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Abstract: An alternative networking approach called Software Defined Networking (SDN) enables
dynamic, programmatically efficient network construction, hence enhancing network performance.
It splits a traditional network into a centralized control plane and a configurable data plane. Be-
cause the core component overseeing every data plane action is the controller in the control plane,
which may contain one or more controllers and is thought of as the brains of the SDN network,
controller functionality and performance are crucial to achieve optimal performances. There is much
controller research available in the existing literature. Nevertheless, no qualitative comparison study
of OpenFlow-enabled distributed but logically centralized controllers exists. This paper includes a
quantitative investigation of the performance of several distributed but logically centralized SDN
controllers in custom network scenarios using Mininet, as well as a thorough qualitative comparison
of them. More precisely, we give a qualitative evaluation of their attributes and classify and categorize
13 distributed but logically centralized SDN controllers according to their capabilities. Additionally,
we offer a comprehensive SDN emulation tool, called Mininet-based SDN controller performance
assessment, in this study. Using six performance metrics—bandwidth, round-trip time, delay, jit-
ter, packet loss, and throughput—this work also assesses five distributed but logically centralized
controllers within two custom network scenarios (uniform and non-uniform host distribution). Our
analysis reveals that the Ryu controller outperforms the OpenDayLight controller in terms of latency,
packet loss, and round-trip time, while the OpenDayLight controller performs well in terms of
throughput, bandwidth, and jitter. Throughout the entire experiment, the HyperFlow and ONOS
controllers performed worst in all performance metrics. Finally, we discuss detailed research findings
on performance. These experimental results provide decision-making guidelines when selecting
a controller.

Keywords: SDN; distributed OpenFlow-enabled controllers; logically centralized controllers;
system performance

1. Introduction

A corporate network is made up of two or more computers that share data, resources,
and storage in order to exchange knowledge and save money. Typically, a dedicated
device is used to conduct the majority of traditional network activities. A dedicated de-
vice for application delivery may contain one or more switches, routers, and controllers.
The majority of these device features are implemented in specific hardware. ASICs, or
application-specific integrated circuits, are frequently used for this. The majority of net-
works in use today are still conventional networks. Typically, a network system’s control
plane is entirely distributed. The data and control planes of a networking device are
separate. The control-forwarding plane’s rules determine how the data plane forwards

Computers 2024, 13, 85. https://doi.org/10.3390/computers13040085 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13040085
https://doi.org/10.3390/computers13040085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-8746-5294
https://doi.org/10.3390/computers13040085
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13040085?type=check_update&version=2


Computers 2024, 13, 85 2 of 27

packets. Integrated firmware informs the hardware of a networking device’s destination
when a packet arrives. It is necessary for the network administrator to manually perform
low-level setup on these vendor-specific networking devices via the CLI whenever the
forwarding policy is changed, as this requires reconfiguring the nodes with their unique
interface. In addition, the absence of an open standard interface limits researchers’ capacity
to develop and evaluate applications. The scalability of horizontal networks is another
challenging issue in the traditional networking paradigm. This makes it challenging to
manage a network that is so dynamic and always changing in status. As a result, a fresh
approach to network administration is required in order to move beyond these established
network limitations [1].

The technology known as “software-defined networking” (SDN) is expected to trans-
form current network companies. Numerous business advantages are offered, including
improved design reliability, flexibility, and stability. SDN systems eliminate disruptions
in traditional networks and simplify network architecture by separating network control
from forwarding services. SDN enables programmatic network setup to enhance network
administration and satisfy our requirements. The separation of the control plane and data
plane, flow-based forwarding choices, and the definition of a flow as a series of packets
from a single one are among the primary characteristics of the SDN architecture [2].

SDN does have certain drawbacks, though. Organizations face a number of difficulties
when switching from conventional networks to SDN-based infrastructure. First of all,
investing in new hardware, software, and staff training for SDN technologies comes at
a high expense. SDN’s complexity can also cause operational difficulties and possible
interruptions throughout the migration process, given its interaction with current systems
and the learning curve administrators must experience. The constraints posed by inter-
operability arise from the need for enterprises to guarantee compatibility between SDN
components and legacy infrastructure, minimize vendor lock-in, and facilitate the smooth
integration of SDN with other IT systems. To maximize the long-term rewards of SDN
adoption while minimizing disruption and optimizing return on investment, effective
planning, stakeholder alignment, and calculated investments are necessary for successfully
negotiating these obstacles. SDN controllers alone are in charge of all transmission opera-
tions, since they are frequently treated as single points of failure. If the switch-to-controller
or SDN controller connections fail, the entire network will crash. A single control issue,
such as a single point of failure, restricted control resources, etc., can be resolved if there
are numerous controllers [3].

SDN offers more flexibility and control over network resources, which sets it apart
from traditional networks in terms of scalability, agility, and performance. Scalability is
improved by SDN via programmable control and centralized administration, which enable
administrators to dynamically distribute resources and modify network regulations in re-
sponse to evolving requirements. Because SDN can automate network provisioning, setup,
and optimization, new services and applications may be launched quickly. This is what
gives SDN its agility. Additionally, through traffic engineering and QoS regulations, SDN
designs frequently demonstrate increased performance by lowering latency, optimizing
traffic flows, and enabling more effective use of network capacity. All things considered,
SDN’s centralized control, programmability, and automation capabilities enable enterprises
to grow their networks more successfully, react more quickly to changing requirements,
and attain superior performance in comparison to traditional network architectures. In
addition, the controller is in charge of tracking and analyzing data flow in real time. The
massive rise in distributed processing-based real-time applications has created a large need
for high-performance controllers in networking businesses, data centers, academia, and re-
search. Thus, it is essential to look at a controller’s performance in order to provide effective
traffic routing, which will increase resource usage for improved network performance [4].

The efficiency of SDN controllers has been the subject of several studies. There is still a
gap between them, though. There is no in-depth classification scheme for SDN control plane
architecture. Perhaps the only categorization criterion that can be used is the deployment
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architecture. Based on this, Nunes et al. [5] proposed two significant kinds of control plane
systems with multiple controllers. Using Control Plane Architecture as our foundation, we
offer an in-depth classification of software-defined networking in this paper, which is shown
in Figure 1. The issues with distributed but logically centralized SDN-based controllers have
not been thoroughly researched in the past. It is quite difficult to predict which controller
will operate best in a certain sort of network from the standpoint of actual implementation.
Therefore, it is crucial to compare these controllers both qualitatively and quantitatively. As
far as we are aware, no such work has compared and assessed the attributes of distributed
but logically centralized SDN-based controllers. A Mininet may simulate several types of
network components, including connections, layer-2 switches, layer-3 routers, and hosts.
It is based on a single Linux kernel and makes use of virtualization to simulate a whole
network on a single machine. As far as we are aware, no study has been carried out
specifically to compare performance in a Mininet setting. The choice of controller to use for
deployment is a crucial consideration when dealing with SDN architecture. Every controller
has a functioning domain as well as pros and cons of its own. The necessity of choosing a
controller is what motivated this study. This article differs from previous literature in that
it concentrates on the control plane features by providing a quick overview and description
of general control plane architectural classification, along with particular controller types
associated with each category. The benefits and drawbacks of distributed but logically
centralized controllers are also covered in this study, allowing network engineers and
researchers to make well-informed choices about the development, use, and optimization
of distributed control plane architectures.

Investigation of OpenFlow-based controllers’ performance has been previously con-
ducted. Several works [6–19] give some quantitative comparisons, although most of them
use either a single application or a simple environment where several trials may be con-
ducted. We selected a custom scenario for this study that utilizes Mininet capabilities.
Using Mininet as an efficient network simulator for a custom network environment, this
study provides a thorough analysis of five distributed but logically centralized controllers
in terms of bandwidth, round-trip time, delay, jitter, packet loss, and throughput. We
contribute the following in this paper:

• We present a more in-depth classification of SDN control plane architecture, shown in
Figure 1;

• We classify and categorize 13 distributed but logically centralized SDN controllers
according to their capabilities and give a qualitative evaluation of their attributes;

• A detailed survey of SDN controller performance based on Mininet is made;
• Using six performance metrics—bandwidth, round-trip time, delay, jitter, packet loss,

and throughput—this work also assesses five distributed but logically centralized
controllers against two custom network scenarios (uniform and non-uniform host
distribution).

The remainder of the research paper is structured as follows: Section 2 presents the
relevant research and how our work is different from other existing works, followed by
detailed qualitative evaluation of distributed but logically centralized controllers with
design choices and selection criteria along with a Mininet-based performance assessment
study in Section 3. Qualitative and quantitative description and evaluation of five selected
controllers, topology description with setup of the experiment, and resources required to
evaluate the performance of the controllers are briefly discussed in Section 4. Section 5
presents a performance analysis. Section 6 goes into extensive detail about the outcomes of
experiments and studies with discussion of logically centralized controllers’ advantages
and the most likely challenges that one could encounter for distributed controllers. Section 7
discusses the conclusions and future work.
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2. Related Work

Some relevant works are presented in this area, which is divided into three sections:
papers on various control architectures, papers on benchmarking performance assessment,
and papers on Mininet performance assessment of SDN controllers.

The SDN control plane is currently created using either single-controller designs or
distributed-/multiple-controller architectures [20–24]. In their thorough investigation of
the scalability problems in SDN-based control planes, Karakus and Durresi [23] provided
a classification and taxonomy of the state of the art, which is considered the very first
taxonomy of control planes. They simply produced a physical categorization in their work.
There were two methods used for categorization: mechanism-related and topological.
The topology of various architectures, their relationships, and scalability issues in the
design of centralized and distributed controllers were the topics for topology-related
methods. Mechanism-related methods included many techniques, including parallel-
based and routing scheme-based optimization, to improve controllers and their scalability
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issues. Machine learning-based optimization was added by Abuarqoub et al. [25] to only
the mechanism-based approach. In both cases, the classifications were almost identical.
However, both classifications lack the further logical categorization of distributed and
centralized SDN control planes. Additionally, a number of distinct controller types are
missing from this taxonomy. In addition to physical categorization, distributed SDN control
systems may be divided into conceptually centralized and logically distributed architectures
based on how information is shared among controller instances [27]. However, not all
control plane architecture was provided by this effort, and their taxonomy lacks specific
controller types. Additionally, Bannour et al. [24] included the physical classification of
control plane architecture along with its various types in their study. However, hybrid
orientation, along with logical categorization and overall control plane design, is absent
from the subdivision of physically distributed SDN control planes. Isong et al. [28] did not
address hybrid orientation, instead explicitly classifying control planes into physical and
logical components. Only in situations when the mechanism-based approach is completely
absent did they view the control plane from a topology-related approach. In our work,
topology-related and mechanism-related control designs are separated. Two categories—
physically or logically centralized and physically or logically distributed—are further
distinguished amongst these topology-related control structures. Moreover, each control
architecture may have a flat, hierarchical, or hybrid orientation. Control plane routing-based
optimization and parallelism-based optimization are the two categories of mechanism-
related approaches. Every category has a unique controller kind.

Several studies have been performed with the aim of comparing SDN controllers
[2,13–19,24–38]. The authors of paper [24] examined 15 distributed SDN controllers while
taking into account the following factors: (1) Scalability; (2) Reliability; (3) Consistency;
(4) Interoperability; (5) Monitoring; (6) Security. All of the aforementioned studies took
into account either open source or widely used SDN-based controllers. Only distributed
controllers were examined by them. However, they did not evaluate and compare the
characteristics of distributed but logically centralized SDN-based controllers. In this study,
we provide a qualitative assessment of their characteristics and, based on their capacities,
we classify and categorize thirteen (13) distributed but logically centralized SDN controllers.

One of the earliest studies to compare SDN controllers was [13], which only looked at
controller performance while taking into account a small number of controllers (NOX-MT,
Beacon, and Maestro). However, over time, new controllers like POX, Ryu, FloodLight, and
OpenDayLight have taken the place of these ones. A thorough analysis of SDN OpenFlow
Controllers was carried out by Shalimov et al. The efficacy of the commonly used SDN
controllers NOX, POX, Beacon, FloodLight, MuL, Maestro, and Ryu is compared. The
hcprobe tool [14] was utilized by the authors. This comparison needs to be expanded to
take into account newly designed controllers as well as additional controller functions.

A set of requirements—TLS support, virtualization, open source, interfaces, GUI,
RESTful API, productivity, documentation, modularity, platform support, age, OpenFlow
support, and OpenStack Neutron support—provided by the study carried out in [15] serve
as the foundation for comparison of controllers. Analytic Hierarchy Process (AHP), a
monotonic interpolation/extrapolation mechanism that transfers the values of attributes
to a value on a pre-defined scale, was used to modify the Multi-Criteria Decision Making
(MCDM) technique for the comparison. Five controllers (POX, Ryu, Trema, FloodLight,
and OpenDayLight) were tested using the modified AHP, and “Ryu” was determined to be
the best controller based on their needs.

Based on how simple it was to (1) examine the network (discovery), (2) add a new
network function (setup), (3) change an existing function (change), and (4) remove a
function (removal), the authors of [16] evaluated the qualitative performance of two open
source controllers. However, only two SDN controllers (ONOS and OpenDayLight) and
one network function (port-/traffic-mirroring) were included in the study.

Proactive and reactive operational styles are discussed separately in [17]. Because
rules in proactive mode are loaded into the switch at startup rather than every time the
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switch receives a packet for which there is no matching rule in its flow table, the proactive
mode performs better than the reactive one. Even though this comparison highlights a
significant aspect of the performance comparison, it is insufficient to determine which
featured controller is best.

More research is conducted in [18], which offers more factors to take into account
while creating a new controller. There are two different designs that are taken into consid-
eration: shared queue with adaptive batching and static partitioning with static batching.
The Beacon system, utilizing static batching, demonstrated the best performance in the
Maestro, NOX-MT, and FloodLight tests. However, the optimal latency records are shown
by Maestro, which employs adaptive batching architecture. Therefore, the behavior of
the necessary controller, which is connected to its application domain, determines the
architecture to be used.

The portability and performance of the controller are shown to be impacted by the pro-
gramming language selection in [19]. Because Java (Java 1.6) is cross-platform-compatible
and allows multithreading, the authors contend that it is the best option. Python has prob-
lems with multithreading at the performance level, whereas C++ has memory management
and other constraints. The runtime platform determines the net for languages to work with
(Linux compatibility is not supported). As a result, they demonstrate that out of numerous
controllers (NOX, POX, Maestro, FloodLight, Ryu), the Java-based Beacon performs best.
Nonetheless, the fact that these several languages are still in use today indicates that each
language retains some traits that the others have not taken up.

The authors of [33] emphasized the problem of software aging. The primary problem
under investigation is memory leakage, and in order to maintain the study’s objectivity,
two Java-based controllers—FloodLight and Beacon—were compared. The outcomes
demonstrated that Beacon performs better and uses less memory than FloodLight.

The authors of [34,35] examined twelve whereas authors of [36] examined eight popu-
lar open source controllers, taking into account a number of factors, including programming
language, graphical user interface, documentation, modularity, distributed/centralized,
platform support, southbound and northbound APIs, partners, multithreading support,
open stack support, and application area. Furthermore, the comparison takes into account
a wide range of other SDN-specific qualitative factors in addition to quantitative metrics
like throughput and latency.

Study [37] examined a number of open source controllers, including Ryu, POX, Open-
DayLight (ODL), and Open Network Operating System (ONOS), by qualitatively assessing
both their performance and their features. The authors used the Cbench [25] tool to bench-
mark the controllers under various operating situations and quantitatively assess a number
of characteristics.

The authors of paper [38] compared the features and performances of four well-known
SDN controllers. The authors demonstrated that Ryu has a good amount of features, making
it perfect for small-scale SDN installations, and that OpenDayLight and ONOS are the
controllers with the most feature richness.

A hardware-based testbed or simulation/emulation can be used to assess or bench-
mark a controller’s performance. Hardware testbeds are more expensive for the research
community, even if they offer measurements that are more in line with real values in
a production setting. Thus, assessments based on simulation or emulation are typical.
Frameworks like OFLOPS [39], OFLOPS-Turbo [40], Cbench [13], PktBlaster [41], and
OFCBenchmark [42] have been suggested to encourage the study of various performance
characteristics of OpenFlow devices.

In order to test new applications and construct OpenFlow-based networks in a single
system, a number of simulation and emulation tools have also been developed. Tools that
may be used to deploy a virtual network and estimate performance metrics for different
network topologies and sizes include the Mininet [32] and NS3 [43] network simulators.

Papers [2,29] provide a comparative assessment of previous benchmarking research
and an in-depth look at the capabilities of benchmarking tools. A summary of SDN-based
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research utilizing Mininet is provided in Paper [32], yet there is no survey of SDN controller
performance evaluation using Mininet. Table 1 gives a comprehensive summary of all the
numerous features of the controllers and Table 2 gives a thorough review of the performance
evaluations. Additionally, this work evaluates five distributed but logically centralized
controllers using six performance metrics: bandwidth, round-trip time, delay, jitter, packet
loss, and throughput. We created two custom topologies with hosts dispersed in a uniform
and non-uniform way using the Mininet simulation environment.

Table 1. Distributed but logically centralized SDN controllers feature comparison table [29].

Software
Framework Language API Style OpenFlow

Support
Communication

Mechanism Platforms Interface Licensing Multithreading Modularity
Level

Consistency
Enforcement

Documentation
Depth

HyperFlow C++ RESTful 1.0 Publish/Subscribe Linux Web UI Custom Yes Moderate Absent Minimal

Onix C++ Onix
Specific 1.0, OVSDB Coordination

Service Linux Command
Line

Open Source
(Apache 2.0) Yes High Absent Minimal

Kandoo C, C++,
Python Java RPC 1.0–1.2 Message Passing Linux Command

Line Custom Yes Extensive Absent Minimal

B4 C++ BGP Not Specified Not Specified Linux Not
Specified Custom Not Specified Not Specified Not Specified Minimal

OpenDay-
Light Java

Multiple
RESTful
Protocols

1.0, 1.3 Distributed
Coordination

Cross-
Platform

Command
Line and
Web UI

Open Source
(EPL 1.0) Yes Extensive Present Moderate

POX Python Ad-hoc 1.0 Scripting Cross-
Platform

Command
Line

and GUI

Open Source
(Apache 2.0) No Low Absent Minimal

Ryu Python RESTful 1.0–1.5 Scripting Linux, MacOS Command
Line

Open Source
(Apache 2.0) Yes Moderate Present Moderate

SWAN Python RESTful Not Specified Scripting Cross-
Platform

Not
Specified Custom Not Specified Not Specified Not Specified Minimal

ElastiCon Java Not
Mentioned Not Specified Not Specified Not Specified Not

Specified Custom Not Specified Not Specified Not Specified Minimal

ONOS Java RESTful
and Neutron 1.0, 1.3 Consensus

Algorithm
Cross-

Platform
Command
Line and
Web UI

Open Source
(Apache 2.0) Yes Extensive Present Moderate

Ravana Python OF Direct Extensions
Supported Not Specified Linux Not

Specified Custom Not Specified Not Specified Not Specified Minimal

SMaRtLight Java RESTful 1.3 Consensus
Protocol Linux Command

Line Custom Not Specified Not Specified Absent Minimal

Espresso Java RESTful Not Specified Not Specified Linux Not
Specified Custom Not Specified Not Specified Not Specified Minimal

Note: P.Language = Programming Language, N. API = North Bound API, E. API = East Bound API,
OF = OpenFlow, OVSDB = Open vSwitch Database, WUI = Web User Interface, CLI = Command Line Interface.

Table 2. Existing performance analysis studies using Mininet.

Ref. Controller’s Evaluated Topology Used Evaluation Metrics Lessons Learned

[4] Ryu Single Bandwidth, Throughput, RTT,
Transmission of Data Packet Ryu is regarded as one of the most effective traffic engineering controllers.

[7] ODL, Ryu Internet and Bridge Topology Discovery Time, Delay,
Throughput, CPU Utilization ODL outperforms Ryu for both the Internet and Bridge topologies.

[17] FloodLight, NOX, POX, Trema - Proactive, Reactive Reactive technique lowers controller performance, whereas a proactive controller receives fewer request
messages.

[30] Ryu, POX, FloodLight, ODL, ONOS Single, Linear, Tree
(Google and Facebook) Latency, Throughput, Delay, Bandwidth ODL performs better among the selected distributed controllers, whereas Ryu performs best among the

selected centralized controllers.

[32] ODL, Ryu Custom Latency ODL performs best.

[44] POX - Bandwidth Prior to self-learning, the execution switch component has more bandwidth.

[45] Ryu Linear Latency The controller receives more requests as the network grows.

[46] FloodLight Linear, Tree Time to Create and Destroy the Virtual
Networks, Memory Usage When the number of virtual networks increases, the Mininet takes a longer time and uses more memory.

[47] ONOS Custom Latency, Topology Discovery Time ONOS needs more work to be done to be accepted by all.

[48] POX, Ryu, ONOS, ODL Tree RTT, Bandwidth ONOS performs better in Switch mode, Hub mode performance is nearly the same.

[49] POX Linear RTT, Delay, Bandwidth, Throughput,
Mean Data Rate Hub components outperform Switch components in terms of performance.

[50] POX, FloodLight Tree Scalability Simulation environment vs. time needed to construct a topology is noteworthy.

[51] FloodLight, ODL Single, Linear, Tree Latency and Packet Loss
FloodLight outperforms ODL in terms of packet loss for tree topologies and latency for linear topologies
in densely trafficked networks, while ODL demonstrates better latency performance in networks with low
load and for tree topologies with medium load.

[52] FloodLight, Beacon,
Open-MUL, Open-IRIS

TCP, UDP and
ICMP Traffic

Time of the First Packet, RTT, Transfer
Time, Packet Loss Using QoS in the OF network improves FloodLight controller performance.

[53] POX, Ryu and Pyretic Star RTT, Latency, Throughput Ryu outperforms Pyretic and POX in terms of speed.

[54] OF reference Controller Single, Linear, Tree
Bandwidth Utilization, Packet
Transmission Rate, Round-Trip
Propagation Delay, Throughput

The scalability issue is mitigated in a tree topology network where the load is distributed across branches.

[55] POX and Ryu
Combination of (Linear

and Tree), DCN Tree,
Mesh

Bit-rate, Delay, Packet-rate, and Jitter POX performs better in layer 1 switching scenarios, whereas Ryu produced far higher performance
outcomes in layer 2 switching.

[56] ODL and ONOS Tree Cluster Failure Recovery Time For GUI, clusters, link-up, switch-up, and throughput, ONOS performs well. For stability and topology
discovery, ODL performs better.

[57] OF- reference Controller Custom Bandwidth, Throughput, Jitter,
Packet Loss

OF network operates similarly to a regular network, except that the data plane and control plane
are separated.
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Table 2. Cont.

Ref. Controller’s Evaluated Topology Used Evaluation Metrics Lessons Learned

[58] POX, FloodLight Star, Linear, Tree Delay, Throughput The FloodLight Controller performs better than the POX.

[59] FloodLight Mesh Throughput and Latency The network is subject to load as the number of nodes linked to switches rises.

[60] FloodLight, ODL Tree, Single, Linear, Torus Throughput, Data Transfer Rate
and Latency FloodLight works better in linear, tree, and torus topologies but not in a single topology.

[61] OVS- Controller, POX,
FloodLight, ODL Single, Linear, Tree Latency, Bandwidth Utilization, Jitter,

Packet Loss
In linear topologies, FloodLight Controller has severe data loss, whereas ODL Controller is unable to
manage the load provided by it.

[62] OF reference controller Custom Throughput, RTT, Delay, Jitter Delay, Jitter, RTT and throughput are efficient QoS parameters.

[63] Libfluid, ONOS, ODL, POX
and Ryu Linear Throughput, Delay As the number of switches and hosts rose, throughput declined and latency increased.

[64] POX, FloodLight Single, Linear, Tree,
Custom Throughput and Round-Trip Delay

The FloodLight controller offers more effective performance. Controllers with fewer features are more
appropriate for activities involving configuration. For activities that are performance-based, feature-based
controllers work well.

[65] POX, Ryu Single, Linear, Tree,
Dumbbell, DCN, SAT Throughput, Latency Ryu has superior performance.

[66] Ryu Mesh Throughput Ryu is an extremely resource-demanding controller.

[67] ONOS, Open MUL, POX Linear Latency, Throughput, Topology
Discovery Time Performance evaluation is considerably underestimated by Cbench.

[68] ONOS Mesh Throughput When there are varying numbers of nodes, ONOS acts steadily.

[69] NOX Custom Throughput, Response Time Compared to ROIA and Multiple Packet Schedular, NOX performs better.

[70] NOX, FloodLight Custom Throughput, Response Time The internal NOX controller is inferior to the FloodLight controller.

[71] Ryu, POX and Pyretic Tree RTT The pyretic controller performs better with Software Defined Networking.

[72] POX, FloodLight, ODL Tree, Mesh RTT, Throughput POX outperforms FloodLight and ODL in terms of RTT and throughput.

[73] ODL, Ryu Tree Throughput, Switchover Time Compared to Mininet simulation, utilizing a hardware testbed experiment offers greater and more
consistent throughput.

[74] Ryu Tree Throughput, Switchover Time Number of flow entries within the data plane can be reduced by using MFT.

[75] Ryu, FloodLight, ODL, ONOS Linear, Tree, Mesh Delay, Throughput In terms of throughput and latency, the FloodLight controller performs better.

[76] Beacon Mesh Throughput When the number of nodes increases, throughput decreases.

[77] ODL, ONOS Tree Burst Rate, Throughput, RTT
and Bandwidth The ODL controller outperforms the ONOS.

[78] NOX, POX, ONOS, Ryu Custom Throughput, Response Time For response time, POX is superior, whereas for throughput, ONOS is superior.

[78] Ryu, POX, ONOS, FloodLight Linear Delay, Jitter and Throughput FloodLight performs best.

[79] ODL, Ryu Linear Throughput, Delay, Packet Loss,
Resource Utilization Resource Utilization tests revealed that the ODL controller performed better.

[80] POX Linear Bandwidth, CPU Load, Packet Loss,
Latency, Throughput

There is effective bandwidth usage when the bandwidth begins at 100 Mbps and increases progressively
to 500 Mbps.

[81] FloodLight, Ryu Single, Minimal, Linear,
Tree, Reverse, Custom Bandwidth, Latency The FloodLight controller performs better than the Ryu controller.

[82] Ryu Single Bandwidth, Throughput, RTT, Jitter,
Packet Loss Ryu is a great option for research and small commercial applications.

[83] ONOS, FloodLight, Ryu Leaf Spine DCN Throughput, Topology Discovery Time ONOS controller performs poorest in network topology discovery time and best in flow testing.

[84] FloodLight, POX, NOX Linear, Tree, Custom Throughput, Bandwidth, Packet Loss,
Latency, Topology Discovery Time The FloodLight controller is fastest in all topologies.

[85] POX, Ryu Mesh Throughput, Delay, Jitter, Packet Loss The Ryu controller performs better than the POX controller.

[86] Ryu, ODL, FloodLight, Beacon,
IRIS, ONOS, POX Tree Throughput, Jitter, Latency, and Stability An increase in hosts or switches has an impact on performance.

[87] FloodLight Single, Linear, Tree Throughput, RTT By rerouting traffic with a greater RTT and lower throughput, SDN can handle link failure circumstances.

[88] NOX, ONOS, FloodLight,
ODL, POX, Ryu Custom Throughput, Response Time An increasing number of operations impacts throughput and response time.

[89] POX Tree, Bus, Star Bandwidth Utilization, Jitter and
Packet Loss The number of open switches plays a significant role in the star topology.

[90] ODL Custom Delay, Throughput, Jitter, Packet Drop,
Bitrate, Bytes Received Multi-controller networks are more dependable and achieve high availability.

[91] POX, Ryu Custom Jitter, Packet Loss, Throughput,
Packet Delivery

The POX controller offers superior throughput results. The Ryu controller functions better in terms of
packet delivery ratio, jitter, and packet loss.

[92] Ryu bespoke network
topology RTT, bandwidth and throughput Ryu outperforms other controllers.

3. Controller Classification and Design Choices

We conducted a thorough search of proposals in both the academic and commercial
domains in order to compare various SDN controllers. Here, we first outline potential
controller categorization criteria, then move on to a comparison analysis.

3.1. Selection Criteria

Controllers act in a largely uniform manner. Upon examining each controller, we
conclude that most of them do not have a classification basis for their responsibilities,
functions, or methods of operation. It is possible that the deployment architecture is the
sole applicable classification criterion [29]. Most controllers only utilized one controller
because the main objective of SDN was to consolidate the control plane. Still, this led
to scalability problems and a single point of failure. A distributed design allows several
controllers to function inside a domain in a flat or hierarchical structure.
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Programming language and API selection can have a big influence on controller per-
formance and network device compatibility. A few examples of variables that impact
performance include concurrency support, memory management, and language execution
efficiency. High-performance SDN controllers typically favor languages with a reputation
for performance, such as C/C++ and Java. Furthermore, since the API’s design dictates
how controllers communicate with other components and network devices, it is essen-
tial to interoperability. Interoperability is enhanced by using standardized APIs, such as
RESTful APIs or OpenFlow, which allow controllers and other network devices to com-
municate with one other independent of vendor or protocol. Additionally, user-friendly
and well-documented APIs facilitate integration tasks and promote vendor and developer
usage, which improves interoperability and supports ecosystem proliferation. Thus, to
achieve maximum controller performance and ensure flawless interoperability with vari-
ous network devices, choosing the right programming languages and designing the API
is essential.

When combined with platform compatibility and modularity, Software-Defined Net-
working (SDN) offers a great deal of flexibility and capability in an Internet of Things
(IoT) environment. Consider a smart city deployment in which several IoT devices are
dispersed throughout the urban environment, each with a different set of hardware needs
and communication protocols. Administrators may ensure interoperability and effective
resource management by integrating IoT devices from many manufacturers and tech-
nologies with ease by utilizing an SDN controller with a modular design and platform
compatibility. A modular design method makes it simple to adjust to evolving IoT device
landscapes, facilitating the quick and inexpensive deployment of new devices and services.
Platform compatibility improves overall system performance, scalability, and resilience by
facilitating seamless coordination and communication across heterogeneous IoT devices.
Thus, by promoting creativity and adaptability in responding to the changing demands
of the smart city context, this integrated strategy makes it easier to effectively manage the
IoT ecosystem.

3.2. Qualitative Comparison

A thorough overview of the many characteristics of distributed but logically cen-
tralized controllers is provided in Table 1. We will not discuss each controller separately.
Instead, we showcase the characteristics of and design options for controllers. The charac-
teristics and design options we followed is taken from [29].

Programming Language: A variety of programming languages, including C, C++,
Java, Java Script, Python, Ruby, Haskell, Go, and Erlang, were used to write controllers.
There are instances where a single language is used to create the complete controller,
while the core and modules of many other controllers employ various languages in order
to provide effective memory allocation, be executable on different platforms, or—most
importantly—achieve superior performance under specific circumstances.

Programmable Interface (API): Generally speaking, Northbound API (NBI) enables
the controller to support applications like intrusion detection, load balancing, network
virtualization, flow forwarding, and topology monitoring that rely on network events
produced by data plane devices. Conversely, low-level APIs such as Southbound API (SBI)
are in charge of facilitating communication between a controller and switches or routers
that have SDN enabled. Furthermore, in a dispersed or hierarchical environment, several
controllers from various domains build peer relationships with one another through the
usage of east-west API (EWBI). Not every controller offers every API, and only a small
number of APIs have been tailored for a particular purpose.

Platform and Interface: These characteristics explain how a controller is implemented
to work with a particular operating system. Linux distributions serve as the foundation for
the majority of controllers. Furthermore, certain controllers give administrators access to
graphical or web-based interfaces for configuring and viewing statistical data.
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Threading and Modularity: Lightweight SDN installations are better suited for a
single-threaded controller. Multi-threaded controllers, on the other hand, are appropriate
for commercial applications including optical networks, SD-WAN, and 5G. However, the
versatility of a controller makes it possible to integrate many features and applications. In a
dispersed setting, a controller with high modularity can execute tasks more quickly.

License, Availability, and Documentation: Open source licensing applies to the major-
ity of the controllers covered in this paper. Some, on the other hand, are only accessible
by special request or for research purposes due to a proprietary license. Many of these
controllers do not receive regular updates since it is difficult for the developers to maintain
them on a regular basis. However, the source code is accessible online, enabling anybody
to modify it further in accordance with the specifications. We discovered that most of them
lacked adequate documentation when we accessed them online. Conversely, those that un-
dergo frequent updates come with community-based assistance as well as comprehensive
and up-to-date documentation for every version that is accessible.

3.3. Mininet and Mininet Based Study

A team of experts from Stanford University created Mininet as a tool for research and
instruction. With the aid of a controller, Mininet may perform testing and mimic SDN
networks. We utilized Mininet as a simulation tool, specifically as a network emulator.
It enables the building of networks with different topologies made up of several virtual
hosts, connections, and switches. With this application, we may build the network to our
precise specifications, share it with others, and eventually develop it with real hardware.
We might quickly and easily access any network component via the Mininet CLI. Before
implementing our network in real life, we can test and refine it in a virtual environment by
using Mininet. The standard Mininet topology consists of switches and hosts connected
to the switches, and is coupled to an OpenFlow controller. Mininet hosts have the ability
to operate on several Linux CLIs. For example, they may simply retrieve the bandwidth
between the user and the server by using the iperf command. Although Mininet offers only
a few topologies—tree, linear, and single by default—it is possible to design any desired
topology by creating a Python script [30,32].

The capacity of Mininet, a well-known open source network emulator, to build virtual
networks on a single computer makes it an invaluable tool for network research and
development. Mininet’s user-friendly interface makes it simple for users to experiment
with different network setups and quickly prototype network topologies. The best option
for testing SDN applications is to use it, as it can simulate intricate network behaviors and
supports OpenFlow switches. Mininet is not without its limitations, though, including
simplified network behavior simulation compared to real-world networks and scalability
issues brought on by its reliance on host system resources. Its application in various
research and production scenarios is also limited due to its lack of support for several
modern networking capabilities and protocols. Even with these drawbacks, Mininet is still
a useful tool for teaching, quick prototyping, and preliminary testing of network topologies
and applications [46,54,67].

Numerous studies have been conducted utilizing Mininet to assess SDN controller
performance. However, a study of previous work on Mininet-based performance evaluation
is lacking. Table 2 displays an extensive overview of current Mininet-based efforts, which
will be covered in this part.

Several papers revealed how to use the open source Ryu SDN controller to develop
SDN architecture for network traffic analysis. Based on several network topologies, the
proposed study evaluated the performance parameters of SDN architecture, such as band-
width, throughput, jitter, packet loss round-trip time, switchover time, etc. Studies showed
that Ryu is a great option for research and small commercial applications because it was
developed in Python [4,45,66,74,82,92].

Conversely, the OpenFlow interface was implemented in different network sim-
ulation scenarios with the open source controller POX for network traffic analysis in
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papers [43,48,80,89]. Analysis and evaluation were performed on things like packet loss,
CPU load, bandwidth utilization, etc. According to those studies, efficient use of bandwidth
occurs beginning at 100 Mbps and increases gradually up to 500 Mbps, particularly when
there are 20 to 30 switches in use. The major reason for the given POX controller’s low
reliability was dropped packets.

A number of researchers have explored the creation and execution of the desired SDN
environment scenario utilizing FloodLight [46,59,87], OpenDayLight [90], ONOS [47,68],
NOX [69] and Beacon controllers [76].

Using Mininet Simulator, analysis and assessment were performed on several aspects
such as throughput, latency, packet loss, jitter, bandwidth usage, etc. We used Mininet to
investigate a number of SDN controllers in our preliminary research [69,70,78,88]. We took
into consideration a custom topology network situation. Response time and throughput
were the performance parameters we looked at.

Researchers have made comparisons between the POX and Ryu controllers in several
studies [55,65,85,91]. Because of its greater traffic management capabilities, POX performs
better in layer 1 switching circumstances. Regarding layer 2 switching, Ryu yielded
significantly better performance results.

The authors of papers [53,71] contrasted the Ryu and POX controllers with Pyretic, an-
other Python-based controller. According to these studies, Pyretic controller works better in
tree topology while Ryu performs better in star topology. However, when compared to other
Java-based controllers like FloodLight and ODL, the performance of the Java-based con-
trollers was better than that of the POX or Ryu controllers. Not every topology has the same
circumstances. Python-based controllers also function better when there are fewer nodes
or operations, whereas Java-based controllers perform worse when there are more nodes
or operations. Due to their built-in Java files, Java-based controllers have the drawback of
requiring a significant amount of memory space to operate [7,32,50,58,64,73,78,79,81,84].

In papers [54,57,62], the authors examined the performance study of an OpenFlow
network with single, linear, and tree network topologies; however, the authors employed a
Mininet reference controller as a point of comparison rather than the POX or Ryu controller.
In order to undertake the performance study, all network topologies were compared based
on the following metrics: maximum throughput achieved, round-trip propagation time
between end nodes, packet transmission rate, and capacity usage. All OpenFlow-enabled
topologies were designed with Mininet, a prototype network emulator.

The effectiveness of proactive and reactive paradigms in many well-known controllers
was examined in [17]. Both an emulator (Cbench and Mininet) and a real environment
were used to assess performance. The reactive and proactive modes of operation of several
SDN controllers (NOX, POX, Trema, and FloodLight) were compared by Fernandez et al.
The results for every controller that was analyzed indicated that proactive mode is when
the controller performs best.

Using a Mininet emulator, Stancu et al. evaluated four SDN controllers—POX, Ryu,
ONOS, and OpenDayLight [48]. The controllers were told to function as a basic L2 learning
switch and hub. A tree topology was employed for comparison, and two tests were run in
each phase: an iperf command and a ping command between the two end hosts.

In a number of studies, researchers have compared the FloodLight and ODL con-
trollers to other controllers [30,51,52,60,61,72,75,86]. According to the research, FloodLight
functions better in linear, tree, and torus topologies, but ODL performs better in a single
topology. Furthermore, ODL outperforms FloodLight in terms of latency for tree topologies
in networks with medium load as well as low load networks. In networks with high traffic
volumes, FloodLight can outperform ODL in terms of packet loss for tree topologies and
latency for linear topologies.

Researchers have contrasted the ONOS controller with other controllers in a variety
of studies [56,63,67,77,83]. The research indicates that ONOS performs well in terms of
GUI, clusters, link-up, switch-up, and throughput. However, latency values increased and
throughput values decreased as the number of switches and hosts increased. Addition-
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ally, the ONOS controller performs best in flow testing and worst in network topology
discovery time.

4. Topology Description and Quantitative Evaluation of Controllers

The performance of five distinct distributed yet logically centralized controllers is
covered in this section. To the best of our knowledge, this problem has not been addressed
in any prior research. The controllers Ryu, ODL, ONOS, POX, and HyperFlow were
examined. Out of the thirteen controllers that were previously mentioned, these were
chosen because (1) the source code for the controllers is available, (2) they are compatible
with the latest versions of Linux, (3) they can be interfaced with Mininet tools, and (4) the
community finds them interesting [93].

4.1. Selected Controllers and Their Qualitative Evaluation

We will give a brief description of the chosen controllers in this section; Table 3 shows
the qualitative comparison of the controllers.

Table 3. Qualitative analysis of the selected controllers.

Features
Name

HyperFlow OpenDayLight POX Ryu ONOS

Programming
Language C++ Java Python Python Java

North Bound API REST REST, RESTCONF,
XMPP, NETCONF Adhoc REST REST, Neutron

South Bound API OpenFlow 1.0 OpenFlow 1.0, 1.3 OpenFlow 1.0 OpenFlow 1.0, 1.5 OpenFlow 1.0, 1.3

East Bound API Publish and
subscribe messages Akka, Raft Python Script Python Script Raft

Supported Platform Linux Linux, MacOS,
Windows

Linux, MacOS,
Windows Linux, MacOS Linux, MacOS,

Windows
Interface Web UI CLI, Web UI CLI, GUI CLI CLI, Web UI
License Proprietary EPL 1.0 Apache 2.0 Apache 2.0 Apache 2.0

Multi-threading Yes Yes No Yes Yes
Modularity Fair High Low Fair High
Consistency No Yes No Yes Yes

Documentation Limited Good Limited Good Good

Application Area Data Centre, SD-WAN,
IoT, Cloud Networking

Data Centre,
Enterprise Network,

Research and
Education

Research, Education
and Learning, SDN

Application
Development

Campus, Research,
SDN application

development, NFV,
Network monitoring

and security

Data centre,
Carrier-Grade

Network, Research,
SDN/NFV integration

HyperFlow: The HyperFlow application was developed to provide a logically cen-
tralized multi-controller architecture at the top of the NOX controller. The three levels of
the HyperFlow network are forwarding, control, and application. The control layer has
several NOX controllers. A switch links the forwarding layer to the nearby control device.
In the case of a problem (failure), a switch could be allocated to another controller. To
transport data across the controller, HyperFlow employs a publish/subscribe messaging
architecture [94].

ONOS: The community behind the ONOS (Open Network Operating System) project
is open source. The goal of this project is to create an SDN operating system [47]. The Java
packages for the ONOS project are loaded into a Karaf OSGi container.

Ryu: An open SDN controller called Ryu Controller was created to improve net-
work agility. It is a fully Python-written, component-based software defined networking
framework. In Japanese, the term “Ryu” signifies “flow”. NTT, or Nippon Telegraph and
Telephone Corporation, provides assistance for the Ryu controller. Ryu supports a number
of protocols, including NETCONF, OF-config, OpenFlow, and others [4,66].

POX: The younger sibling of NOX is a networking software platform called POX
(Pythonic Network Operating System). Python is the programming language used in the
development of POX [27]. When creating networking software, it can be useful. POX is
compatible with several operating systems, including Linux, Mac OS, and Windows. It is
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compatible with Python 2.7 and lower versions. POX connects to OpenFlow 1.0 switches
and has specific support for Open vSwitch/Nicira extensions [44,58,64,65,72,89].

OpenDayLight: A collaborative open source project developed in Java, the Open-
DayLight (ODL) Project is hosted by the Linux Foundation [11]. A bidirectional REST
and OSGi framework may be programmed using OpenDayLight, and it also supports
many non-OpenFlow southbound protocols [51,72,77,79]. There is a wiki specifically for
developers, along with many email lists and a source code repository for controller releases,
for those who are interested.

4.2. Topology Description

The performance of a network is significantly influenced by its topology. Performance
may be greatly enhanced by reducing energy consumption and increasing data transfer
rates through careful network topology design and management. An organization’s real
network is not restricted to simple topologies like linear and tree. With custom topology,
users may create whatever topology they choose. Overall, customized topologies provide
the adaptability, flexibility, and optimization required to meet the many demands of
and difficulties in contemporary network installations. For our experiment, we chose a
customized topology with both uniform and non-uniform host distribution. A combination
of uniform and non-uniform distribution may be used in many IoT implementations. For
instance, a citywide IoT network may have a uniform sensor distribution for some purposes
(like environmental monitoring) and a non-uniform distribution for other applications (like
intelligent traffic control at high-traffic junctions). These factors led us to use customized
topology for our experiment.

The customized architecture is depicted in Figure 2, where four switches and twelve
hosts are used for the experiment. Figure 2a represents a uniform distribution of hosts to the
switch, whereas Figure 2b shows a non-uniform distribution of hosts to the switch. Twelve
hosts and four OpenFlow-capable switches were utilized in both topologies of this experi-
ment. Each switch has three hosts connected to it in a uniform host distribution. In contrast
to a non-uniform host distribution, switch 1 connects one host, switch 2 connects two
hosts, switch 3 connects four hosts, and switch 4 connects five hosts. In every experiment,
controller performance is compared using the same topologies and environments.
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4.3. Experiment Setup

The test bed consisted of a single PC with an Intel Core i7 CPU operating at 2.90 GHz
and 8 GB of RAM. Windows 10 was the host operating system while Ubuntu 22.10 LTS was
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the guest operating system on the machine. On a 100 Mbit network, congested windows of
up to 32 Mbytes were employed.

In addition to connecting to the controller and creating network connectivity, Mininet
also creates switches, hosts, and linkages. Following a successful connection establishment
using Mininet, we used Ubuntu xterm to retrieve client–server interfaces and ran the iperf
test and ping command to create traffic between hosts in order to assess important factors
including bandwidth, throughput, round-trip time, delay, jitter, and packet loss.

The iPerf command is used to generate traffic. iPerf is a tool for measuring throughput
and creating traffic. To launch an iPerf test, the following commands are used:

(iperf − s − i 1 − t 100 − w 100 M)

(iperf − c 10.0.0.7 − i 1 − t 100 − w 100 M)

Using the aforementioned commands, one host was utilized as a server and the other
as a client. The test was set up in iPerf to run from the client to the server for 100 s (a time
interval of 1 s), with a window size of 32 Mbytes at most and as many ICMP packets as
the link can handle. We evaluated throughput, packet loss, and bandwidth using the iPerf
command. Table 4 displays the features of iPerf. Following the successful session formation
by Mininet, we launched two terminals and used iPerf to generate traffic between hosts.

Table 4. iPerf Parameters [84].

Parameters Description Value

s Identify session as server No value passed

i Reporting intervals 1 s

t Time interval 100 s

f Output format M

w Window size 100 M

c Identify session as client 10.0.0.x server’s IP

Subsequently, in the network topology that was planned, the Ping command was used
to establish a connection between hosts. Using the ping command, we exchanged 4, 8, 12,
16, 20, 24, 28, 32, 36, 40, 44, and 48 packets between hosts during the test. We then recorded
the round-trip time, jitter, and delay. For every test, these measurements and experiments
were repeated ten times.

5. Performance Analysis

This section presents the implementation and usage inside a framework for testing
and evaluating experimental attempts to assess distributed (logically centralized) SDN
networking experience using five distinct controllers (OpenDayLight, ONOS, POX, Ryu,
and HyperFlow). Bandwidth, throughput, round-trip time, packet loss, delay, and jitter
are critical metrics chosen for controller evaluation due to their direct impact on network
performance and user experience. Bandwidth represents the maximum data rate a network
can handle, reflecting its capacity and potential throughput. Throughput measures the
actual rate of data transfer achieved, providing insights into network efficiency and utiliza-
tion. Round-trip time indicates the time taken for data to travel from source to destination
and back, affecting responsiveness and latency-sensitive applications. Packet loss mea-
sures the percentage of lost or discarded packets during transmission, indicating network
reliability and congestion issues. Delay and jitter represent variations in packet arrival
times and transmission delays, which can degrade the quality of real-time applications
such as VoIP or video conferencing. By evaluating controllers based on these metrics, re-
searchers and network operators can assess their ability to optimize network performance,
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manage congestion, minimize latency, and ensure reliable and efficient data delivery across
the network.

5.1. Bandwidth

The maximum amount of network bandwidth in Gb/s that was used is shown by
the bandwidth in Figure 3. According to our investigation, the bandwidth for the Open-
DayLight, POX, Ryu, ONOS, and HyperFlow controllers in a uniform host distribution
is 62.09, 59.1 and 59.2, 58.4 and 58.8 Gb/s, respectively; the value for a non-uniform host
distribution is 61.8, 59, 59.3, 56.8 and 57.8 Gb/s. In both situations, the OpenDayLight
controller performs best and the Ryu controller worst.

Computers 2024, 13, x FOR PEER REVIEW 16 of 28 
 

Subsequently, in the network topology that was planned, the Ping command was 

used to establish a connection between hosts. Using the ping command, we exchanged 4, 

8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 packets between hosts during the test. We then 

recorded the round-trip time, jitter, and delay. For every test, these measurements and 

experiments were repeated ten times. 

5. Performance Analysis 

This section presents the implementation and usage inside a framework for testing 

and evaluating experimental attempts to assess distributed (logically centralized) SDN 

networking experience using five distinct controllers (OpenDayLight, ONOS, POX, Ryu, 

and HyperFlow). Bandwidth, throughput, round-trip time, packet loss, delay, and jitter 

are critical metrics chosen for controller evaluation due to their direct impact on network 

performance and user experience. Bandwidth represents the maximum data rate a net-

work can handle, reflecting its capacity and potential throughput. Throughput measures 

the actual rate of data transfer achieved, providing insights into network efficiency and 

utilization. Round-trip time indicates the time taken for data to travel from source to des-

tination and back, affecting responsiveness and latency-sensitive applications. Packet loss 

measures the percentage of lost or discarded packets during transmission, indicating net-

work reliability and congestion issues. Delay and jitter represent variations in packet ar-

rival times and transmission delays, which can degrade the quality of real-time applica-

tions such as VoIP or video conferencing. By evaluating controllers based on these metrics, 

researchers and network operators can assess their ability to optimize network perfor-

mance, manage congestion, minimize latency, and ensure reliable and efficient data de-

livery across the network. 

5.1. Bandwidth 

The maximum amount of network bandwidth in Gb/s that was used is shown by the 

bandwidth in Figure 3. According to our investigation, the bandwidth for the 

OpenDayLight, POX, Ryu, ONOS, and HyperFlow controllers in a uniform host distribu-

tion is 62.09, 59.1 and 59.2, 58.4 and 58.8 Gb/s, respectively; the value for a non-uniform 

host distribution is 61.8, 59, 59.3, 56.8 and 57.8 Gb/s. In both situations, the OpenDayLight 

controller performs best and the Ryu controller worst. 

  

Figure 3. Bandwidth. 

5.2. Round-Trip Time 

The round-trip time is the entire period of time that is it takes for a data packet to 

travel from where it started to its endpoint and for its confirmation to be received at the 

origin. In Figure 4, the round-trip time between a network and server may be found using 

the ping command. It is measured in milliseconds. The OpenDayLight, POX, Ryu, ONOS, 
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5.2. Round-Trip Time

The round-trip time is the entire period of time that is it takes for a data packet to
travel from where it started to its endpoint and for its confirmation to be received at the
origin. In Figure 4, the round-trip time between a network and server may be found using
the ping command. It is measured in milliseconds. The OpenDayLight, POX, Ryu, ONOS,
and HyperFlow controllers have average round-trip times for uniform host distribution of
0.1014, 0.1244, 0.0927, 0.1403 and 0.3298 ms, respectively. For non-uniform host distribution,
the round-trip times are 0.1028, 0.1388, 0.0945, 0.1228, and 0.3416 ms, respectively. The POX
controller has the fastest average round-trip time in both scenarios, whereas the HyperFlow
controller has the slowest average.
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5.3. Delay

The amount of time it requires for a data packet to go from a particular location to
another is known as latency or delay. Milliseconds are used to measure it. According to
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Figure 5, the OpenDayLight, ONOS, Ryu, POX, and HyperFlow controllers’ respective
delays or latency for uniform host distribution are 0.0702, 0.0790, 0.0668, 0.0764, and
0.0760 ms; for non-uniform host distribution, the delays are 0.0689, 0.0816, 0.0653, 0.0719,
and 0.0785 ms. Both times, the POX controller and the OpenDayLight controller had
extremely similar values, with POX being marginally superior to OpenDayLight. For both
situations, ONOS experienced the highest delay.
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5.4. Jitter

Delays in the normal interval between data packet sequences would be the simplest
cause of jitter. Jitter is the variation in the delay periods between data packets that are
received. It is easiest to identify jitter by pinging a faraway device with a series of packets
and then determining the average time difference between each return packet sequence.
There is just one type of measurement, time-based and measured in milliseconds. The
jitter for the OpenDayLight, Ryu, POX, HyperFlow and ONOS controllers is shown in
Figure 6 and is, respectively, 0.0055, 0.0072, 0.0082, 0.0132, and 0.0099 ms for uniform
host distribution and 0.0046, 0.0053, 0.0075, 0.0147 and 0.0118 ms for non-uniform host
distribution. In all scenarios, Ryu has the worst jitter whereas OpenDayLight surpasses all
other controllers.
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5.5. Packet Loss

Packet loss can be determined and expressed as a percentage based on the difference
between the received packets and the transmitted packets. Figure 7 illustrates packet loss
for the Ryu, ONOS, POX, OpenDayLight, and HyperFlow controllers for uniform host
distribution. For non-uniform host distribution, the corresponding values are 0.065, 14.5,
20.5, 12.5, and 28.5 percent, while for uniform distribution, the values are 0.05, 12.5, 20.5,
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8.5, and 22.5 percent. Ryu experiences the least packet loss in both circumstances, whereas
HyperFlow experiences the most.
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5.6. Throughput

Throughput is the maximum quantity of data that may be sent from a source to
a destination in a predetermined period of time. Throughput, or payload over time,
quantifies the largest data transfer burst, to put it another way. GB/s are used to measure
it. In our experiment, the term “time” refers to a duration chosen by the examiner (100 s).
Our research shows that the throughput for the OpenDayLight, ONOS, POX, Ryu, and
HyperFlow controllers in a uniform host distribution is 7.23, 6.88, 6.89, 6.62, and 6.77 GB/s,
respectively, while the values for a non-uniform host distribution are 7.2, 6.87, 6.9, 6.59, and
6.83 GB/s, as shown in Figure 8. In both situations, Ryu has the lowest throughput while
OpenDayLight has the greatest.
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6. Discussion

This section covers the performance study of the different distributed (but logically
centralized) controllers discussed in the preceding section. Bandwidth, throughput, round-
trip time, delay, jitter, and packet loss are the six metrics used for analysis. According to this
thorough analysis, the OpenDayLight controller performs better than the Ryu controller
in all performance parameters except delay, packet loss and round-trip time, which are
the Ryu controller’s strong points. In all performance metrics, the ONOS and HyperFlow
controller perform worst during the whole trial.
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The OpenDayLight controller surpasses the POX controller by 1.00% in bandwidth
considered in a uniform host distribution, the Ryu controller by 0.97%, the ONOS controller
by 1.24%, and the HyperFlow controller by 1.11%, according to the findings of our experi-
ment. On the other hand, the OpenDayLight controller surpasses the POX controller, the
Ryu controller, the ONOS controller, and the HyperFlow controller by 0.95%, 0.85%, 1.69%,
and 1.36%, respectively, in non-uniform host distribution. Considering a uniform host
distribution for delay, the Ryu controller outperforms in comparison to the OpenDayLight
controller by 0.91%, the ONOS controller by 3.30%, the POX controller by 2.61%, and
the HyperFlow controller by 2.50%. Meanwhile, in a non-uniform host distribution, the
Ryu controller outperforms the OpenDayLight controller, the ONOS controller, the POX
controller, and the HyperFlow controller by 0.36%, 1.63%, 0.67%, and 1.32%, respectively.
Regarding jitter considered in a uniform host distribution, the OpenDayLight controller
outperforms the Ryu controller by 3.87%, the POX controller by 6.26%, the HyperFlow
controller by 17.57%, and the ONOS controller by 10.15%. On the other side, the Open-
DayLight controller outperforms the Ryu controller, the POX controller, the HyperFlow
controller, and the ONOS controller by 1.57%, 6.49%, 22.92%, and 16.30%, respectively,
for non-uniform host distribution. The Ryu controller outperforms the OpenDayLight
controller by 1.11%, the POX controller by 4.03%, the ONOS controller by 6.04%, and
the HyperFlow controller by 24.02% when round-trip time factors are taken into account.
For the same factor, the Ryu controller surpasses the OpenDayLight controller, the POX
controller, the ONOS controller, and the HyperFlow controller by 1.03%, 5.52%, 3.52%, and
30.86%, respectively, in a non-uniform host distribution. The OpenDayLight controller
surpasses the ONOS, POX, Ryu, and HyperFlow controllers in throughput considered in a
uniform host distribution by 1.02%, 0.99%, 1.77%, and 1.34%, respectively. In comparison,
the OpenDayLight controller performs better than the ONOS controller, the POX controller,
the Ryu controller, and the HyperFlow controller for non-uniform host distribution by
0.96%, 0.87%, 1.77%, and 1.08%, respectively. The Ryu controller beats the ONOS controller
by 12.45%, the POX controller by 20.45%, the OpenDayLight controller by 8.45%, and the
HyperFlow controller by 22.45% with regard to packet loss considered in a uniform host
distribution. On the other hand, with non-uniform host distribution, the Ryu controller
performs better than the ONOS controller, the POX controller, the OpenDayLight controller,
and the HyperFlow controller by 14.435%, 20.435%, 12.435%, and 28.435%, respectively. A
summary is shown in Table 5.

Table 5. Feature-based performance comparison with respect to other controllers in percentage.
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The studied critical metrics of bandwidth, throughput, round-trip time, packet loss,
delay, and jitter are extremely relevant to real-world network deployments. In order to meet
the demands of different applications, bandwidth has a direct influence on the quantity
of data that can be carried in a given length of time. A network’s ability to efficiently use
its available bandwidth is reflected in its throughput. In real-time applications like online
gaming, financial transactions, and audio and video communication, network latency and
dependability are evaluated in part by round-trip time, packet loss, delay, and jitter. In
order to guarantee that network performance satisfies the requirements of a variety of
applications and user expectations in real-world deployments, it is imperative to monitor
metrics such as high packet loss, delay, or jitter. These phenomena can negatively impact
user experience and quality of service.

A controller’s efficacy and usefulness in practical deployments are directly impacted by
how well it performs in a particular set of metrics. For example, slow network performance
might be caused by poor throughput or insufficient bandwidth, which makes it more
difficult to provide data and services on time. Poor user experiences and interruptions can
result from real-time applications like online gaming and video conferencing having high
round-trip times, packet loss, delay, or jitter. Reliability is crucial in situations like financial
transactions and healthcare applications, where even small packet loss or delay can have a
big impact. As a result, a controller’s capacity to maximize these metrics directly affects the
network’s capacity to satisfy the requirements of various applications and user expectations
in practical contexts, which in turn determines the general quality and dependability of
the system.

The findings from performance analysis are indeed limited to the specific experimental
setup and conditions. A controller’s performance can vary significantly depending on
factors such as network size, topology, traffic patterns, and other environmental variables.
Generalizing the findings requires careful consideration of these factors and their potential
impacts. The scope of our experiment using custom topologies to evaluate bandwidth,
throughput, round-trip time, packet loss, delay, and jitter is to assess the controller’s
performance under controlled conditions. However, the limitation lies in the potential lack
of representativeness of real-world network scenarios. While a custom topology allows
for controlled experimentation, it may not fully capture the complexities and dynamics of
actual network environments. Therefore, the generalizability of our findings to real-world
deployments may be limited, and further validation in diverse network settings is necessary
for comprehensive insights.

A variety of factors can have an impact on an SDN controller’s performance. When the
number of actions or switches varies or rises, as well as the amount of stress that is applied,
performance heavily depends on the selection of controller. We recommend using the
OpenDayLight or Ryu controller when selecting the best distributed (logically centralized)
controller. The Ryu controller was recommended by the authors of papers [4,53,65,82,85,91]
in their research because of its simplicity of use and Python-based scripting. Conversely,
using OpenDayLight controller was recommended by the authors of papers [7,32,56,77,79].
However, paper [30] is the most pertinent work that fits in with our findings. When
choosing distributed controllers, ODL should be used, whereas Ryu should be used for
centralized controller selection.

6.1. Advantages of Logically Centralized Controllers

Some advantages of distributed (logically centralized) controllers include the following:

• Higher-level policies: Rather than using network identifiers, language used to describe
policies is based on principles.

• Paths should be determined by policy: Depending on policy, the controller should
choose the pathways.

• Fine-grained control: The data plane keeps a per-flow state while the controller
manages the initial packet in a flow.
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6.2. Challenges of Logically Centralized Controllers

The distributed (logically centralized) SDN controller has problems with interoperabil-
ity, stability, controller location, and other things. These challenges are discussed below:

Global Consistency: Domain-specific controllers deal with traffic congestion and
problems particular to their domains in the distributed SDN control plane. Wherever
possible, all other controller instances within a cluster should receive critical updates as
soon as possible. Maintaining steady and high-caliber performance over time may be
challenging, but it is not impossible [95]. At greater synchronization and overhead rates,
strong consistency ensures that all dispersed controllers have access to the same network
data. According to Levin et al. [96], control plane consistency can significantly affect the
efficacy of a network. To keep a consistent overall view for all controllers, rational trade-offs
between rules enforcement and performance are required.

Reliability: For fault tolerance, centralized SDN management uses a simple mas-
ter/slave architecture. In order to maintain a consistent, logically centralized global picture,
network state information must be divided amongst various controllers under distributed
SDN control that communicate specifics. In a distributed SDN control plane, there should
be coordinated approaches for resolving issues, obtaining simultaneous updates, and main-
taining a constant network state [3]. In large-scale networks, the burden can be spread
among the other active controllers using a rapid, self-healing method. The maintenance
of a sizable amount of state overhead is required by this method, as is the division of the
domain state among the participating controllers. In the paper by Jyotish et al. [97], a
performance metric based on dependability, availability, and security is described.

Automatic Reconfiguration: Mapping between forwarding devices and distributed
controllers should be automatic rather than using static settings. Static deployments
could cause uneven load distribution among cluster controllers. In order to monitor and
communicate load information with adjacent controller scenarios, applications need to
be implemented on all active SDN controllers and switches connected to different SDN
controllers. However, this approach could overwhelm the controller with load-sharing
data, raising scalability issues [95]. Without a consistent northbound or eastbound interface,
it is also impossible to communicate between applications and device mobility.

Interoperability: Interoperability is essential for the development and deployment
of SDN in next-generation networks. This requires compatibility between various SDN
controllers operating in various domains and utilizing various technologies. Interoperabil-
ity is difficult since each SDN controller has a distinct data model and lacks a standard
east-west interface. YANG [24] is an open source data modeling language that enables
the standardization and automation of data representations. This NETCONF-based IETF
contribution is anticipated to enable SDN interoperability.

Network segmentation: Depending on the topology, distributed SDN controls may
cause latency-sensitive applications (monitoring) or computation-intensive applications
(route calculation) to suffer. When latency-sensitive and computation-intensive applications
were co-located in the same controller, the authors of Chang et al. [98] found it challenging
to achieve quick response and convergence times.

The recommended separation of several applications makes use of slicing that is now
available to lessen inter-controller communication. Functional slicing and communication-
aware control applications can help to speed up network convergence and response times.
To enhance the performance of network partitioning, the scientific community has to
undertake more research.

Problems with load balancing and controller deployment: An SDN controller’s in-
tegration with a forwarding apparatus generates queries concerning the best locations
for controller deployment and the required number of controllers in the network. Such
challenges must be overcome, especially in WANs where propagation delay is a major
consideration [3]. In other situations, such data centers or businesses (enterprises), load
balancing and fault tolerance receive more attention from researchers. Distributed SDN
control architecture is scalable rather than being controlled centrally. However, in order to
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achieve scalability and maintain good performance, it is necessary to physically install the
controller as well as use several SDN controllers [23,29].

Security: Security can be compromised throughout the SDN network due to the dis-
persed SDN controllers’ complete network intelligence. The SDN network may lose access
to the control plane if the safety problem is not resolved on a big scale. A distributed control
strategy reduces the risk of authentication and message integrity issues in comparison to a
single central controller. Without adequate authentication, an attacker may easily join their
network node, making it behave like other SDN controller instances and damaging the
whole network. Information exchange between controllers must be safe in order to give
unified views of distributed SDN controllers throughout the whole network. To solve these
problems in a distributed SDN controller environment, new methodologies and security
norms are required [9,10].

7. Conclusions

A thorough analysis of SDN controllers and their classification is summarized in
this paper. Testing of many OpenFlow-based distributed (but logically centralized) SDN
controllers, including OpenDayLight, ONOS, POX, Ryu, and HyperFlow, was included in
the experimental research. The topologies used for the experiments were custom-generated
for them. The six parameters that were examined are bandwidth, round-trip time, delay,
jitter, packet loss, and throughput. The amount of load that can affect a controller’s
performance, the number of activities that can increase or decrease, and a combination of
both were considered. Our analysis reveals that the OpenDayLight controller outperforms
the Ryu controller in all performance metrics except latency, packet loss and round-trip time,
which are strong suits for the Ryu controller. The ONOS and HyperFlow controllers perform
worst in every performance metric consideration. Based on the aforementioned statistics,
we advise using OpenDayLight or Ryu controllers as the best-performing distributed
(logically centralized) controllers. For greater experience, OpenDayLight can be used, while
Ryu should be used when the system is Python language-dependent. More research is
necessary to conclusively support our hypothesis. To assess the efficacy of more distributed
(logically centralized) controllers, we plan to apply diverse loads and scenarios in future. In
future, we want to create an SD-IoT architecture and evaluate various DDoS attacks against
the network. After that, we will isolate the data from the traffic and attack and analyze it
using machine learning or deep learning models.
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Abbreviations

5G Fifth Generation
ASIC Application Specific Integrated Circuit
AHP Analytic Hierarchy Process
API Application Programming Interface
CLI Command Line Interface
CPU Central Processing Unit
Cbench Connection Benchmark
DCN Data-Centric Network
EWBI East West Bound Interface
EPL Eclipse Public License
GUI Graphical User Interface
IETF Internet Engineering Task Force
ICMP Internet Control Message Protocol
MCDM Multi Criteria Decision Making
MFT Mean Free Time
Ms Milliseconds
Mbps Megabytes per second
NS3 Network Simulator 3
NTT Nippon Telegraph and Telephone
NETCONF Network Configuration Protocol
NOX Network Operating System
NBI North Bound Interface
NETCONF Network Configuration Protocol
NFV Network Functions Virtualization
ODL OpenDayLight
OF OpenFlow
ONOS Open Networking Operating System
OS Operating System
OSGi Open Service Gateway initiative
OF-config OpenFlow Configuration and Management Protocol
OVSDB Open vSwitch Database
ONOS Open Network Operating System
POX Pythonic Network Operating System
PC Personal Computer
PING Packet Internet Groper
QoS Quality of Service
REST Representational State Transfer
RESTCONF RESTful Network Configuration Protocol
RTT Round-Trip Time
RAM Random Access Memory
ROIA Real-Time Online Interactive Applications
SDN Software Defined Networking
SD-IoT Software Defined Internet of Thing
SD-WAN Software Defined Wireless Access Network
SAT Satellite
SBI South Bound Interface
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
UI User Interface
WAN Wireless Access Network
XMPP Extensible Messaging and Presence Protocol
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