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Abstract

:

Benchmarks play an essential role in the performance evaluation of novel research concepts. Their effectiveness diminishes if they fail to exploit the available hardware of the evaluated microprocessor or, more broadly, if they are not consistent in comparing various systems. An empirical analysis of the consecrated Splash-2 benchmarks suite vs. the latest version Splash-4 was performed. It was shown that on a 64-core configuration, half of the simulated benchmarks reach temperatures well beyond the critical threshold of 105 °C, emphasizing the necessity of a multi-objective evaluation from at least the following perspectives: energy consumption, performance, chip temperature, and integration area. During the analysis, it was observed that the cores spend a large amount of time in the idle state, around 45% on average in some configurations. This can be exploited by implementing a predictive dynamic voltage and frequency scaling (DVFS) technique called the Simple Core State Predictor (SCSP) to enhance the Intel Nehalem architecture and to simulate it using Sniper. The aim was to decrease the overall energy consumption by reducing power consumption at core level while maintaining the same performance. More than that, the SCSP technique, which operates with core-level abstract information, was applied in parallel with a Value Predictor (VP) or a Dynamic Instruction Reuse (DIR) technique, which rely on instruction-level information. Using the SCSP alone, a 9.95% reduction in power consumption and an energy reduction of 10.54% were achieved, maintaining the performance. By combining the SCSP with the VP technique, a performance increase of 8.87% was obtained while reducing power and energy consumption by 3.13% and 8.48%, respectively.
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1. Introduction


Measuring the performance of microprocessors and multicore systems is a challenging task. The continuous evolution of programming paradigms and hardware improvements are also ushering in an update for next-generation benchmarking [1]. Performance metrics are usually quantified using different standard sets of computer programs, named benchmark suites. It can be said that the foundation for evaluating the performance of computer systems is determined by the benchmark suite. If the benchmark suites do not efficiently use the available hardware resources, one can easily misrepresent the performance of the evaluated system, which can cause architects to overrate the impact of the proposed techniques or underrate that of others.



Another important aspect is the multi-objective evaluation approach. Generally, most of the research in the computer architecture field evaluates proposed systems based on one or two objectives, mostly performance indicators and power consumption. One should argue for performing such evaluations from more perspectives, like maximum chip temperatures, power and energy consumption, computing performance, and the integration area of the system. Evaluating how the proposed solution impacts the chip temperature is even more important nowadays since technology has reached nano-scale dimensions. The continuous rise of the power density in chips is resulting in higher temperature generation and the emergence of thermal hotspots [2,3]. More than that, high temperatures are an important factor for degrading electronic circuits. Therefore, evaluating multicore chips from a thermal perspective should become mandatory.



DVFS techniques operate by decreasing performance over certain time periods and reducing the power dissipation of the processor. Such techniques exploit the intervals in which the processor experiences a low demand for processing tasks, such as when the system is idle or experiencing minimal activity. While DVFS primarily aims to optimize power efficiency by adjusting the voltage and frequency of the processing units centered on workload demands, it can also have a secondary effect of controlling temperatures to protect the chip from overheating. A reduction in power consumption can contribute to maintaining the chip’s temperature within safe operating limits. However, it is important to note that DVFS alone may not always be sufficient for protecting the chip from high temperatures (hotspots), especially in multicore systems where workload distribution and thermal interactions between cores can be complex. Additionally, Dynamic Thermal Management (DTM) techniques such as thermal monitoring, thermal throttling, and cooling solutions like heatsinks or fans may also be necessary to ensure that the chip operates within its temperature specifications [4].



In this study, the integration of the latest Splash-4 [1] benchmark suite into the Sniper simulator environment was carried out, and an empirical analysis comparing this suite to an older suite, Splash-2 [5], was performed. The applicability of the SCSP to the DVFS subsystem of the microprocessor was evaluated. The target was to decrease the overall energy consumption by decreasing the power consumption at core level while keeping the same performance. The main idea was to exploit the intrinsic idle time that was identified during simulations, and for each core, based on the predictor outcome, to dynamically adjust the frequency and voltage. Using the SCSP, it was possible to achieve a reduction of 9.95% in power consumption and an energy saving of 10.54% without affecting the performance significantly. More than that, this technique, which uses core-level information, was applied in tandem with predictive and anticipative techniques, which operate on instruction-level information. When the SCSP was applied in parallel with the value prediction technique, the following results were achieved: a performance increase of 8.87%, a 3.13% decrease in power consumption, and an 8.48% decrease in energy consumption. A comprehensive analysis of those configurations was conducted in the proposed simulation environment.



The remainder of the paper is organized as follows: Section 2 presents related work involving parallel benchmarks, multicore simulators, value prediction and dynamic instruction reuse, and DVFS techniques. Section 3 shows the technical modifications that were made for the implementation of the SCSP and for the evaluation of the area, power consumption, and chip temperature. In Section 4, the simulation environment is presented along with the metrics used for the evaluation. The simulation results are presented in Section 5. First, an evaluation of the Splash-2 and Splash-4 benchmark suites is presented. Second, the simulation results of the enhanced architecture with the SCSP and with the combination of the SCSP with DIR and VP are discussed. The paper presents conclusions in Section 6, along with directions for future research.




2. Related Work


2.1. Benchmarks


Evaluating the performance of microprocessors is performed using well-known computer programs called benchmarks. The measurement of an overall system’s behavior is carried out by running multiple benchmarks, which form a suite. A suite is composed of multiple complex computing use cases that exploit the available hardware resources as much as possible. The identification of such generalized use cases and keeping them aligned with recent microarchitectural development trends is an open research topic. The following are the most commonly used benchmark suites in the evaluation of multicore processors from a general purpose perspective: Splash-2 [5], Splash-3 [6], Splash-4 [1], SPEC CPU2006 [7], SPEC CPU2017 [8], and PARSEC [9].



The Splash-2 suite [5] was proposed in 1995 and has achieved over 5424 citations. It was among the first parallel benchmark suites, with a focus on the shared memory paradigm. Today, it is broadly used in computer architecture research and industry for different evaluation purposes (performance, dynamic power consumption, thermal estimation, etc.). During the creation of this suite, the following use cases were considered: concurrency and load balancing, different working sets, communication to computation ratio and spatial locality. However, newer versions of this suite evolved over time; they are briefly mentioned below.



During this time, compilers and programming language standards evolved. For example, at the time of the creation of Splash-2, there was no standardized C memory consistency model, but the latter C standard defines a memory model that guarantees sequential consistency. More than that, when used with newer compilers, due to the lack of standardization at that time, unexpected behavior was identified on some benchmarks, which can lead to issues like performance and/or execution correctness. With this in mind, Splash-3 [6] was released in 2016. Splash-3 represented an important update to the suite, as the authors corrected many issues, focusing on improper synchronization mechanisms, data races, and performance bugs. To find those issues, the authors performed code inspection and used a self-developed tool that identifies data races. They found and fixed the data races in the following benchmarks: Barnes, Cholesky, FMM, Radiosity, Raytrace, Ocean-nc, and Volrend. To solve these issues, they made use of multiple mechanisms, like locks, conditional variables, and barriers. These mechanisms guarantee the correct execution by ensuring data consistency. However, they introduce an overhead imposed by the execution of the synchronization instructions, which results in lower performance, a necessary tradeoff for correct execution.



Based on the Splash-3 suite, another important update was released, Splash-4 [1]. The authors further extended the suite, implementing modern programming approaches focusing on the improved scalability of recent systems. Using lock-free constructs or atomic operations, which are available in modern ISAs, Splash-4 has the advantage of facilitating the direct use of the available architectural features and introduces fewer overheads due to their intrinsic simplicity. For example, instead of using a complex mutex with lock/unlock operations, it can be replaced with only one atomic fetch and add operation, which ensures the same sequential consistency. Overall, they achieved a significant improvement in scalability and a reduction in execution time in comparison with Splash-3. In terms of execution time, they achieved impressive reductions: an average of 52% in an AMD EPYC system and 34% in an Intel Ice Lake system.




2.2. Multi/Many-Core Simulators


Multicore simulators are invaluable instruments in computer architecture research and the chip design industry. They allow for fast prototyping and proof of concepts with minimal costs. Graphite [10] is an open-source simulator for multi/many-core architectures. It offers the possibility to simulate systems with one core up to thousands of cores while operating at a high abstraction level and leveraging models to simulate various parts within the system.



Built upon the Graphite infrastructure, Sniper [11] stands out as an optimal simulation solution for the Intel Nehalem multicore architecture, offering a satisfying tradeoff between simulation time and accuracy. It does not rely on the conventional approach of detailed cycle-by-cycle simulation, which is commonly used in most simulators; instead, Sniper uses the interval simulation method [12]. Such intervals are given by important events such as incorrect branch predictions or misses in cache memory. Once the interval is established, a laborious analytical model is used for estimation. For measuring power consumption and integration areas, the McPAT framework [13] is used. In a previous work [14], this simulator was enhanced to support thermal estimation using HotSpot [15].



Gem5 [16] is another open-source multi/many-core simulator that is well known for its flexibility and extensibility. It supports a wider range of processor models, memory configurations, and simulation modes, facilitating both detailed microarchitectural analysis and large-scale system-level simulations. It has a modular design that allows users to customize and extend its functionality to fit specific research needs.




2.3. Value Prediction and Dynamic Instruction Reuse


For optimizing the performance of microprocessors, researchers and industry engineers have proposed multiple processing techniques, like pipeline instruction execution, out-of-order processing, simultaneous multithreading, multi/many-core data and instruction caching, branch prediction, dynamic instruction reuse, and value prediction. Most of the techniques are already implemented in modern consumer microprocessors, except for value prediction and dynamic instruction reuse, with these two also being the focus of the current work. Those techniques exploit instruction- and data-level parallelism to reduce execution latency and enhance the overall performance of the architecture.



A. Sodani and G. S. Sohi introduced the DIR concept in [17] based on the empirical observation that the instructions are executed multiple times with the same input, thus creating an exploitation door. This technique is an anticipative one (non-predictive), as it relies on storing information about the dynamically executed instructions, including their operand values and results, in a memory called reuse buffer (RB). The RB is accessed using the instruction program counter. If an entry is found and the operands match, then the results can be taken out of the RB without having to execute the instruction again. The total number of cycles saved by the execution bypass can lead to an increase in performance and lower energy consumption overall. In [18], this concept was extended to a multicore system, and a DIR technique exploiting a selective high-latency arithmetic RB was implemented. A set-associative RB that targets the high time-consuming arithmetic instructions was proposed. On the Splash-2 benchmarks, they measured an up to 33.27% average reuse rate, a 6.56% maximum performance increase, steady energy, and a modest reduction in temperature.



Value prediction is a speculative microarchitectural technique that aims to increase the instruction-level parallelism. It achieves this in two steps. In the first step, it provides a speculated value to the current pipeline, thus unlocking the execution of the dependent instructions. As for the second step, the speculated instruction is still executed to verify whether the prediction was correct or not. In the case of a correct prediction, the instructions are committed to the memory/register. In the event of a wrong prediction, the pipeline must be flushed, and execution with the correct value is necessary. This is a drawback because the flushing process will take additional cycles. The technique was proposed between 1995 and 1997 by four distinct groups [19,20,21,22,23]. In [24], an extensive review of the existing value predictors was carried out, also covering the security and data consistency implications of this speculative technique. With the goal of increasing overall performance by breaking the dataflow bottleneck of each core, the selective high-latency arithmetic VP technique was proposed. This solution achieved a 5.19% performance increase on a 16-core configuration without a negative effect on energy consumption. Both techniques target the same high-latency arithmetical instructions: div, idiv, divsd, vdivsd, mul, imul, and sqrtsd.




2.4. Dynamic Voltage and Frequency Scaling


Research on the DVFS domain in multicore processors is quite intense nowadays. There are a multitude of proposed solutions that act on reactive, anticipative, or predictive information (e.g., performance, scheduling, hardware resource availability, etc.) to dynamically adjust the frequency and/or voltage of the whole system or a subsystem (e.g., core level or group of cores). In general, these solutions aim to optimize energy consumption by balancing power consumption across multiple cores while meeting the required performance levels.



In [25], the authors implemented a periodic power phase predictor, which tackles the challenge of core-level activity prediction. Using the predictive technique, they showed a 5.4% reduction in power consumption on the SYSMark 2007 processor and an increase in performance of 3.8% compared to the reactive scheme implemented in the Windows Vista operating system. Their solution is to store encoded sequences of the cores’ active/idle phases in a pattern history table. Compared to this solution, the SCSP relies only on the previous binary states (idle or non-idle) of the cores, with much lower memory footprint, and, more than that, this solution can be implemented at both the hardware and application levels. An analysis of the frequency adjustments at chip level vs. core level was carried out in [26]. The authors showed that the fine-grained approach can lead to higher energy savings while highlighting various limitations. Such limitations are the lack of hardware support in commercial processors to measure the power consumption at core level and the fact that the transition time required for the voltage regulators to apply the requested voltage is quite high. They implemented, at the application level, a runtime module that calculates and changes the frequency for each core. The frequency calculation was carried out based on the dynamically collected statistics about power and performance metrics. An evaluation of the proposed method was conducted on real Intel Haswell processors, which support core-level DVFS, achieving an energy reduction ranging from 4% to 35% compared to the default DVFS while maintaining performance. FoREST [27] is another DVFS controller that does not use a performance model. Instead, it estimates power gains by offline profiling and online measurements of the speedups/slowdowns achieved by the frequency change. It was implemented at the application level and compared with the default Linux DVFS controller, achieving a 39% energy reduction at the cost of a maximum performance loss of 5%.



DVFS techniques are also combined with different workload-aware information (e.g., scheduling, memory traffic, compiler-guided information [28], etc.) algorithms to further optimize energy efficiency in multicore environments, especially in simultaneous multithreading (SMT) configurations, where a core can quickly switch through different contexts. Energy-centric DVFS control (eDVFS) [29] is another solution towards minimizing total energy consumption. Two policies related to memory traffic monitoring have been proposed. The first one reacts if it exceeds a certain threshold, and then the CPU frequency is adapted. The second one reacts under a given threshold and changes the CPU frequency in the direction in which the energy efficiency is increasing. The results show a reduction in the processor’s energy consumption. An approach combining DVFS and Dynamic Concurrency Throttling (DCT) is proposed in [30], and this approach has applicability in HPC systems. The authors of this study built a predictive model based on a statistical analysis of the hardware to see how the DVFS and DCT influence the system behavior in certain configurations. Afterwards, the predictive model was used to dynamically apply those energy-saving techniques. They achieved a performance increase of 14%, power savings of 6%, energy savings of 19%, and a 40% decrease in energy–delay product in comparison with a situation when all the cores were running at highest frequency. The control is implemented at the application level. Another concept, named thread shuffling, which combines thread migration and DVFS, is proposed in [31]. On a multicore system with SMT support, the authors achieved up to 56% energy savings. In essence, threads with comparable criticality levels are dynamically allocated to the same core, followed by the activation of DVFS for non-critical cores. One important aspect highlighted by the authors is the fact that common multicore systems use cores that support SMT, and most of the DVFS-based methods struggle to achieve optimal energy reduction due to context switching at the core level. In [32], the authors used machine learning to train on workload characteristics and use this information to achieve the optimal voltage and frequency settings. In comparison with state-of-the-art algorithms, they achieved a power reduction ranging from 25% to 33%. Another solution, proposed in [33], comprises a performance prediction model, along with a mapping strategy that assigns processing cores to applications while keeping performance constraints. The results show energy savings of up to 28%.



Due to the smaller scale of integration technology, multi/many-core systems are also characterized by an increase in power density and thermal problems (hotspots). To mitigate these challenges, researchers, for example, [34] and [3], have proposed multiple thermal-aware DVFS techniques. Such techniques dynamically adapt the voltage and frequency settings, considering temperature limitations, with the aim of mitigating the hotspots and ensuring that the system operates reliably.





3. Methodology and Technical Modifications


In this section, details about the implementation of the SCSP and how it interacts with the Sniper simulator are presented. An overview of the methodology used to estimate the power consumption, integration area, and chip temperatures is also shown. It is illustrated how all the used simulators and frameworks are connected to each other.



3.1. Simple Core State Predictor Implementation


For the implementation of the SCSP, the core functionality of Sniper version 7.2 was expanded. One of the challenges was to make the state of each core available in the plugin space of the simulator. In the current implementation, it is available only in the backend, which is developed in C++, while the plugins are written in Python. Interaction between the Python space and C++ is possible via the integrated SimAPI, which offers numerous interfaces that are accessible for the real-time analysis and manipulation of the simulator’s state. The SimAPI has been extended to include an interface for reading out the core state from the backend of the simulator.



In Figure 1, the generic SCPS scheme is presented. It consists of a prediction table where each line is associated with one core. Each line stores up to H previous states (S) and the confidence counter (CO). A core can have one of the following states: running, initializing, stalled, sleeping, waking up, idle, or broken. For the predictor, the only information that is required is to know whether the core is in an idle state or not; therefore, each state can be stored in a boolean datatype, minimizing the memory footprint. The frequency selection logic takes into consideration the last prediction, the actual state, the confidence, and the confidence threshold. Each time the SCPS is called, it performs a prediction for the next core state based on the previous states, which is checked on the next call, and the confidence is updated. If the predictor acquires enough confidence (CO > COthreshold), the core frequency is changed speculatively based on the predictor outcome. If it predicts the idle state, the fidle frequency is set; otherwise, the configured frequency fconfigured is applied. The maximum time required for the core frequency to change effectively is 2 µs.



A simplified pseudocode reflecting the prediction logic is presented in Algorithm 1. The logic is grouped into four parts: initialization, reaction to the last prediction, confidence update, and performing a new prediction. In the initialization part (lines 2–4), the actual core state is read, the core-specific SCSP line is selected, and the previous predicted state is constructed using the “get_prediction” function. The reaction to the last prediction is carried out in lines 7–9. If the previous prediction has enough confidence, then the predicted state is compared against the actual state. If there is a difference, then the Corex frequency is adjusted according to the actual core state. After this step, in lines 12–16, the predictor confidence counter is updated; it is reset to 0 in the case of a wrong prediction or incremented in the case of a correct prediction. The actual core state is inserted into the predictor table in line 18, and considering the new state, a new prediction is performed in line 21. If the predictor acquires enough confidence (line 24), then the Corex frequency is speculatively changed (line 25) until the next call.



	
Algorithm 1. SCSP Prediction Logic




	
1

	
for x in [0, num_cores−1]:




	
2

	
  actual_state = get_core_state(x)




	
3

	
  scsp = get_scsp(x)




	
4

	
  predicted_state = scsp.get_prediction()




	
5

	




	
6

	
  # Check and react on last confident prediction




	
7

	
  if scsp.CO >= COthreshold:




	
8

	
    if predicted_state != actual_state:




	
9

	
      adjust_frequency(x, actual_state)




	
10

	




	
11

	
  # Update the confidence counter




	
12

	
  if predicted_state != actual_state:




	
13

	
    scsp.CO = 0




	
14

	
  else:




	
15

	
    if scsp.CO < COthreshold:




	
16

	
      scsp.CO += 1




	
17

	




	
18

	
  scsp.add_state(actual_state)




	
19

	




	
20

	
  # Perform a new prediction




	
21

	
  predicted_state = scsp.get_prediction()




	
22

	




	
23

	
  # If confident enough, adjust core frequency accordingly




	
24

	
  if scsp.CO >= COthreshold:




	
25

	
    adjust_frequency(x, predicted_state)









The SCSP is implemented as a Python plugin and can be called during the simulation by appending the following command when executing Sniper:


−s scps:<calling_interval_ns>:<idle_frequency_mhz>:<confidence>:<history>








where:




	
<calling_interval_ns> specifies the periodicity of script execution.



	
<idle_frequency_mhz> the frequency that is set in case the predicted state is idle.



	
<confidence> represents the threshold of the confidence counter.



	
<history> specifies how many previous states are kept in the table.








Figure 2 shows a use case of frequency adaptation using the SCSP on a timeline. In this example, the SCSP uses a COthreshold of 2. In the first phase, the SCSP acquires confidence by making predictions during each calling interval. At this time, the core frequency is not changed, and it remains as it was initially configured. Once the predictor gains enough confidence, the speculation interval is started, an event marked by the black thunder in the figure. In this interval, the core frequency is adapted to the value configured by the “idle_frequency_mhz” parameter, denoted as fidle. Once the SCSP detects that it predicted wrong, the confidence counter is reset (the event marked with the gray thunder in the figure), and the frequency of the corresponding core is set back to the configured value.




3.2. Power, Area, and Thermal Estimations


In Figure 3, a simplified overview of the used complex simulation methodology is depicted. This methodology emphasized the use of the multi/many-core simulator Sniper, which was enhanced with the speculative VP unit and the anticipative DIR unit. The DVFS manager within the simulator is also highlighted because the SCSP interacts with it to adapt and read the frequency for each core.



Sniper has integrated the McPAT [13] framework to estimate the power, area, and timing for the components of the microarchitecture. The connection between Sniper and McPAT is accomplished using a plugin (Python script), which dynamically creates the required configuration artifacts, runs the McPAT executable, and stores the outcome in Sniper’s internal database, which can be accessed by other plugins.



For the thermal estimation, the HotSpot [15] simulator was used, which is fast and has an accuracy in the 90–98% range. The simulator estimates the chip temperatures based on a power trace file and the spatial configuration of the chip (floorplan). The floorplan describes the position and size of the blocks inside the microprocessor architecture. The power trace file contains the power consumption of each functional unit from the microprocessor sampled at a specific time (e.g., every 500 µs). To integrate HotSpot into the Sniper simulator, a plugin-based solution was developed in [14] and further extended for this work. The most notable improvement made is the ability to use dynamic frequency and voltage for power and integration area estimations.





4. Simulation Environment and Metrics


All simulations were performed on a host system comprising an Intel Xenon Gold 6240R CPU (equipped with 48 physical and 96 virtual cores running at 2.4 GHz), 128 GB DRAM (2.933 GHz), and 2 TB SSD storage. The Sniper simulator was executed on a Linux virtual machine, which runs the Ubuntu 18.04 64-bit operating system. The Intel Nehalem microarchitecture in Gainestown configuration was simulated considering a 45 nm integration technology, as summarized in Table 1. One observation is that the Splash-4 benchmarks, when running on more than 32 cores, are more demanding in terms of DRAM requests. The DRAM directory is implemented in Sniper as a set-associative unit, and many times it has been observed that there are too many outstanding requests for which no entry can be associated; this leads to an unrecoverable error and the end of the simulation. To mitigate this, the associativity of DRAM was increased from 16 to 32. According to the Sniper developers, increasing the associativity of this structure mitigates the probability of conflicts but does not impact the performance of the simulation. All benchmarks were compiled using the “O3” optimization option.



The number of instructions per cycles (1) is the most common performance metric for processors. Formula (2) was used to measure the performance at the core level, whereas the overall process performance was calculated according to (3). For each metric, the relative difference was calculated using Equation (4). The metrics used included processor performance, core performance, energy consumption, dynamic power consumption, predictor accuracy, idle time, and maximum chip temperature. The energy consumption was computed using (5) [18]. The calculation for the average CPU frequency was carried out dynamically using a running average for all cores sampled, as specified by the SCSP-calling interval parameter (e.g., each 2 µs).


  IPC =  I N   



(1)






   Core   Performance  =   ∑  i = 1  N     I P  C i   C     



(2)






   Processor   Performance  =   ∑  i = 1  N      I i      MAX   1 ≤ k ≤ N   {  E k  }      



(3)




where:




	
I = the number of instructions executed.



	
N = the number of cycles necessary to execute the instructions.



	
C = the number of cores.



	
Ek = execution time in cycles for core k.










   Relative   Difference  =    M E  −  M B     M B    × 100    [ % ]   



(4)




where:




	
MB = Metric of the baseline configuration.



	
ME = Metric of the enhanced architecture (with SCSP, DIR, or VP unit).










  Energy =   AVG ( P ) × MAX ( C )   AVG (  f  C P U   )      [ J ]   



(5)




where:




	
P = the dynamic power consumption.



	
C = the number of cycles.



	
fCPU = frequency of the simulated processor [Hz].









5. Experimental Results


5.1. An Empirical Analysis of Splash-2 and Splash-4


This section presents a comparison between the older Splash-2 suite and the latest enhanced version, Splash-4. The analysis was carried out with variations in the number of cores to reflect the scalability characteristics of the benchmarks. For each metric, the average of all benchmarks is shown. The total simulation time to generate these results was 370 h, ~16 days. The SCSP unit was configured as follows:




	
calling_interval_ns = 2000



	
idle_frequency_mhz = 1000



	
confidence = 0



	
history = 1








The first metric is represented by the time the cores spend in the idle phase; this is shown in Figure 4. Along with the increase in the number of cores, the average idle time linearly increases. From the 8-core configuration up to 64 cores, there is a significant difference between Splash-2 and Splash-4, with the latter achieving up to a 30% reduction in idle time. This reduction comes from the modern programming techniques introduced in the Splash-4 benchmarks to improve their scalability. Also, the idle time seems to remain quite high, especially on the 64-core configuration, where, on Splash-4, a 45% idle time was recorded. This represents the motivating factor for exploiting this idle time by proposing the SCPS with the target of reducing the overall energy consumption by applying DVFS predictively.



It is commonly known that the overall computing performance can be increased by parallelizing applications and running them on multiple cores. The overall processor performance with the variations number of cores, summarized in Figure 5, was calculated by averaging all benchmarks. The results confirm that the performance increases along with the number of cores, demonstrating the scalability. Starting with the configuration with 16 cores up to the one with 64 cores, Splash-4 performs better than Splash-2. This correlates well with the scalability results achieved in [1].



In Figure 6, it can be observed that varying the number of cores reduces the average performance at the core level. It may look strange at first, but this happens because of the computer program vs. system scalability and the overhead introduced by communication through shared data (implied by inter/intra-core communication). In other words, it shows the system’s efficiency, meaning that, on average, the programs’ execution is faster when the system offers more computing resources. The way the programs are written to exploit all the available resources as efficiently as possible is also important. The core performance of the 16-, 32-, and 64-core configurations is well correlated with the overall processor performance and idle time.



A graph showing the dynamic power consumption of the processor in relation to the number of cores is visible in Figure 7. It increases along with the number of cores, and overall, Splash-4 consumes more power than the older suite. This is well correlated with the scalability increase and with the increase in performance and idle time reduction. A higher difference was found on the 64-core configuration, where a difference of ~154 W was measured, making it a good example of the scalability and performance impact on the chip power consumption. Based on the results, it can be stated that the Splash-4 benchmarks consumed more power overall than the Splash-2 benchmarks.



Figure 8 depicts the averaged energy consumption of the processor in relation to the number of cores. It can be observed that it follows an increasing trend along with the number of cores in terms of performance and power consumption. One important thing to remark is that the increase rate is much smaller compared with the other two metrics, which have an almost exponential increase rate. Hence, since the Splash-2 benchmarks consume less energy in all configurations, it can be stated that they are more energy-efficient than the newer version. For configurations ranging from 1 to 16 cores, the increase can be considered neglectable.



Following the energy consumption increase trend, the average maximum chip temperature measurements are presented in Figure 9. The chip temperatures might not exceed the critical threshold of 105 °C [2]. On average, most of the temperatures are well under the commonly critical threshold of 105 °C. The highest recorded value was found on the 64-core configuration of Splash-4 (104.2 °C). A detailed view for this configuration is visible in Figure 10, where it can be seen that the “lu.cont”, “ocean.cont”, “ocean.ncont”, “water.nsq”, and “water.sp” benchmarks have temperatures over the critical threshold, with the highest value of 167.8 °C being measured on “water.sp”.



Figure 11 presents the relative difference of all metrics of interest in relation to the number of cores on Splash-4 compared with Splash-2. It can be observed that the only metric that shows a decreasing trend is idle time, with an up to 30% reduction for the 64-core configuration. The rest of the metrics follow an increasing trend. Compared with Splash-2, on Splash-4, higher performance was achieved while consuming more power and energy and generating higher chip temperatures. On half of the benchmarks, 5 out of 10, the maximum chip temperatures recorded were over the common critical threshold of 105 °C. Beyond this threshold, the DTM techniques usually apply different restrictions to the system, affecting its overall performance and preventing chip degradation. Because of the increased number of cores, bearing in mind the scalability aspects of computer programs, they are executed much faster and generate a much higher power consumption over a shorter period, thus making the chip generate more heat. This is a strong example of the necessity of a multi-objective evaluation.




5.2. An Analysis of an Enhanced Architecture with the SCSP


In this section, the simulation results regarding the use of the enhanced architecture, which contained the proposed SCSP, are presented. The analysis was carried out by running the Splash-4 suite on a 16-core system. More than that, the SCSP was applied in tandem with the DIR anticipative technique and with the VP speculative one. The goal of combining these methods was to further reduce energy consumption, keep the maximum chip temperatures stable, and increase performance. The total simulation time for this set of results was 136 h, ~6 days. The configuration of the VP and DIR is shown in Table 2 and Table 3 respectively.



The first metric of interest is the SCSP prediction accuracy, which is plotted in Figure 12, calculated as the number of correct predictions divided by the total number of predictions. On average, an accuracy of 98.8% was achieved. The SCSP unit was configured to behave as a last state predictor (keeping only one state in history), with the confidence threshold being set to 0. As can be observed, in this context, the core state can be easily predicted using a minimalistic configuration.



The impact of the considered microarchitectural techniques on the processor idle time is visible in Figure 13. On average, compared to the baseline configuration, when applying only the SCSP, the idle time slightly increased from 30.4% to 30.8%. The highest reduction was achieved by combining the SCSP with the VP, reaching a reduction of 2.7%, from 30.4% to 27.7%.



The processor performance for each benchmark is shown in Figure 14. On average, the configuration that contained the SCSP and VP performed the best, ranging from 16.4 IPC to 17.9 IPC. The highest contributor was the “lu.cont” benchmark, on which an impressive performance increase from 9.3 IPC to 25.46 IPC was measured. It can be seen that, using the VP speculative technique, a higher IPC was achieved compared with the non-speculative RB technique. The main reason for this difference between the two techniques is due to the intrinsic differences between them, meaning that the DIR technique requires the values of the operands to be fetched for checking if the result can be reused (non-speculative). On the other hand, the VP technique can provide a speculated value much earlier, as it does not need to wait until the value of the operands is available. The time required to fetch the operand values is highly valuable in this scenario, especially when reading any of them causes a miss in the cache hierarchy or is simply read from a slower memory. Unlocking the execution of dependent instructions in a speculative way is a major advantage of the VP compared with the DIR. Using only the SCSP technique, on average, the performance slightly decreased, having a difference of 0.1 IPC. The benchmark “barnes” was the biggest contributor to this decrease, which can be easily correlated with the fact that it had the lowest prediction accuracy of 88.4%, negatively affecting the overall performance.



Regarding the dynamic power consumption, it can be seen in Figure 15 that, on average, all the applied techniques reduced it with respect to the baseline architecture. The highest reduction of 12.3 W was achieved by applying the SCSP technique individually. The configurations combining DIR and VP slightly increased the dynamic power consumption, a fact that is strongly related to the increase in processor performance. Even with the best-performing configuration with the SCSP and VP, a reduction of 3.9 W was still achieved. It can be concluded that all the applied techniques reduce the overall power consumption.



The next metric of interest is the energy consumption of the processor in relation to the microarchitectural configurations, as plotted in Figure 16. On all configurations, a modest reduction of ~1 J was recorded. This is an impressive achievement considering the increase in processor performance when DIR and VP were applied in tandem with the SCSP.



The maximum chip temperatures that were recorded for all the simulated benchmarks are summarized in Figure 17. On the “lu.cont” benchmark, the highest increase of 11.9 °C was measured when the SCSP and VP techniques were applied simultaneously. In this case, the increase is correlated with the high power consumption and performance increase recorded on this benchmark. It generates more power over a shorter period of time, making the chip generate more heat faster. On average, it can be concluded that no significant temperature change is visible regarding the applied configuration. Also, all temperatures are well below the common critical threshold.



Another important metric is the integration area of the chip. The proposed techniques also have an impact on the overall chip area. In Figure 18, the chip area for each microarchitectural configuration is plotted. It can be seen that the SCSP did not cause an increase in the integration area because it was implemented at the application level, requiring no hardware change. Another observation is that the configurations that include DIR have a bigger footprint per core (2.98 mm2) than the ones that include VP (0.42 mm2). This is normal because DIR needs to keep, for each dynamic instruction, the results of the operation and all the operand values inside the buffer. On the other hand, the VP has a much smaller footprint because it requires the keeping of only the results of the instruction.



Figure 19 provides a good overview of the impact of all the simulated configurations on the metrics of interest. Here, the tradeoffs between each technique can be seen. For example, the highest power (−9.95%) and energy (−10.54%) reductions were achieved using only the SCSP technique, which did not affect the integration area or maximum temperatures but resulted in a minor increase in idle time (1.18%) and a neglectable reduction in performance (−0.77%). On the other hand, using the combined approach consisting of the SCSP and VP offers the highest performance increase (8.87%) and idle time reduction (8.76%) while reducing power (−3.13%) and energy consumption (−8.48%) at the cost of a small increase in temperature (0.83%) and chip area (0.85%). The configuration with the SCSP and DIR is a quasi-optimal solution that lies in between those two.





6. Conclusions and Future Work


In this work, the importance of multi-objective analysis during the development of multicore processors was shown. Through analyzing Splash-2 vs. Splash-4 benchmarks, the impact of modern programming techniques on idle time, processing performance, power consumption, energy consumption, and thermal behavior was shown. It was identified that on the 64-core configuration, the chip temperatures exceed the critical threshold of 105 °C on half of the simulated benchmarks, emphasizing the need for multi-perspective evaluation in today’s processors. Based on the achieved results, it was noticed that the processing cores spend a lot of time in the idle state, waiting for work or synchronization barriers. This was exploited by implementing an SCSP that dynamically adapts the frequency and voltage at the core level by predicting the core state. Using this technique, an average power consumption reduction of 9.95% and an energy saving of −10.54% were achieved without affecting the performance significantly. More than that, the selective DIR and VP techniques were used in parallel with the SCSP to further improve the proposed architecture. Using the SCSP in combination with the VP, a performance improvement of 8.87%, an 8.76% reduction in idle time, a 3.13% decrease in power consumption, and an 8.48% reduction in energy consumption were achieved at a small footprint increase in chip area while maintaining stable temperature. For energy-efficient architectural requirements, the SCSP can be easily implemented at the application level. However, it is also possible to implement it at the hardware level, considering its intrinsic simplicity and minimal memory footprint requirements due to the binary codification of the core state. It has a wide range of applications, from embedded devices and general purpose systems to high-performance computing systems.



Our plans for future work are focused on automatic multi-objective design space exploration. We plan to develop new state-of-the-art tools and methodologies by enhancing the Framework for Automatic Design Space Exploration (FADSE) [35] with the newer algorithms [36,37,38] and novel concepts within the Pareto–Fuzzy paradigm, applying the superposition concept [39]. The target will be to find the quasi-optimal microarchitectural configurations that simultaneously optimize the following parameters: processing performance, integration area, energy consumption, die temperature, and security. A challenge is given by the fact that the mentioned parameters are contradictory, e.g., having more features implies a bigger chip area, and a higher performance comes at the cost of energy consumption and hotspots. More than that, it is also planned to accelerate the automatic search by using Genetic Programming (GP) and Response Surface Models (RSMs). Yet another further work direction consists of extending the application of the SCSP from the actual last state predictor exploited in this study to multiple-state predictors (using more than one previous core state to estimate the next core state).
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Figure 1. An overview of the Simple Core State Predictor (SCPS) scheme. 
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Figure 2. Example of frequency adaptation using SCSP. 
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Figure 3. An overview of the simulation methodology. 
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Figure 4. Idle time with the variation in the number of cores. 






Figure 4. Idle time with the variation in the number of cores.



[image: Computers 13 00084 g004]







[image: Computers 13 00084 g005] 





Figure 5. Processor performance with the variation in the number of cores. 
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Figure 6. Averaged core performance with the variation in the number of cores. 
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Figure 7. Dynamic power consumption of the processor with the variation in the number of cores. 
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Figure 8. Energy consumption of the processor with the variation in the number of cores. 
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Figure 9. Maximum chip temperature of the processor with the variation in the number of cores. 
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Figure 10. Maximum chip temperature of all benchmarks for 64-core configuration. 
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Figure 11. Relative difference of Splash-4 for each metric in relation to the number of cores. 
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Figure 12. SCSP predictor accuracy for each benchmark (16 cores). 
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Figure 13. Idle time for each benchmark using multiple microarchitectural configurations (16 cores). 
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Figure 14. Processor performance for each benchmark using multiple microarchitectural configurations (16 cores). 
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Figure 15. Dynamic power consumption for each benchmark using multiple microarchitectural configurations (16 cores). 
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Figure 16. Energy consumption for each benchmark using multiple microarchitectural configurations (16 cores). 
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Figure 17. Maximum chip temperature for each benchmark using multiple microarchitectural configurations (16 cores). 
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Figure 18. Chip area for each microarchitectural configuration (16 cores). 
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Figure 19. Relative difference for each microarchitectural configuration in relation to each metric (16 cores). 
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Table 1. Baseline configuration of Intel Nehalem (Gainestown).
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Intel Nehalem (Gainestown)




	
Parameter Name

	
Value






	
L3 Cache (Shared)

	
Size

	
8192 KB




	
Associativity

	
16




	
L2 Cache

	
Size

	
256 KB




	
Associativity

	
8




	
L1 Data Cache

	
Size

	
32 KB




	
Associativity

	
8




	
L1 Instruction Cache

	
Size

	
32 KB




	
Associativity

	
4




	
Frequency

	

	
2.66 GHz




	
Number of cores

	

	
4




	
DRAM associativity

	

	
32











 





Table 2. Configuration of the VP unit.
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Parameter Name

	
Value






	
VP

	
Associativity

	
4




	
Num. entries

	
512




	
History

	
1




	
Penalty latency

	
17 cycles




	
Access latency

	
1 cycle




	
Block size

	
16 B




	
Size

	
8 KB











 





Table 3. Configuration of the DIR unit.
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Parameter Name

	
Value






	
DIR

	
Associativity

	
4




	
Num. entries

	
512




	
Access latency

	
1 cycle




	
Block size

	
64 B




	
Size

	
32 KB
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