection points (x2, y2, z2) are expressed as:

x2 =
x0(R + mt12)√

x2
0 + y2

0

y2 =
y0(R + mt12)√

x2
0 + y2

0

z2 = n
√

1− t2
12

(32)

and: 

x2 =
x0(R + mt12)√

x2
0 + y2

0

y2 =
y0(R + mt12)√

x2
0 + y2

0

z2 = −n
√

1− t2
12

(33)

(3) If s = 0, then the corresponding orthogonal projection points (x2, y2, z2) are expressed as:

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = n

(34)

and: 

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = −n

(35)

(4) If 0 < s <
m2 − n2

m2 , then the corresponding parameter value is t1 = t11 =
−λ1 +

√
λ2

1 − 4β

2
− a

4
.

Therefore, the corresponding orthogonal projection points (x2, y2, z2) are expressed as:

x2 =
x0(R + mt11)√

x2
0 + y2

0

y2 =
y0(R + mt11)√

x2
0 + y2

0

z2 = n
√

1− t2
11

(36)

and: 

x2 =
x0(R + mt11)√

x2
0 + y2

0

y2 =
y0(R + mt11)√

x2
0 + y2

0

z2 = −n
√

1− t2
11

(37)
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(5) If
m2 − n2

m2 ≤ s ≤ 1, then the corresponding orthogonal projection point (x2, y2, z2) is
expressed as: 

x2 =
x0(R + m)√

x2
0 + y2

0

y2 =
y0(R + m)√

x2
0 + y2

0

z2 = 0

(38)

Remark 2. When the test point (x0, y0, z0) and parameter s are determined, the left-hand side (x, y, z)
of Equation (30) is also uniquely determined. In the five cases above, the new test point (x0, y0, z0)

in Equations (31)–(38) is equal to (x, y, z) in the left side of Equation (30), rather than the original
test point (x0, y0, z0). We remind the readers to pay attention to our explanation here with respect to
different test points in Equations (30)–(38).

We start to analyze the third special case in which the test point (x0, y0, z0) is on the minor axis
and its parametric equation is: 

x =
x0R√
x2

0 + y2
0

y =
y0R√
x2

0 + y2
0

,−∞ < s < ∞

z = ns

(39)

We compute the corresponding orthogonal projection point (x2, y2, z2) on the planar ellipse:

(1) If s > 0, then the corresponding orthogonal projection point (x2, y2, z2) is:

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = n

(40)

(2) If s < 0, then the corresponding orthogonal projection point (x2, y2, z2) is expressed as:

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = −n

(41)

(3) If s = 0, then the corresponding orthogonal projection points (x2, y2, z2) are expressed as:

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = n

(42)
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and: 

x2 =
x0R√
x2

0 + y2
0

y2 =
y0R√
x2

0 + y2
0

z2 = −n

(43)

Remark 3. When the test point (x0, y0, z0) and parameter s are determined, the left-hand side (x, y, z)
of Equation (39) is also uniquely determined. In the three cases above, the new test point (x0, y0, z0)

in Equations (40)–(43) is equal to (x, y, z) in the left side of Equation (39), rather than the original
test point (x0, y0, z0). We remind the readers to pay attention to our explanation here with respect to
different test points in Equations (39)–(43).

3. Conclusions

This paper investigates the problem related to a point projection onto the elliptical torus surface.
We present the accurate method for the orthogonal projection problem about how to compute the
minimum distance between a point and the elliptical torus for all kinds of positions. A topic for
future research is to develop a method to compute the minimum distance between a point and a
general completely central symmetrical surface.
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