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Abstract: Monitoring bus driver behavior and posture in urban public transport’s dynamic and
unpredictable environment requires robust real-time analytics systems. Traditional camera-based
systems that use computer vision techniques for facial recognition are foundational. However, they
often struggle with real-world challenges such as sudden driver movements, active driver–passenger
interactions, variations in lighting, and physical obstructions. Our investigation covers four different
neural network architectures, including two variations of convolutional neural networks (CNNs)
that form the comparative baseline. The capsule network (CapsNet) developed by our team has
been shown to be superior in terms of efficiency and speed in facial recognition tasks compared
to traditional models. It offers a new approach for rapidly and accurately detecting a driver’s
head position within the wide-angled view of the bus driver’s cabin. This research demonstrates
the potential of CapsNets in driver head and face detection and lays the foundation for integrat-
ing CapsNet-based solutions into real-time monitoring systems to enhance public transportation
safety protocols.

Keywords: driver monitoring system; road safety; artificial intelligence; neural network; capsule
network; head position detection

1. Introduction

Increasing traffic density necessitates safer public transport, where the role of drivers
remains pivotal despite advancements in advanced driver-assistance systems (ADASs) like
emergency braking [1]. Focusing on driver attention and cognitive load is vital for opti-
mizing working conditions and enhancing accident prevention. In this context, CapsNets
have been integrated into professional camera-based driver monitoring systems (DMSs)
for public transport in order to improve safety. Despite a decrease in overall usage, buses
still represent a significant part of European public road transport, with over 108 thousand
million passengers and 97 thousand million passenger-kilometers in 2022, according to
relevant data from selected countries—Bulgaria, the Czech Republic, Germany, Estonia,
Croatia, Lithuania, Hungary, Poland, Portugal, and Romania (Table 1) [2].

Research has highlighted several key factors contributing to bus accidents, including
the negligence of bus operators, driver errors, and external elements like weather and road
conditions. It has been noted that monitoring driver behavior through passive or active
interventions can significantly enhance the safety of bus transportation [3]. Various factors
can contribute to inattention, including distractions (visual, auditory, physical, or cognitive)
and drowsiness. Drowsiness may be caused by various factors, such as insufficient sleep,
poor health, or prolonged driving in dull environments, and can result in physiological
inattention [4]. Factors like boredom, fatigue, monotony, and sleep deprivation are known
to amplify accident risks. This is because they tend to reduce the driver’s attention, thereby
hindering information processing and decision-making capabilities, which are crucial for
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reacting effectively in emergencies [5]. Studies on accidents and simulated driving have
indicated that alertness can diminish during daytime as well, particularly on lengthy,
unvarying routes [6]. Errors are more prevalent during monotonous driving, where low
task demands and stimulus levels lead to reduced attention. Various systems incorporating
psychological tests and different physiological sensors have been developed to monitor and
detect driver behaviors. These systems employ methods such as vehicle-based measures,
behavioral measures, and physiological measures [7].

Table 1. Data concerning motor coaches, buses, and trolley buses in selected EU countries (Bulgaria, the
Czech Republic, Germany, Estonia, Croatia, Lithuania, Hungary, Poland, Portugal, and Romania) [2].

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Passengers
(million person) 143,994 144,434 156,010 155,177 154,450 155,756 156,269 106,494 108,804

Passenger-kilometers
(million km) 154,471 155,484 171,489 170,353 167,791 168,348 171,240 94,174 97,350

Vehicle sensors have been increasingly used to detect driving patterns and behaviors.
For example, driving patterns can be discerned from vehicle sensor data during a single
turn [8]. Deep learning framework that analyze CAN-BUS data have been successful in
identifying different driving behaviors [9]. Monitoring systems in vehicles that utilize
principal component analysis can track fuel consumption, emissions, driving style, and
driver health in real-time effectively [10]. Additionally, energy efficiency in rail vehicles is
being optimized by detecting energy losses [11]. Behavioral studies, such as those utilizing
the Driver Behavior Questionnaire, suggest that professional drivers typically engage in
safer driving practices, yet face a higher risk of accidents due to longer driving times [12].
Driver characteristics, like comfort levels, can influence driving performance [13]. Large-
scale studies on bus drivers using psychometric evaluations like the Multidimensional
Driving Style Inventory and Driver Anger Scale have underscored the importance of
identifying safe versus unsafe drivers [14]. A strong correlation has been found between
vehicle data and physiological driver signals, suggesting that vehicle data can be highly
indicative of driver behavior [15]. With high-quality cameras, eye-tracking systems can
measure cognitive load by observing fixation frequency, pupil diameter, and blink rates [16].
Experienced drivers show distinct fixation patterns in driving scenarios compared to
novices [17]. Pupil size is also an indicator of attention levels and can vary with the
difficulty of tasks or the type of interface used, such as touchscreens [18].

Driver fatigue and distraction can be assessed through biometric signals, steering
patterns, or monitoring the driver’s face [19]. It has been found that an elevated heart rate
may indicate that a driver is engaged in more complex or additional tasks [20]. Heart rate
variability, corroborated by electroencephalography, has also been utilized to gauge driver
drowsiness [21]. Additionally, wearable devices that measure galvanic skin responses
have been successfully used to detect driver distraction accurately in real-world driving
conditions [22]. Recent developments include single-channel EEG systems that analyze
data using small time windows and single-feature calculations, making them more suitable
for integration into embedded systems due to reduced processing and storage needs [23].
Muscle fatigue, measured using electromyograms (EMGs), has also been used to monitor
driver alertness, with appropriate methodologies outlined [24].

The most common type of DMS is camera-based, utilizing computer vision to recognize
facial features. This approach is less intrusive for drivers and fits seamlessly into mass
production processes for vehicles. According to EU Regulation 2019/2144, starting in 2024,
all new vehicles in Europe must include a system that warns against driver drowsiness or
distraction [25]. Visual sensors, including RGB and IR cameras, collect naturalistic driving
data, encompassing driver interactions, behaviors, and the vehicle’s interior environment.
These data can be used to monitor hand movements, body posture, facial expressions, and
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signs of distraction or drowsiness [26]. Face detection technologies are broadly categorized
into feature-based and learning-based methods, with the latter typically being more robust,
albeit more resource-intensive. These technologies can achieve detection rates of over
80% in controlled environments [27]. The current challenge is to prove these algorithms’
effectiveness and demonstrate their practical benefits. In the future, improved facial
recognition technology could significantly enhance road safety. However, the accuracy of
these technologies depends on various factors, such as the camera’s angle, vibrations, lens
cleanliness, obstructions, lighting, and overall optical performance. It is vital to consider
and address these factors during data collection and processing to ensure reliable results.

The critical role of computer vision and machine learning was mentioned by the
creators of a DMS that enhances road safety [28]. Others took this a step further by detecting
driver distraction using a CapsNet, an AI-based method that has outperformed traditional
machine learning models. This research categorized various distractions and tested the
model under different conditions, offering substantial improvements in autonomous vehicle
safety [29]. Building on previous models, some have explored the utilization of modified
CapsNets for identifying distracted driver behavior [30]. While CNNs have been commonly
used, CapsNets are advantageous as they maintain the spatial relationships between
features. By adding an extra convolutional layer to the CapsNet structure, the authors
achieved a high accuracy of 97.83% with hold-out validation. However, the model’s
performance decreased to 53.11% with leave-one-subject-out validation, suggesting the
need for further research to improve the model’s generalization capabilities.

Automatic face localization, a key challenge in computer vision, often employs object
detection algorithms like Faster-RCNN [31], SSD [32], and various versions of YOLO [33]
for effective face detection. However, recognizing the unique characteristics of human faces,
specific deep architectures have been designed for higher accuracy in diverse conditions.
MTCNN is a notable scientific method utilizing a cascaded structure with deep convo-
lutional networks for precise face and landmark detection [34]. Faceness-Net improves
detection when occlusions are present by using facial attributes in its network, highlighting
the continuous evolution and specialization in face detection technologies [35]. The inte-
gration of feature pyramid networks (FPNs) in face detection, particularly for small faces,
has been a notable advancement. The selective refinement network (SRN) utilizes FPNs
for feature extraction, introducing a two-step approach in classification and regression to
enhance accuracy and reduce false positives [36]. SRNs include selective two-step classifi-
cation (STC) and selective two-step regression (STR) modules for efficient anchor filtering
and adjustment. Another approach, RetinaFace, employs FPNs in a single-stage, multi-task
face detector, handling aspects like face scores, bounding boxes, facial landmarks, and
3D face vertices [37]. Additionally, CRFace and HLA-Face address specific challenges in
high-resolution images and low-light conditions, respectively, reflecting the significant
progress that has been achieved in face detection technology [38].

Deep face recognition (FR) architectures have evolved rapidly, following trends in
object classification. Starting with AlexNet [39], which revolutionized the ImageNet com-
petition with its deep structure and innovative techniques like ReLU and dropout, the field
progressed to VGGNet [40], which introduced a standard architecture with small convolu-
tional filters and deeper layers. GoogleNet then brought in the inception module, merging
multi-resolution information [41]. ResNet further simplified the training of deep networks
by introducing residual mapping [42]. Finally, SENet [43] improved representational power
with the squeeze-and-excitation block, enhancing channel-wise feature responses.

Advancements in FR architectures have paralleled those in object classification, lead-
ing to more profound, controllable networks. DeepFace pioneered this with a nine-layer
CNN, achieving 97.35% accuracy on labeled faces in the wild (LFW) using 3D align-
ment [44]. FaceNet implemented GoogleNet and a novel triplet loss function, reaching
99.63% accuracy [45]. VGGface further refined this approach with a large-scale dataset
and VGGNet, attaining 98.95% accuracy [46]. SphereFace introduced a 64-layer ResNet
and angular softmax loss, boosting performance to 99.42% on LFW [47]. The end of 2017
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saw the introduction of VGGface2, a diverse dataset enhancing the robustness of FR mod-
els [48]. MobiFace, an optimized deep-learning model for mobile face recognition, was
also introduced [49]. It achieves high accuracy (99.73% on LFW, 91.3% on Megaface) with
reduced computational demands, addressing the limitations of mobile device resources.
This development marked a significant step in mobile-based face recognition technology.

In this article, we will conduct a comparative study between the conventional dy-
namic routing algorithm and our proposed routing method within two different network
architectures. Our ultimate research aim is for our CapsNet model to demonstrate robust
performance in professional settings, such as DMS for public transportation. This paper
presents the initial phase of our research, which enhances the robustness of the head loca-
tion detection algorithm and paves the way for further assessments of the model’s speed
and computational efficiency in practical applications. This approach not only addresses
the detection of head position with precision but also accounts for the various challenges
associated with monitoring bus drivers during the performance of their duties.

This paper is structured as follows: Section 2 clarifies the mathematical background
necessary to understand the theory of capsule networks and briefly describes the introduced
routing algorithm. Following this, we describe the dataset we created, designed specifically
for our long-term goals. Finally, we present and detail the generated neural network models.
Section 3 clarifies the context in which the networks are trained, highlighting the most
critical parameters, and presents and visualizes the results in detail. Section 4 discusses the
achieved results. Finally, Section 5 presents the conclusion.

2. Materials and Methods

This study focuses on identifying the bus drivers’ faces under various conditions,
including sudden movements, active interactions between drivers and passengers, and
environmental challenges such as changing light conditions and physical obstructions. The
core objective is to explore the feasibility of applying this monitoring approach in practical
scenarios. Furthermore, we aim to examine the effectiveness and resilience of capsule
networks enhanced by a tailored routing process.

Verma et al. introduced a pioneering system for the real-time monitoring of driver
emotions, employing face detection and facial expression analysis [50]. This system utilizes
two VGG-16 neural networks; the first extracts appearance features from the face images
while the second network extracts geometrical features from facial landmarks. On another
front, Jain et al. presented a method based on capsule networks for identifying distracted
drivers, and this demonstrated superior performance in real-world environments when
compared to traditional CNN approaches [29]. Ali et al. contributed to the field by creating
a dataset for use in various experiments concerning driver distraction. They proposed an
innovative method that leverages facial points-based features, particularly those derived
from motion vectors and interpolation, to identify specific types of driver distractions [51].
Lastly, Liu et al. offered an extensive review of face recognition technologies, discussing the
challenges associated with face recognition tasks. They outlined the principal frameworks
for face recognition, including geometric feature-based, template-based, and model-based
methods, comparing various solutions while underscoring the significance of and prevail-
ing challenges in the domain of face recognition [52].

Our previous work focused on accurately identifying 15 facial keypoints, laying the
groundwork for advanced facial recognition techniques [53]. Building upon this foundation,
the present study leverages CapsNets to precisely detect the head’s orientation. Our
approach is designed to deliver dependable results amidst the challenging and variable
conditions encountered in bus driving scenarios. We highlight the implementation of
CapsNets in real-world DMSs for public transportation, thereby advancing the field of
research in this domain.
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2.1. Capsule Network Theory

CapsNets represent an evolution of traditional neural networks, addressing several of
their well-documented challenges [54,55]. The fundamental distinction between CapsNets
and conventional neural networks lies in their primary structural unit. Unlike neural
networks, which are constructed from neurons, CapsNets are built using entities known as
capsules. Table 2 outlines the principal differences between these capsules and the classical
artificial neurons.

Table 2. Differences between a capsule and a neuron.

Capsule Neuron

Input Vector (ui) Scalar (xi)
Affine transform ûj|i = Wijui -

Weighting sj = ∑i cijûj|i aj = ∑i wixi + b

Nonlinear activation vj =
∥sj∥2

1+∥sj∥2
sj

∥sj∥2
hj = f

(
aj

)
Output Vector (vj) Scalar (hj)

A capsule within a network can be conceptualized as a collection of intricately linked
neurons that engage in substantial internal computation and encapsulate the outcomes
of these computations within an n-dimensional vector, which serves as the capsule’s
output. Notably, the capsule’s output diverges from the output of a conventional neuron
as it does not represent a probability value. Instead, the magnitude of the output vector
conveys the probability value associated with the capsule’s output, while the vector’s
orientation encodes various attributes pertinent to a specific task. For instance, in the
context of detecting a human face, lower-level capsules might be tasked with identifying
facial components—such as eyes, nose, or mouth—whereas a higher-level capsule would
be dedicated to the holistic task of face recognition. The neurons within these lower-level
capsules capture and encode certain intrinsic properties of the object, including its position,
orientation, color, texture, and shape.

A distinctive feature of capsule networks is that they eschew the employment of
pooling layers or analogous mechanisms for reducing dimensionality between layers.
Instead, these networks adopt a ‘routing-by-agreement’ mechanism, whereby the output
vectors from lower-level capsules are directed towards all subsequent higher-level capsules.
This process involves a comparative analysis between the output vectors of the lower-level
capsules and the actual outputs from the higher-level capsules. The routing mechanism’s
primary objective is to modulate the intensity of information flow between capsules,
facilitating enhanced connectivity among features that are closely related.

Consider a lower-level capsule, denoted by i, and a higher-level capsule, denoted by j.
The input tensor û of capsule j is determined as follows:

û(j|i) = Wijui (1)

where Wij represents a weighting matrix that is initially populated with random values,
and ui signifies the pose vector of the i-th capsule. The coupling coefficients cij are derived
using a straightforward softmax function, expressed as follows:

cij =
exp

(
bij

)
∑k exp(bik)

(2)

where bij symbolizes the logarithmic probability that capsule i will couple with capsule j,
and with bij being set to zero at the start [54,55].
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The aggregate input for capsule j is the cumulative weighted sum of the prediction
vectors, as is shown below [54,55]:

sj = ∑
i

cijûj|i (3)

In the architecture of the capsule network, each layer outputs vectors, with the length of
these vectors determining the probability. It is imperative to apply a non-linear squashing
function to these vectors before the probability can be assessed, where the squashing
function is defined as follows:

vj = squash
(
sj
)
=

∥∥sj
∥∥2

1 +
∥∥sj

∥∥2

sj∥∥sj
∥∥2 (4)

The routing mechanism is essential for elucidating the interactions between the lay-
ers of the capsule network [54,55]. The dynamic routing algorithm, referred to as Algo-
rithm 1, is essential for the updating cij values and for the determination of the output vj
capsule vector.

Algorithm 1. Routing algorithm [54]

1: procedure ROUTING (ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0
3: for r iterations do
4: for all capsule i in layer l: ci ← so f tmax(bi)
5: for all capsule j in layer (l + 1): sj ← ∑i cijûj|i
6: for all capsule j in layer (l + 1): vj ← squash

(
sj

)
7: for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|ivj
8: return vj

2.2. Proposed Capsule Routing Mechanism

In our previous work [56], we introduced a simplified routing algorithm for capsule
networks and demonstrated its performance in a variety of classification tasks. In this
paper, we use the same optimization solution. However, we use it for detection rather
than classification. Within the domain of capsule network research, our investigations
reveal that the input tensor ûj|i plays a pivotal role in the efficacy of the dynamic routing
optimization procedure, significantly influencing the resultant tensor. The computation of
the output vector vj incorporates the input tensor ûj|i on two occasions as follows:

vj = sq
(
∑i smax

(
bij + ûj|ivj

)
ûj|i

)
(5)

where sq(·) is the squashing function, and smax(·) signifies the softmax function [56]. To
improve the routing mechanism between lower-level and upper-level capsules, we suggest
the modifications to the routing algorithm outlined below [56]:

vj = sq
(
∑i smax

(
bij + ∑j

∥∥vj
∥∥)ûj|i

)
(6)

This modification simplifies the routing algorithm and improves its computational
speed, as we have previously demonstrated [53,56]. Another proposed change pertains
to the squashing function. In the secondary capsule layer (the structure in Figure 1), we
utilize a modified squashing function as follows:

squash(s) =
s− e−∥s∥s
∥s∥+ ε

(7)
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where ε is a fine-tuning parameter. In this research, we used ε = 1× 10−7 as the fine-tuning
parameter based on our experience. The two routing algorithms are shown in Figure 1,
where the differences between the two solutions can be clearly seen.
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2.3. Dataset

Our research aims to investigate how effectively we can detect a bus driver’s face on
board a vehicle under different environmental conditions. We generated our own dataset
of bus drivers in real environments and real situations. Figure 2 shows some sample
images from our dataset. It was important that the dataset was as diverse as possible.
Therefore, the dataset contains not only ideal samples but also various extreme but real-life
scenarios. Examples include the following cases: making phone calls while driving, being
in excessively shady and dark areas, and being in strong sunlight. It is crucial that the
driver of the vehicle is clearly identifiable in all cases. Figure 3 shows examples of some
extreme cases.
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Our custom dataset thus constructed contains a total of 2921 samples which are
grouped into a training and test sets. The training set contains 2336 images, while the test
set consists of 585 samples. All images in our dataset are 180 pixels wide by 180 pixels high
and have three color channels in the RGB color space. The images were taken from a fixed
camera position and depict two bus drivers with different physical characteristics.

2.4. Network Architectures

In this research, four different neural network architectures were developed. We used
two different CNN architectures for a backbone. In the first case, we created an explicitly
simple architecture network, which we call the Simple Network. In the second case we
chose a more complex solution based on the YOLOv4 network.

The Simple Network consists of two blocks of the following three layers: convolution,
batch normalization, and max pooling. The first block contains 32 convolution layers
24× 24 in size, where the maximum pooling layer kernel size is 2× 2. The second block is
very similar to the first, but in this case the convolution layer has 64 outputs, where each
kernel’s size is 16× 16. Figure 4 shows the architecture of the Simple Network backbone.
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Figure 4. Architecture of the Simple Network.

After the Simple Network we find the capsule-based subnetwork. Following the
work of Sabour et al. [54], our capsule block consists of two parts: a primary capsule layer
and a secondary capsule layer. In the primary capsule layer, the capsules are arranged in
32 blocks 8× 8 in size, where each capsule is 18-dimensional. At the output of the secondary
capsule layer, there are only 4 capsules, each with 16 dimensions. Based on the capsules’
lengths, the final output quartet is generated; this contains the central coordinate, the width
and the height of the bounding box. Figure 5 shows the design of our SimpleCaps network.
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The other backbone network used in this research is modelled on YOLOv4 architecture.
Its structure is illustrated in Figure 6, where our YOLOCaps network is shown. The YOLO-
based backbone consists of 5 downsampling subnetworks and a neck subnetwork, where
the last 3 downsampling layers (D3, D4, and D5) are used as inputs to the neck subnetwork.

Computers 2024, 13, x FOR PEER REVIEW 10 of 23 
 

The other backbone network used in this research is modelled on YOLOv4 architec-

ture. Its structure is illustrated in Figure 6, where our YOLOCaps network is shown. The 

YOLO-based backbone consists of 5 downsampling subnetworks and a neck subnetwork, 

where the last 3 downsampling layers (D3, D4, and D5) are used as inputs to the neck 

subnetwork. 

 

Figure 6. Architecture of the YOLOCaps Network. 

There are a total of 5 downsampling layers in the YOLO-based subnetwork, and these 

are called D1, D2, D3, D4, and D5. The D2, D3, D4, and D5 layers are quite similar, the 

only difference being the number of residual blocks; each residual block consists of two 

convolutional blocks, which means the following 3 layers: single 2D convolution, batch 

normalization, and Mish activation. The D2 layer contains 2 residual blocks. Downsam-

pling layers D3 and D4 are made up of 8 residual blocks. Finally, in the D5 layer, only 4 

residual blocks are observed. Figures 7–10 illustrate the structures of these 5 downsam-

pling layers, and for each figure, 𝑛 is the batch size. Figure 9 shows the structures of lay-

ers D3 and D4. The architecture of these two layers is identical, the only differences being 

the following parameters. For the D3 downsampling layer, 𝑝 = 128, 𝑞 = 45, 𝑟 = 256, 

and 𝑠 = 23. For the D4 downsampling layer, 𝑝 = 256, 𝑞 = 23, 𝑟 = 512, and 𝑠 = 12. 

Figure 6. Architecture of the YOLOCaps Network.

There are a total of 5 downsampling layers in the YOLO-based subnetwork, and these
are called D1, D2, D3, D4, and D5. The D2, D3, D4, and D5 layers are quite similar, the
only difference being the number of residual blocks; each residual block consists of two
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convolutional blocks, which means the following 3 layers: single 2D convolution, batch nor-
malization, and Mish activation. The D2 layer contains 2 residual blocks. Downsampling
layers D3 and D4 are made up of 8 residual blocks. Finally, in the D5 layer, only 4 residual
blocks are observed. Figures 7–10 illustrate the structures of these 5 downsampling layers,
and for each figure, n is the batch size. Figure 9 shows the structures of layers D3 and D4.
The architecture of these two layers is identical, the only differences being the following
parameters. For the D3 downsampling layer, p = 128, q = 45, r = 256, and s = 23. For the
D4 downsampling layer, p = 256, q = 23, r = 512, and s = 12.
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Figure 10. Architecture of the D5 layer.

There are 3 outputs from the downsampling layer which serve as inputs to the neck
layer. These are the outputs of layers D3, D4, and D5. In the neck subnetwork, the 3 inputs
pass through 3 different convolutional layers. The upsampling layer uses interpolation to
increase the size. The structure of the neck layer is shown in Figure 11. In the neck layer,
the convolutional block is a little different from that in the downsampling layers. In this
case the activation function is a leaky ReLU [57].
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Figure 11. Architecture of the neck layer.

The capsule-based solution is now also at the end of the network. The architecture is
the same as for the SimpleCaps Network, only the number of dimensions of the capsules in
the primary layer changes. In this case, the capsule’s length is 8.

The capsule layer structure used for the SimpleCaps and YoloCaps networks is shown
in Figure 12. Different parameters were used for the two solutions. For the SimpleCaps
network, p = 64, q = 31, r = 12, and s = 18. For the YoloCaps network, p = 128, q = 23,
r = 8, and s = 8.

SimpleCaps and YOLOCaps networks have been implemented in two ways. In one
case, the routing algorithm of Sabour et al. [54] was applied, and in the other case, our
proposed method was used for routing. In this way, the two optimization algorithms can
be compared under different conditions.
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3. Training and Results

In the following, the main parameters of the training of the designed networks are pre-
sented. During the training process, four networks were taught under the same conditions:
SimpleCaps (with our routing), SimpleCaps (with Sabour et al.’s routing), YOLOCaps
(with our routing), and YOLOCaps (with Sabour et al.’s routing). The optimization was
performed using the Adam [58] optimization algorithm. We set the initial learning rate
to 0.001, which is an ideal initial value based on our empirical experience. We used the
learning decay technique, where the exponential decay is γ = 0.96

1
2000 . In this research, a

smooth L1 loss function was used with the following formula:

ln =

{
0.5(xn−yn)

2

β , if |xn − yn| < β

|xn − yn| − 0.5× β, otherwise
(8)

where ln is the loss for the n-th sample, xn is the ground truth for the n-th sample, and
yn is the predicted bounding box for the n-th sample. We used batches 32 in size for
both training and testing. The training was carried out in 30 epochs. Our experience has
shown that after 30 epochs, there is no significant change in the learning curve of any
implemented network.

The IoU metric, which gives the ratio of the intercept and union of the ground truth
and predicted rectangles, was used to measure efficiency. Figure 13 (left side) shows
the learning curves under the training process for the four different networks. The best
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efficiency was achieved by using the YOLOCaps network with our proposed optimization
routing algorithm. One might expect the second-best result to be achieved by the other
YOLOCaps network, but this was not the case. The SimpleCaps Network used with our
own routing algorithm was able to achieve better results than this. In third place was the
YOLOCaps network, based on the algorithm by Sabour et al., while the last network in the
ranking was the SimpleCaps network based on Sabour et al.’s solution.
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on the basis of [54]).

Figure 13 (right side) shows the loss measured on the test set during training. Here, we
can see a similar pattern to that observed when measuring accuracy. Again, the networks
using our proposed optimization algorithm performed best. The lowest loss was achieved
with the YOLOCaps network, followed by the SimpleCaps network. This was followed by
the networks that used the solutions proposed by Sabour et al. (again, YOLOCaps followd
by SimpleCaps).

Table 3 presents a summary of the results obtained in this research. Accuracy was
measured using the intersection over union metric, while speed was measured by the
training time of one epoch. For the SimpleCaps networks, the capsule-based subnetwork
had 1,327,360 parameters, while for the YOLOCaps networks, the number of parameters
was 2,654,464. The numerical results indicate that the proposed routing optimization
algorithm achieves better results in both cases. Additionally, our solution was not only
more efficient, but also faster. It is worth noting that in the case of SimpleCaps, our solution
outperformed Sabour et al.’s solution in the case of YOLOCaps.
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Table 3. Results of the different network architectures.

Accuracy [%] Speed [ms] Params

SimpleCaps
(with our routing) 0.86052 24.11486 1, 906, 944

YOLOCaps
(with our routing) 0.87036 38.75636 45, 113, 696

SimpleCaps
(with Sabour et al.’s routing) 0.83298 26.87969 1, 906, 944

YOLOCaps
(with Sabour et al.’s routing) 0.855592 44.01702 45, 113, 696

Figures 14 and 15 illustrate the effectiveness of each solution for a sample image. The
results for epochs 1, 15, and 30 are presented. Despite the differences, all the solutions are
highly efficient; however, subtle differences can be seen between the solutions.
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4. Discussion

This research introduces four innovative solutions for an image-based DMS, focusing
on architecture and data processing techniques. These include the following: A simple
network backbone featuring a dual-block design, each block comprising a convolution
layer, batch normalization, and max pooling, intended for efficient feature processing. A
YOLO-based backbone, which utilizes a YOLO framework with five downsampling layers,
the last three of which serve as inputs to a ‘neck’ subnetwork, enhancing feature extraction
capabilities. SimpleCaps and YOLOCaps networks were implemented with two routing
strategies: Sabour et al.’s methodology and the novel routing approach we developed. Both
networks use a downsampling layer consisting of a convolution layer, batch normalization,
and an activation layer sequence. These solutions explore different configurations and
routing algorithms to identify the most effective system for real-time driver monitoring
and public transportation safety.

From the standpoint of its application, particularly in the context of enhancing safety
within public transportation systems, a paramount consideration for an image-based DMS
is the necessity for solutions that are both highly efficient and robust. The integrity of
data capture is significantly influenced by external variables, including vibrations, camera
lens contamination, variability in lighting conditions, and other factors that may degrade
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optical performance or result in occlusions. Notably, our implementation, referred to as
SimpleCaps, surpassed the performance metrics of the YOLOCaps solution proposed by
Sabour et al. The innovation introduced herein not only exhibits increased efficiency but
also enhances processing speed, indicating significant prospects for further advancements.

This research aims to broaden the exploration of these algorithms’ practical appli-
cability and to propose a modular system design for easy implementation. Essential
requirements for on-board DMSs encompass the ability for high-speed, real-time data
processing, minimal power consumption, adaptable connectivity, and comprehensive
robustness across both software and hardware components.

However, our research also acknowledges certain limitations. The performance of
our proposed solutions can be significantly affected by operational environmental factors,
such as vibrations, lens contamination, and variable lighting conditions. Despite the
demonstrated improvements in efficiency and robustness, there remains a need for further
optimization to strike an optimal balance between real-time data processing speed, power
consumption, and connectivity.

Looking ahead, future research will concentrate on overcoming these limitations.
Efforts will be directed towards enhancing environmental robustness through the develop-
ment of more sophisticated algorithms and hardware solutions. Additionally, there is a
need to refine system components to improve power efficiency, connectivity, and processing
speed, making the DMS more practical for real-world applications. Exploring the potential
applicability of these solutions in areas beyond public transportation, including personal
vehicle safety and autonomous driving technologies, also presents a promising avenue for
future work.

In sum, our research not only expands the exploration of the practical applicability
of algorithms in image-based DMSs, but it also proposes a modular system design for
straightforward implementation. The ultimate goal is to refine these systems into an
efficient and reliable DMS that fits within a comprehensive driver monitoring framework,
thereby contributing to significant advancements in public transportation safety.

5. Conclusions

In this work, a comparative analysis of two distinct network designs—SimpleCaps
and YOLOCaps—was conducted. Each network was integrated with a capsule-based
layer and assessed using differing routing algorithms, including a novel optimization
technique developed by the authors and a method proposed by Sabour et al. Our findings
unequivocally demonstrate that the proposed routing algorithm outperforms the existing
solution in terms of accuracy across all tested scenarios. Crucially, the simpler network
architecture (SimpleCaps) not only achieved superior performance over the more complex
YOLOCaps network, but it also benefitted from reduced training durations.

This outcome underscores the effectiveness of our proposed routing mechanism,
particularly in enhancing the performance of less complex network designs. It also suggests
the potential for significant improvements in training time, which is a critical factor in
developing and deploying DMS technologies. The implications of these findings are
profound, offering a promising avenue for future research and practical applications in
driver monitoring systems, especially within the context of public transportation safety. Our
algorithm is crucial for advancing safety systems, reducing fatigue-related risks for truck
drivers, and enhancing public transport safety for trams and trains, thereby showcasing
the broad applicability of our approach and its impact on transportation safety.
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