
Citation: Baker del Aguila, R.;

Contreras Pérez, C.D.; Silva-Trujillo,

A.G.; Cuevas-Tello, J.C.; Nunez-Varela,

J. Static Malware Analysis Using

Low-Parameter Machine Learning

Models. Computers 2024, 13, 59.

https://doi.org/10.3390/

computers13030059

Academic Editor: Hossain

Shahriar

Received: 19 December 2023

Revised: 17 February 2024

Accepted: 21 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Static Malware Analysis Using Low-Parameter Machine
Learning Models
Ryan Baker del Aguila, Carlos Daniel Contreras Pérez, Alejandra Guadalupe Silva-Trujillo * , Juan C. Cuevas-Tello
and Jose Nunez-Varela

School of Engineering, Autonomous University of San Luis Potosi, Zona Universitaria,
San Luis Potosí 78290, Mexico; cuevas@uaslp.mx (J.C.C.-T.); jose.nunez@uaslp.mx (J.N.-V.)
* Correspondence: asilva@uaslp.mx

Abstract: Recent advancements in cybersecurity threats and malware have brought into question the
safety of modern software and computer systems. As a direct result of this, artificial intelligence-based
solutions have been on the rise. The goal of this paper is to demonstrate the efficacy of memory-
optimized machine learning solutions for the task of static analysis of software metadata. The study
comprises an evaluation and comparison of the performance metrics of three popular machine
learning solutions: artificial neural networks (ANN), support vector machines (SVMs), and gradient
boosting machines (GBMs). The study provides insights into the effectiveness of memory-optimized
machine learning solutions when detecting previously unseen malware. We found that ANNs shows
the best performance with 93.44% accuracy classifying programs as either malware or legitimate even
with extreme memory constraints.

Keywords: malware detection; data representation; static analysis; classification; machine learning;
deep learning

1. Introduction

The rapid advancement of technology, and the increasing dependence on computa-
tional systems, has generated concern over the security of these systems from adversarial
agents. In recent years, technology has brought about a profound metamorphosis in our
daily lives as a society. The influence of disruptive technologies such as Internet of Things
(IoT), 5G networks, artificial intelligence (AI), machine learning (ML), and quantum com-
puting is leaving an unprecedented mark on the world [1,2]. On one side, we can celebrate
having more digital tools, more information all the time, and more facilities in a digital
society. On the other hand, the advent of these potentially transformative technologies
carries significant ramifications for cybersecurity [3,4].

The prevalence of diverse cybersecurity threats in recent years cannot be understated
when evaluating the safety of a system. While modern techniques for preventing the spread
of malware have proven to show some effect in specific domains, it is well established that
their failures continue to result in damages exceeding billions of dollars. In 2020, losses
due to Internet crime exceeded USD 4 billion, up from USD 3.5 billion in 2019 [3,5]. This
statistics, however, only represents reported losses with directly traceable and quantifiable
measures—it does not represent the true scope of potential damage.

Of these sharp dangers, malware ranks among the most significant. Financial incen-
tive among malware developers is so extreme that some 350,000 new malware samples
can be discovered in a single analysis [6]. Each and every sample represents a unique
challenge for detection and classification that far outpaces the expertise of the already
limited professionals in the field.

Unfortunately, the scope of traditional approaches for malware detection is incapable
of keeping up with the exponential development of recent malware [4]. Promisingly, AI

Computers 2024, 13, 59. https://doi.org/10.3390/computers13030059 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13030059
https://doi.org/10.3390/computers13030059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-2419-8379
https://orcid.org/0000-0002-7566-0412
https://orcid.org/0000-0002-9633-3453
https://doi.org/10.3390/computers13030059
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13030059?type=check_update&version=1

Computers 2024, 13, 59 2 of 18

methods may have the answer [3,7,8]. ML has demonstrably worked on capturing the
essence of malware samples to effectively combat the growing threat [9]. These methods are
dynamic in their capacity to identify previously unknown dangers [4], offering a promising
general-case solution to protect against malware.

In this paper, we present an analysis of three widely used ML algorithms: artificial
neural networks (ANNs) [10], support vector machines (SVMs), and gradient boosting
machines (GBMs), for malware detection with computational resource constraints. Our
research is based on the evaluation of these algorithms’ key result metrics using a publicly
available dataset of malware samples [11].

We used program metadata, obtained from our VirusShare dataset, to train and test the
algorithms. The metadata provides valuable information on the behavior and characteristics
of malware, which enables the algorithms to detect new or previously unknown malware.
We also incorporated strategies for reducing each model’s memory footprint in the hopes
that they may be adopted by the low-resource hardware frequently found in IoT [1].

The structure of this paper is as follows: Section 2 details the state of the art, previous
research, and the modern technologies adjacent to our work. Section 3 covers the materials
and methods implemented to develop the experiments and how the results are obtained.
Section 4 presents the produced results. Then, Section 5 and onward offer a comprehensive
analysis of the meaning and significance of our results, where our research is situated,
and our conclusions.

2. State of the Art

Researchers have extensively explored ML techniques to enhance malware detection,
especially within specific domains. Table 1 presents a selection of papers that are related to
malware detection using ML.

The portable executable (PE) file format, which is standard for Windows executable
files, has attracted attention for malware analysis. ML demonstrates robust efficacy in
identifying malicious PE files [12,13], with some studies leveraging deep networks [14]. Em-
phasis is placed on feature extraction from PE files for enhanced detection [15]. The rapid
expansion of Android devices also instigated research into malware detection on this plat-
form using both machine and deep learning, which yields high accuracy rates [5,16,17].
The integration of static and dynamic analysis methods, like OPEM, offers increased detec-
tion capabilities [18]. Feature extraction, specifically focusing on opcode frequency, emerges
as pivotal in distinguishing malicious from benign software [19]. Comparative studies
benchmark the success of ML-based methods against traditional antivirus systems [20],
while others explore dataset bias and innovative techniques like image processing applied
towards the goal of malware pre-processing [21].

Table 1. State of the art in machine learning for malware detection.

Topic Authors

Portable executable (PE) file-based detection
Mithal et al. [12], Malik et al. [13],
Vinayakumar et al. [14],
Baldangombo et al. [15]

Android malware detection
Amin et al. [5], Milosevic et al. [16],
Agrawal et al. [17], Feng et al. [22],
Pan et al. [23]

Combining static and dynamic analysis Santos et al. [18],
Mangialardo et al. [24], Jain et al. [25]

Feature extraction and reduction Rathore et al. [19]

Computers 2024, 13, 59 3 of 18

Table 1. Cont.

Topic Authors

Comparative analysis and literature review Fleshman et al. [20],
Vinayakumar et al. [21]

General overview and robustness in dynamic analysis Ijaz et al. [9], Or et al. [26]

Behavioral data and short-term predictions Rhode et al. [27]

IoT device malware detection Baek et al. [28]

Vulnerabilities and evasive techniques in IoT Fang et al. [29]

Multiple approaches have been deployed to enhance the prompt identification of
diverse malware types, as detailed in [30]. The taxonomy of malware analysis distinguishes
between static and dynamic analyses. Static analysis centers on identifying malicious
files without execution, while dynamic analysis involves the initial execution of the file.
A hybrid strategy integrates the elements of both static and dynamic analyses. Research
in malware detection showcases a dual emphasis on feature-specific analysis and the
integration of various tools.

On one hand, static analysis allows researchers to focus on unique malware characteris-
tics, such as those found in ransomware, demonstrating the adaptability of this analysis [3].
The literature frequently discusses refining this strategy by enhancing strengths and simpli-
fying metrics [31,32]. On the integration front, the development of comprehensive tools
enhances malware analysis. Examples include platforms offering comparative insights
into different detection tools in the context of static analysis [33]. Specifically, for Android-
based malware detection, AndroPyTool stands out as a multi-tool integrative system,
exemplifying the strength of unified analytical frameworks [34].

On the other hand, dynamic analysis is an integral facet of malware detection. The ro-
bustness and intricate aspects of this method have been underscored by various researchers,
with some highlighting the benefits of incorporating ML for an enriched analysis [9,26].
Taking a more specialized approach, certain studies advocate for the utilization of short-
term behavioral data snapshots to differentiate between malicious and benign software.
Techniques like these offer swift and accurate detection, successfully navigating hurdles
such as code obfuscation and latency in data capture [27].

The application of malware detection extends to IoT devices given their ubiquity
and connectivity [2]. As evidenced by the literature, they are tempting targets for mal-
ware programs [1,28]. With the spotlight in this domain, there is research on two-stage
hybrid malware detection schemes which merge static opcode analysis with dynamic
methodologies tailored for IoT environments.

As malware detection evolves, evasion techniques also evolve [29]. In some cases,
researchers delve into the vulnerabilities intrinsic to deep learning-based static malware
models, utilizing Windows PE features. By exploring adversarial sample generation via
deep reinforcement learning, they illuminate the ongoing tug-of-war between malware
authors and detectors.

This consolidated view captures the breadth and depth of contemporary research in
malware detection, demonstrating the multifaceted approaches and innovations driving
this domain. It is evident from the literature that the domain of malware analysis via
ML, aided by adjacent detection mechanics, is both large and successful in producing
experimental results. To foster new development in this field, the aim of our paper is
tailored towards exploring the efficacy, limitations, and capabilities of low-parameter ML
models. The dependence on cheap hardware for modern service infrastructure necessi-
tates advancements in lightweight malware detection, and as such, our experiments are
presented with this in mind.

Computers 2024, 13, 59 4 of 18

3. Materials and Methods

In the following subsections, relevant information regarding the process of conducting
the experiment will be presented. A desktop application, hosted in our public repository,
has been developed in order to facilitate the replication of the experiment [35]. The GitHub
repository contains all the files, datasets, and resources required to build and run the
application. This includes the codebase, configuration files and dependencies needed for
successful execution.

3.1. Dataset

The dataset used in the experiment was generated using parameters from PE format
files, whose content was analyzed and subsequently classified as malicious software on the
basis of the VirusShare public data and evaluation techniques. The files were collected from
the malware collection at virusshare.com accessed on 8 November 2022 [11], from which
only PE files with extractable characteristics were retained. Subsequently, they were
analyzed using the Pefile tool. Pefile is a cross-platform tool written in Python for analyzing
and working with PE files. In PE files, most of the information contained in the headers
is accessible, as well as details and data for executable sections. Relevant information for
malware identification, such as section entropy for packer detection, was extracted from
these files.

In total, the dataset contains 57 attributes. The attribute ‘legitimate’, obtained from
VirusShare’s data, is used for the ground truth of the experiment (see Table 2). The dataset
consists of 152,227 samples of program metadata, among which 138,047 are considered
for our experiments; while 14,180 samples were discarded due to empty, corrupted, or in-
complete data. Among the 14,180 samples, 13,289 corresponded to corrupted data and
891 samples were too obfuscated to use. The decision for removing excessively obfuscated
samples was motivated by an interest in avoiding the sparsity introduced. The missing
entries are deemed unnecessary for the purposes of this experiment. Of the 138,047 remain-
ing program metadata samples, 96,724 represent malware metadata and 41,323 represent
legitimate program metadata. The distribution is approximately 2.3:1 as a ratio of the
malware program to legitimate program metadata.

A complete and comprehensive analysis of the dataset is available in our project
repository [35]. It contains information regarding the meaning of the metadata, as well as a
broader statistical analysis of the elements contained within.

Table 2. Categories of the attributes of an executable file on the basis of metadata from the dataset.

Category Attribute(s)

Name Name of the executable

MD5 MD5 checksum of the executable

Header Optional header size

Features

Linker major version, Linker minor version, Entry point address, Im-
age base, Section alignment, File alignment, Loader flags, Rva number
and sizes, Subsystem, DLL features, Backup stack size, Commit stack
size, Heap commit size, Nb sections, Imports Nb DLL, Imports Nb
Ordinal, Imports Nb

Size Code size, Initialized data size, Uninitialized data size

Codebase Code base

Database Data base

Operating system related Operating System Major Version, Operating System Minor Version

Configuration size Configuration Load Size, Version Information Size

Legitimacy Legitimacy flag

virusshare.com

Computers 2024, 13, 59 5 of 18

3.1.1. Data Preprocessing

To proceed with the experiment, we decided to remove 14,180 malware samples from
our dataset. Out of these, 13,289 were excluded because they were damaged in some way,
while 891 were left out due to being too obfuscated for analysis. Adding these incomplete
samples had negative effects, reducing both the accuracy and the memory efficiency of
our models. Initially, we tried to compensate for the missing data by filling in gaps with
zeros, thus introducing sparsity into the data. We found that our models needed more
complex adjustments to accurately deal with the subsequent bias. Our early calculations
indicated that the sparsity introduced by the zeros of these incomplete samples would have
increased our memory usage by a surprising 31% to address less than 9% of the dataset.
In the case of the SVM, the model with the least internal parameters, the accuracy fell by
around 11% with a staggering 158% increase in false positives (incorrectly identifying safe
programs as malware). Moreover, we found no proof to suggest that our other models
would have benefited from including these samples. In fact, doing so might have misled
the models into incorrectly associating random data patterns or zeros with malware, which
is not always the case. This concern was confirmed by further analysis, which showed that
the rate of false positives increased by up to 22% even in our most robust model, the ANN.

3.1.2. Statistical Measures of Data

In Tables 3 and 4, we present the general statistical tendencies measured for each of
the attributes of the dataset. This report does not include all the metadata as it merely
serves to represent the methodology. The factors considered are the element counts (which
are equal among all fields), statistical mean, standard deviation, minimum, and percentiles
per attribute.

Table 3. Summarized statistics of some of the attributes in the dataset (mean, std, min).

Mean Std Min

Machine 4259.07 10,880.35 332
SizeOfOptionalHeader 225.85 5.12 224
Characteristics 4444.15 8186.78 2
MajorLinkerVersion 8.62 4.09 0
MinorLinkerVersion 3.82 11.86 0
SizeOfCode 242,595.6 5,754,485 0
SizeOfInitializedData 450,486.7 21,015,990 0
SizeOfUninitializedData 100,952.5 16,352,880 0
AddressOfEntryPoint 171,956.1 3,430,553 0
BaseOfCode 57,798.45 5,527,658 0
ResourcesNb 22.05 136.49 0
ResourcesMeanEntropy 4.00 1.11 0
ResourcesMinEntropy 2.43 0.82 0
ResourcesMaxEntropy 5.52 1.60 0
ResourcesMeanSize 55,450.93 7,799,163 0
ResourcesMinSize 18,180.82 6,502,369 0
ResourcesMaxSize 246,590.3 21,248,600 0
LoadConfigurationSize 465,675 26,089,870 0
VersionInformationSize 12.36 6.80 0
Legitimate Flag 0.30 0.46 0

Computers 2024, 13, 59 6 of 18

Table 4. Summary of statistical tendencies for the dataset.

25% 50% 75% Max

Machine 332 332 332 34,404
SizeOfOptionalHeader 224 224 224 352
Characteristics 258 258 8226 49,551
MajorLinkerVersion 8 9 10 255
MinorLinkerVersion 0 0 0 255
SizeOfCode 30,208 113,664 120,320 1,818,587,000
SizeOfInitializedData 24,576 263,168 385,024 4,294,966,000
SizeOfUninitializedData 0 0 0 4,294,941,000
AddressOfEntryPoint 12,721 52,883 61,578 1,074,484,000
BaseOfCode 4096 4096 4096 2,028,711,000
ResourcesNb 5 6 13 7694
ResourcesMeanEntropy 3.46 3.73 4.23 7.99
ResourcesMinEntropy 2.18 2.46 2.70 7.99
ResourcesMaxEntropy 4.83 5.00 5.58 7.99
ResourcesMeanSize 2410 2410 4085 1,048,576,000
ResourcesMinSize 862 958 1100 1,048,576,000
ResourcesMaxSize 2500 2860 12,052 2,073,800,000
LoadConfigurationSize 72 72 72 4,318,170,000
VersionInformationSize 13 15 16 26
Legitimate 0 0 1 1

3.1.3. Value Correlations

To understand the behavior of each attribute relative to the ground truth, we compute
the correlations. The role of each value becomes clearer once evaluated through this,
as seen in Table 5. Certain attributes from the dataset might have a high correlation but
they cannot be feasibly scanned in real-world samples. The unfortunate situation is the
result of overfitting from the dataset, because it incorrectly assumes that it is representative
of broader real-world software.

Table 5. Top and bottom correlations with respect to ground truth.

Attribute Correlation Value

Machine 0.5488
SizeOfOptionalHeader 0.5474
Subsystem 0.5144
MajorSubsystemVersion 0.3804
VersionInformationSize 0.3796
ResourcesMinEntropy 0.2991
Characteristics 0.2220
ExportNb 0.1344
ImportsNbOrdinal 0.1281
FileAlignment 0.1252

... ...

nondeterministicCharacteristics −0.6302
SectionsMaxEntropy −0.6242
SizeOfStackReserve −0.5216
ResourcesMaxEntropy −0.3929
SectionsMeanEntropy −0.3439
SectionsNb −0.2078
ResourcesMeanEntropy −0.2024
CheckSum −0.1953
SizeOfHeapReserve −0.1563
SectionsMinEntropy −0.1528

Computers 2024, 13, 59 7 of 18

It is essential to understand the meaning of each dataset value to reproduce results
with newly generated data. Below, there is an explanation of the most important attributes
in the dataset, selected from the elements with high absolute value correlation to the
ground truth.

Machine (positive correlation): This property indicates the architecture of the target
machine for which the binary was compiled (e.g., x86, x64, ARM). A hypothesis could be
that certain architectures are more commonly associated with legitimate software than with
malware, or vice versa. This, however, might prove problematic as it may not be necessarily
indicative of real-world malware samples.

SizeOfOptionalHeader (Positive Correlation): The size of the optional header can
vary based on the format or version of the binary. The property attempts to classify this
information. One possible insight comes from the fact that legitimate software may contain
more standardized, recent formats.

MajorSubsystemVersion (Positive Correlation): Indicates the major version num-
ber of the required subsystem. Legitimate software might be updated more frequently
to use the latest subsystems. So, malware might target older versions which are more
vulnerable subsystems.

SectionsMaxEntropy (Negative Correlation): Entropy is a measure of randomness
or unpredictability. This measure is indicative of either obfuscation or encryption. These
techniques have valid use-cases for legitimate programs, but they are frequently used by
malware to protect the nature of a payload.

DLLCharacteristics (Negative Correlation): This represents certain flags or attributes
set in the binary related to DLLs. Malware might use certain methods of obfuscation and
dependency to achieve persistence or evasion.

SizeOfStackReserve (Negative Correlation): This property defines the amount of
memory required in the stack for the program to execute correctly. It is possible that
malware programs might manipulate this information for any number of reasons. The more
likely candidates include detection evasion or simply exploit vulnerabilities related to the
stack of a system.

ResourcesMaxEntropy (Negative Correlation): Similarly to SectionsMaxEntropy,
high entropy in resources might indicate that malware is either embedding encrypted data
or obfuscated data.

3.2. Representation

We also performed an analysis of each attribute to determine the distribution of the
data. The objective is to determine which normalization strategy might most accurately
depict the information. In this step, we discard string-based fields and entirely focus on
a numerical approach. To pre-emptively select the normalization strategy, we employ an
algorithm that factors in statistical tendencies to form a conclusion.

As evidenced in Table 6, we most frequently observe the selection of a robust scaling
strategy by the algorithm. This strategy is crucial for handling outliers, which is logical for
this dataset because values frequently fall outside a simple norm.

After the algorithm evaluates the basic tendencies of the data, we manually analyze
column histograms to determine the most suitable normalization strategy. One common
observation is that bimodal or trimodal clusters manifest frequently in the data. By human
inspection, we determine where to consider remapping bimodal distributions into simpler
integer values such as binary or ternary. Once factored in, we produce an attribute-by-
attribute normalization of the data on the basis of machine and human inspection. We
believe this effectively normalizes the data for the subsequent models to train on.

Computers 2024, 13, 59 8 of 18

Table 6. Feature normalization strategy.

No. Element Normalization Strategy

0 Machine Robust Scaling
1 SizeOfOptionalHeader Standard Scaling
2 Characteristics Robust Scaling
3 MajorLinkerVersion Standard Scaling
4 MinorLinkerVersion Robust Scaling
5 SizeOfCode Robust Scaling
6 SizeOfInitializedData Robust Scaling
7 SizeOfUninitializedData Robust Scaling
8 AddressOfEntryPoint Robust Scaling
9 BaseOfCode Robust Scaling

. . .

45 ResourcesNb Robust Scaling
46 ResourcesMeanEntropy Standard Scaling
47 ResourcesMinEntropy Standard Scaling
48 ResourcesMaxEntropy Standard Scaling
49 ResourcesMeanSize Robust Scaling
50 ResourcesMinSize Robust Scaling
51 ResourcesMaxSize Robust Scaling
52 LoadConfigurationSize Robust Scaling
53 VersionInformationSize Standard Scaling
54 Legitimate Robust Scaling

3.3. Selection of Algorithms

The following algorithms were used to classify the processed dataset: artificial neural
networks (ANN) [7,36] with the internal structure determined by a genetic algorithm, sup-
port vector machines (SVMs) and gradient boosting machines (GBMs). The hyperparameter
settings for both GBM and SVM were determined by testing and iterative experimenta-
tion to generate optimal results with respect to memory optimization. To compensate
for different ratios of malware to legitimate programs, and to ensure a reduction in false
negatives, the penalty weights were modified based on the type of program evaluated.
L1 regression was used to reduce the trade-off of extreme outliers for both legitimate and
malicious programs.

3.3.1. Neural Network Optimized through Genetic Algorithm

Genetic algorithms have been used in combination with ANN for many years [37–39]
to optimize the architecture of the ANN. It has been shown to be effective in finding
high-performance solutions to complex problems. However, despite the potential of this
technique, there is a lack of research on methods for constraining the complexity of the
neural network architectures generated by a genetic algorithm [40]. Given the importance
of automatically selecting ANN, it is also necessary to develop techniques for preventing
overfitting. Here, we propose a novel approach based on genetic algorithms to select an
optimal ANN structure. This approach incorporates a constraint on the depth of each
network architecture as well as the parameters. This approach offers a number of benefits
over existing methods, and can help to improve the performance and robustness of the
generated ANN.

Let X be an ANN composed of N layers such that X = {x1, x2, . . . , xn}. Where x1
represents the input layer, and xn represents the output. This architecture corresponds to a
multilayer neural network and backpropagation, see Figure 1 [7,36].

Computers 2024, 13, 59 9 of 18

Figure 1. Artificial neural network (ANN) architecture [7,36].

When an ANN is deployed, there must be a direct relationship between x1 and the
input parameters P such that P = Qx1 for any positive real value of Q. Next, we define xn
as the final layer output of the ANN. Depending on the type of answer we want, we modify
its size. Roughly speaking, each possible answer that the network can give represents
another neuron in this layer. If we are trying to classify an input into one of three classes,
then xn = 3.

Let A be the architecture of the network such that:

{a1, a2, ..., am} = {x2, x3, ..., xn−1}

We can see that A simply represents the inner layers of the ANN X. Designing the
inner layers is significantly more challenging than the input and output layers. We need to
consider several aspects such as: (i) the length of A; (ii) every value ai; and (iii) to evaluate
how each one plays a meaningful role in the convergence of the output.

To determine an optimal value of A, a genetic algorithm is used. We define a genetic
algorithm G, a population P, a chromosome C, a fitness function F, and a mutation rate M
as a tuple G = (C, P, M, F).

Let P = {X1, X2, ..., Xl} such that all Xi are subject to the previously defined ANN
definition.

Let C = {A}
x1

where the resulting operation yields:

C = { f loor(
a1

x1
), f loor(

a2

x1
), ..., f loor(

am

x1
)}

and A follows the previous definition.
Let M be a fixed mutation rate such that 0 < M < 1.
Let F = f (C) where C is the previously defined chromosome. We define the fitness

function as:
f (C) = (α)(1 − modelAccuracy(X)) + (1 − α)∑ ci

X = {x1, x1C, xm+1}

For G, we attempt to find a pi from P that minimizes F. If there is no pi that sufficiently
satisfies F, we update P by replacing the lowest performing p with children bred from
the highest performing p. We define the breeding procedure as a random selection of two
parent solutions. We randomly select two chromosomal characteristics, and swap them,
subject to M, to create a child which replaces the next worst performing p. We repeat the

Computers 2024, 13, 59 10 of 18

breeding procedure until we have replaced a sufficient proportion of the population. We
repeat the iterations until we have sufficiently minimized F.

3.3.2. Gradient Boosting Machines Optimized for Limited Resources

In this study, the efficacy of a GBM was also investigated as per the architecture
detailed in Figure 2. To optimize the GBM’s performance for the dataset, a grid search
was implemented. This search was designed to explore a comprehensive range of hyperpa-
rameters, specifically focusing on five key elements: the number of estimators, learning
rate, maximum tree depth, minimum samples required to split a node, and the number
of iterations without improvement before early stopping. Table 7 delineates the values
evaluated for each hyperparameter.

Figure 2. Gradient boosting machine architecture.

Table 7. Hyperparameter values explored in GBM grid search.

Hyperparameters Values

Number of estimators 20, 30, 50, 150, 250
Learning rate 0.01, 0.1, 0.2
Maximum depth 3, 5, 7
Minimum samples split 2, 6, 10
Number of iterations without change 10, 15, 25

3.3.3. RBF Support Vector Machine

With a similar intent as the GBM, a SVM was implemented to explore results in low-
parameter models. The interest of SVM lies in its capacity to approximate the ground
truth with the assumption that it is close to linearly separable. To obtain the best hyperpa-
rameters here, C and gamma were explored exhaustively as seen by the values in Table 8.
The architecture is briefly detailed in Figure 3.

Table 8. Hyperparameter values for SVM grid search.

Hyperparameters Values

C 0.01, 0.1, 1, 10, 100, 1000, 10,000
Gamma 10, 1, 0.1, 0.01, 0.001, 0.0001, ‘scale’, ‘auto’

Computers 2024, 13, 59 11 of 18

Figure 3. Kernel architecture.

3.4. Training and Evaluation

In our experiment, we focused on the evaluation of machine learning algorithms,
centering our assessment on two metrics: the accuracy and loss of the model in its eval-
uation phase and its size. The objective of our study was twofold. Firstly, we aimed to
ensure that the models generated are of the highest accuracy, ensuring that predictions
and classifications are as close to the actual outcomes as possible. Simultaneously, we were
keen on ensuring that these models are lightweight, maximizing their efficiency without
compromising on their accuracy.

To facilitate this, we employed a data splitting strategy, segmenting the dataset into
training and testing subsets. Specifically, 80% of the entire dataset was allocated for training,
while the remaining 20% was set aside for testing. Furthermore, within the training subset,
we earmarked 15% for validation. This validation set plays a crucial role, especially in
tuning the model parameters and preventing overfitting, which can adversely affect the
model’s performance on unseen data.

For the ANN component of our experiment, we leveraged the binary cross-entropy as
our loss function, a common choice for classification tasks. The model was compiled using
the Adam optimization strategy, which is favored for its efficiency and quick convergence in
training deep learning models. The combination of these choices aimed to achieve optimal
results in the training and evaluation phases of our study.

3.5. Experimental Setup and Hardware Configuration

To carry on the experiments, Google Colab was employed to accelerate the training
process. The programming language Python 3.9 was selected in conjunction with libraries
commonly utilized in data analysis and machine learning tasks. These libraries encom-
passed scikit-learn for the preprocessing of data, selection of features, and evaluation of
models; matplotlib for the purpose of data visualization; numpy for performing numerical
computations; tkinter for the creation of a graphical user interface; pandas for the manip-
ulation and analysis of data; and TensorFlow for the construction and training of neural
network models. The integration of these libraries yielded a resilient software ecosystem,
thereby facilitating the efficient analysis, modeling, visualization, and user interaction
throughout the entirety of the experiment.

Computers 2024, 13, 59 12 of 18

4. Results

In this section, we present the results of the tests performed on each of the proposed ML
models (ANN, SVM, and GBM). Our objective is to compare and evaluate the performance
of the models in terms of accuracy and loss as well as resource requirements for the
classification to take place.

Table 9 demonstrates the best raw results for each of the three ML models implemented, in
bold are the best results. The results clearly demonstrate that each of the three models can be
effectively implemented in some capacity towards the goal of classification. We also introducing
a false positive ratio (FPR) and false negative ratio (FNR), defined, respectively, as:

FPR =
FP

FP + TN

FNR =
FN

FN + TP
where FP denotes false positives, TN denotes true negatives, FN denotes false negatives,
and TP denotes true positives. These metrics are essential as they allow us to further
compare the rates and the nature of the models’ failures. FPR denotes the likelihood that a
model will produce a false positive classification. Meanwhile, FNR denotes the likelihood
that a model will produce a false negative classification. The values range from 0 to 1,
where 0 indicates a perfect model and 1 indicates an inverse relationship to ground truth.
Though it would be ideal for models to have values close to 0, our target is to ensure that
models have an FNR below 0.05 and an FPR below 0.1. Loosely speaking, this would
suggest that the models are twice as likely to accidentally flag false positives as they are to
flag false negatives. In the case of malware analysis, this is consistent with a preference
towards caution when handling foreign software.

Table 9. Summary of the experimental results of the machine learning models used. The optimal
model was the ANN, in bold.

Metrics ANN SVM GBM

Accuracy 94.74% 91.07% 92.47%
Loss 0.1488 0.239 0.04
F1 0.94 0.92 0.91
FPR 0.107 0.158 0.133
FNR 0.048 0.053 0.050

4.1. ANN Results

Figure 4 demonstrates the drop-off in performance of the ANN as the genetic algorithm
constraints increase to favor reduced parameters, and subsequently, memory constraints.
While it is clear that, as alpha increases, so does accuracy, and the diminishing returns
for values beyond 0.6, with an accuracy of 93.44%, may indicate that there is no reason to
exceed it. Values of 0.8, with an accuracy of 94.74% or higher seem to align with overfitting,
see confusion matrix in Table 10; while values below 0.5 offer far too little precision in the
context of malware analysis. A key demonstration of the efficacy of this model lies in the
inspection of the FPR and FNR at an alpha of 0.6. Of the three models tested, the ANN has
the lowest ratio of False Negatives and False Positives, demonstrating a clear competence
in evaluating samples. This aligns with the hypothesis that the genetic algorithm provides
a useful framework for improving the ANN.

Computers 2024, 13, 59 13 of 18

Figure 4. ANN performance relative to α value.

Table 10. ANN confusion matrix.

Predicted

Positive Negative

Actual Positive 5947 297
Negative 403 3353

4.2. SVM Results

The strength of the SVM model is that it requires less tuning to determine whether or
not it is useful. The results of this experiment, with an accuracy of 91.07%, indicate that the
model, while using the RBF kernel, yields useful results in this domain, see confusion matrix
in Table 11. The reduced parameters of this model offer an advantageous performance
in inference and training when compared to more sophisticated models such as the GBM
ensemble and the ANN. An important consideration of the SVM is that its FPR and FNR
values stand out among the three model options. With an FPR of 0.158 and an FNR of
0.053, it is higher than both the GBM and ANN. This indicates that the model is less flexible
than its counterparts when handling legitimate programs—a consequence of it being a
lighter model.

Table 11. SVM confusion matrix.

Predicted

Positive Negative

Actual Positive 6128 342
Negative 558 2972

4.3. GBM Results

For the case of the GBM models, Figure 5 shows the behavior of the accuracy as pref-
erence towards accuracy increases. The best accuracy is 0.92 (92%), see confusion matrix in
Table 12. The value of the preference towards accuracy is computed as (actual n estimators

maximum n estimators +
actual tree depth

maximum tree depth)/2. This, however, comes with a negative memory overhead. The critical
points of the models occur at 0.64 and 0.79, where the largest differences in model accuracy
occur. And, 0.79 appears more favorable for this experiment as it is not significantly larger
than the former point while consistently providing significant improvements. For the
case of malware analysis, we consider that an accuracy of 0.85 or lower does not offer
sufficient coverage, especially when considering the risks of the dataset not representing
the entire space of both malware and legitimate programs. With an FNR of 0.050, the GBM
is close behind the ANN in managing the detection of malware. Interestingly, the FPR
of 0.133 indicates that the model has a significantly higher likelihood of falsely flagging

Computers 2024, 13, 59 14 of 18

a legitimate program than the ANN when accounting for accuracy. With a sharp skew
towards false positives, this suggests the model would be better suited as a first line of
analysis via filtering as opposed to the conclusive classifier.

Figure 5. GBM performance.

Table 12. GBM confusion matrix.

Predicted

Positive Negative

Actual Positive 6048 317
Negative 483 3152

5. Discussion

The comparative analysis of the ANN, SVM, and GBM models in the context of
classifying program metadata as malware or legitimate provides valuable insights into the
strengths and trade-offs of each approach. This discussion synthesizes these findings and
offers practical considerations for their application.

The ANN model demonstrates the highest level of accuracy found, particularly when
the alpha parameter is finely tuned. However, there is a noticeable trade-off between
accuracy and computational efficiency. The diminishing returns observed beyond an alpha
value of 0.6 suggest that this might be the optimal setting for balancing accuracy with
resource utilization. This balance is crucial in the context of malware analysis, where both
precision and efficiency are paramount. However, the lengthy training time (over 13 h on
Google Colab) highlights a significant area for optimization in future research, perhaps
through more efficient training algorithms or parallel processing techniques. The ANN
model is best suited for environments where high accuracy is needed and computational
resources, especially time, are not a primary constraint. The alpha value of 0.6 should be
considered as a starting point for achieving a balance between efficiency and accuracy.
On top of offering leading accuracy over the competing models, its FPR and FNR scores
are excellent indicators of the fact that the model was most correctly generalized from
the dataset. This suggests that the ANN might be the best rounded tool for the broader
purpose of malware detection among the three models explored.

The SVM, particularly with the RBF kernel, stands out for its lower need for parameter
tuning and its competent performance, achieving an accuracy of 91.07%. This makes it an
appealing choice for scenarios where rapid model deployment is essential, or resources for
extensive model tuning are limited. Its advantageous performance in both training and
inference, compared to the more complex ANN and GBM models, also makes it suitable
for applications where computational resources are a constraint. The SVM model is ideal
for rapid deployment scenarios and where model simplicity and lower computational
overhead are valued. This model is particularly useful when the data are not excessively
large or complex. For more difficult datasets, the FNR and FPR scores indicate that the

Computers 2024, 13, 59 15 of 18

model will not perform as favorably. Considering the fact that this model is the least flexible
out of the three considered, its use should be limited to low resource contexts only.

The GBM model exhibits a direct relationship between its complexity (as indicated
by the number of estimators and tree depth) and accuracy. This model reaches efficient
accuracy at an accuracy preference value of 0.79, suggesting a preferable trade-off point for
this specific task. The higher memory requirement associated with this setting is justified
by the substantial improvements in accuracy, which is particularly critical in malware
detection scenarios where the cost of false negatives can be high. This is corroborated by an
FPR of 0.133, which indicates a skew towards false positives anyway. This result signifies
that the GBM might be suited as an initial filtering technique as opposed to providing the
final verdict.

Among the three models tested, the ANN outperformed the others. The genetic
algorithm used for model selection not only enforces a memory optimization strategy
but also ensures that the best parameters are retained. This combination between the
ANN and genetic algorithm give us an optimized architecture for generalizing beyond the
dataset without the risk of overfitting and bias. This supports our belief that our ANN
architecture is an optimal candidate for resource-constrained static malware analysis. We
have effectively demonstrated the efficacy of lightweight models in this context, and we
hope that they can be applied to better address emerging IoT safety concerns.

6. Limitations

With an ever-changing software environment, it is difficult to predict the full scope of
advancements in malware. As such, a critical limitation of this research is in anticipating
state-of-the-art malware and future adjacent technologies. Our dataset, although providing
a comprehensive snapshot of malware in recent years, cannot and should not attempt to
account for future malware, technologies, and cybercriminal strategies.

With research centered around binary classification, we do not make an attempt to
further classify detected malware into its respective categories. Although an important
field, it sits beyond the intended goals of this study because it would require far more
robust models.

Strategies for detecting more sophisticated, obfuscated, or otherwise disguised mal-
ware are omnipresent and a growing threat [12]. It is known that more robust ML strategies
are required to handle such adversity [7], but ML tailored towards IoT and other low
resource hardware is not designed for this task.

7. Conclusions

The application of ML and deep learning models for malware detection has gained sig-
nificant traction in recent years, as is evident from the state-of-the-art literature. With sharp
results across various domains, it is clear that this topic is an important field of study
moving forward.

We assert that our study contributes to this domain of research by focusing on the effi-
cacy of ANN, SVM, and GBM models in static malware detection. The focus on lightweight
models augments some of the state of the art while primarily focusing on delivering results
within the constraints of broader IoT devices and subsequent applications.

Our experiment found that our ANN architecture performed favorably in malware
detection with an accuracy of over 94% when classifying programs into malware or legiti-
mate. However, to adhere to the constraints of IoT, our projected architecture may instead
be sufficiently effective with an accuracy of 93.44% at alpha values of 0.6, roughly reducing
the parameter count of the neural network by 40% over competing ANNs while preserving
proper generalization.

The SVM and GBM architectures proposed, though less effective than our ANN archi-
tecture, offer useful insight into the behavior of machine learning for malware classification.
On one hand, the SVM is significant because of its resource efficacy. With fewer parame-
ters than the competing models, it offers a relatively effective first line of defense for the

Computers 2024, 13, 59 16 of 18

most resource constrained devices in IoT. The GBM, on the other hand, is a well-rounded
alternative to our ANN architecture with potential use in conjunction with other models.

While other works have extraordinary results in classification [3,22], they do not
present as many resource constraints as we do. Additionally, when factoring in the current
implementation for malware detection, where results can be as low as 63% and 70% [25],
we consider our 93% accuracy a strong indicator of viability for our architecture. Of course,
the results depend on the dataset used. Without more comprehensive testing of modern
software suites, it is difficult to determine how closely they align with contemporary data
in practice.

In summary, our experiment presents a compelling case for the use of lightweight
machine learning models in malware detection. We believe that we offer researchers and
practitioners a viable and efficient alternative for combating the growing sophistication of
malware via lightweight ML models. Our findings reaffirm the potential of machine learn-
ing in cybersecurity and encourage further exploration and innovation in this crucial field.

If one removes the experiment constraints of requiring lightweight models, then we
can test more sophisticated deep learning models such as convolutional neural networks [7].
We expect an improvement in accuracy, but high computational resources are required to
train these kinds of deep learning models. As such, although significant, these experimental
conditions sit outside the scope of this research and is a fundamental limitation of machine
learning with a goal of low-parameter models.

Author Contributions: Conceptualization, R.B.d.A., C.D.C.P. and A.G.S.-T.; methodology, R.B.d.A.,
C.D.C.P. and A.G.S.-T.; software, R.B.d.A. and C.D.C.P.; validation, R.B.d.A., A.G.S.-T., J.N.-V. and
J.C.C.-T.; formal analysis, R.B.d.A. and C.D.C.P.; research, R.B.d.A. and C.D.C.P.; resources, R.B.d.A.,
C.D.C.P. and A.G.S.-T.; data curation, R.B.d.A.; visualization, C.D.C.P.; supervision, A.G.S.-T., J.C.C.-T.
and J.N.-V.; project administration, C.D.C.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/CarlosConpe/Machine-Learning-Malware-Detection/ (accessed
on 18 December 2023).

Acknowledgments: The authors wish to acknowledge the technical support provided by Arturo
Emmanuel Gutierrez Contreras and Jose Martin Cerda Estrada.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, H.; Zhang, W.; He, H.; Liu, P.; Luo, D.X.; Liu, Y.; Jiang, J.; Li, Y.; Zhang, X.; Liu, W.; et al. An evolutionary study of IoT

malware. IEEE Internet Things J. 2021, 8, 15422–15440. [CrossRef]
2. Gregorio, L.D. Evolution and Disruption in Network Processing for the Internet of Things: The Internet of Things (Ubiquity

symposium). Ubiquity 2015, 2015, 1–14. [CrossRef]
3. Vidyarthi, D.; Kumar, C.; Rakshit, S.; Chansarkar, S. Static malware analysis to identify ransomware properties. Int. J. Comput.

Sci. Issues 2019, 16, 10–17.
4. Sihwail, R.; Omar, K.; Ariffin, K.Z. A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis. Int.

J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1662–1671. [CrossRef]
5. Amin, M.; Tanveer, T.A.; Tehseen, M.; Khan, M.; Khan, F.A.; Anwar, S. Static malware detection and attribution in android

byte-code through an end-to-end deep system. Future Gener. Comput. Syst. 2020, 102, 112–126. [CrossRef]
6. Balram, N.; Hsieh, G.; McFall, C. Static malware analysis using machine learning algorithms on APT1 dataset with string and PE

header features. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence
(CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 90–95.

7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
8. Murray, A.F. Applications of Neural Networks; Springer: Berlin/Heidelberg, Germany, 1995.
9. Ijaz, M.; Durad, M.H.; Ismail, M. Static and dynamic malware analysis using machine learning. In Proceedings of the 2019

16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019;
pp. 687–691.

https://github.com/CarlosConpe/Machine-Learning-Malware-Detection/
http://doi.org/10.1109/JIOT.2021.3063840
http://dx.doi.org/10.1145/2822877
http://dx.doi.org/10.18517/ijaseit.8.4-2.6827
http://dx.doi.org/10.1016/j.future.2019.07.070
http://dx.doi.org/10.1038/nature14539

Computers 2024, 13, 59 17 of 18

10. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,
65, 386. [CrossRef]

11. Virus Share. Available online: https://virusshare.com/ (accessed on 30 November 2022).
12. Mithal, T.; Shah, K.; Singh, D.K. Case studies on intelligent approaches for static malware analysis. In Proceedings of the

Emerging Research in Computing, Information, Communication and Applications, Bangalore, India, 11–13 September 2015;
Volume 3, pp. 555–567.

13. Malik, K.; Kumar, M.; Sony, M.; Mukhraiya, R.; Girdhar, P.; Sharma, B. Static Malware Detection Furthermore, Analysis Using
Machine Learning Methods. Adv. Appl. Math. Sci. 2022, 21, 4183–4196.

14. Vinayakumar, R.; Soman, K. DeepMalNet: Evaluating shallow and deep networks for static PE malware detection. ICT Express
2018, 4, 255–258.

15. Baldangombo, U.; Jambaljav, N.; Horng, S.J. A static malware detection system using data mining methods. arXiv 2013,
arXiv:1308.2831.

16. Milosevic, N.; Dehghantanha, A.; Choo, K.K.R. Machine learning aided Android malware classification. Comput. Electr. Eng.
2017, 61, 266–274. [CrossRef]

17. Agrawal, P.; Trivedi, B. Machine learning classifiers for Android malware detection. In Data Management, Analytics and Innovation;
Springer: Singapore, 2021; Volume 1174, pp. 311–322.

18. Santos, I.; Devesa, J.; Brezo, F.; Nieves, J.; Bringas, P.G. Opem: A static-dynamic approach for machine-learning-based malware
detection. In Proceedings of the International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions, Ostrava, Czech
Republic, 5–7 September 2013; pp. 271–280.

19. Rathore, H.; Agarwal, S.; Sahay, S.K.; Sewak, M. Malware detection using machine learning and deep learning. In Proceedings of
the Big Data Analytics: 6th International Conference, BDA 2018, Warangal, India, 18–21 December 2018; pp. 402–411.

20. Fleshman, W.; Raff, E.; Zak, R.; McLean, M.; Nicholas, C. Static malware detection & subterfuge: Quantifying the robustness of
machine learning and current anti-virus. In Proceedings of the 2018 13th International Conference on Malicious and Unwanted
Software (MALWARE), Nantucket, MA, USA, 22–24 October 2018; pp. 1–10.

21. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Venkatraman, S. Robust intelligent malware detection using deep
learning. IEEE Access 2019, 7, 46717–46738. [CrossRef]

22. Feng, J.; Shen, L.; Chen, Z.; Wang, Y.; Li, H. A two-layer deep learning method for android malware detection using network
traffic. IEEE Access 2020, 8, 125786–125796. [CrossRef]

23. Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A systematic literature review of android malware detection using static analysis. IEEE Access
2020, 8, 116363–116379. [CrossRef]

24. Mangialardo, R.J.; Duarte, J.C. Integrating static and dynamic malware analysis using machine learning. IEEE Lat. Am. Trans.
2015, 13, 3080–3087. [CrossRef]

25. Jain, A.; Singh, A.K. Integrated Malware analysis using machine learning. In Proceedings of the 2017 2nd International Conference
on Telecommunication and Networks (TEL-NET), Noida, India, 10–11 August 2017; pp. 1–8.

26. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic malware analysis in the modern era—A state of the art survey. ACM
Comput. Surv. 2019, 52, 88. [CrossRef]

27. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578–594.
[CrossRef]

28. Baek, S.; Jeon, J.; Jeong, B.; Jeong, Y.S. Two-stage hybrid malware detection using deep learning. Hum.-Centric Comput. Inf. Sci.
2021, 11, 10-22967.

29. Fang, Y.; Zeng, Y.; Li, B.; Liu, L.; Zhang, L. DeepDetectNet vs. RLAttackNet: An adversarial method to improve deep
learning-based static malware detection model. PLoS ONE 2020, 15, e0231626. [CrossRef] [PubMed]

30. Tayyab, U.e.H.; Khan, F.B.; Durad, M.H.; Khan, A.; Lee, Y.S. A Survey of the Recent Trends in Deep Learning Based Malware
Detection. J. Cybersecur. Priv. 2022, 2, 800–829. [CrossRef]

31. Prayudi, Y.; Riadi, I.; Yusirwan, S. Implementation of malware analysis using static and dynamic analysis method. Int. J. Comput.
Appl. 2015, 117, 11–15.

32. Chikapa, M.; Namanya, A.P. Towards a fast off-line static malware analysis framework. In Proceedings of the 2018 6th
International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Barcelona, Spain, 6–8 August 2018;
pp. 182–187.

33. Aslan, Ö. Performance comparison of static malware analysis tools versus antivirus scanners to detect malware. In Proceedings
of the International Multidisciplinary Studies Congress (IMSC), Antalya, Turkey, 25–26 November 2017.

34. Martín, A.; Lara-Cabrera, R.; Camacho, D. A new tool for static and dynamic Android malware analysis. In Data Science and
Knowledge Engineering for Sensing Decision Support, Proceedings of the 13th International FLINS Conference (FLINS 2018), Belfast, UK,
21–24 August 2018; World Scientific: Singapore, 2018; pp. 509–516.

35. Contreras, C.; Baker, R.; Gutiérrez, A.; Cerda, J. Machine Learning Malware Detection. Available online: https://github.com/
CarlosConpe/Machine-Learning-Malware-Detection/ (accessed on 18 December 2023).

36. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

http://dx.doi.org/10.1037/h0042519
https://virusshare.com/
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1109/ACCESS.2019.2906934
http://dx.doi.org/10.1109/ACCESS.2020.3008081
http://dx.doi.org/10.1109/ACCESS.2020.3002842
http://dx.doi.org/10.1109/TLA.2015.7350062
http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.1016/j.cose.2018.05.010
http://dx.doi.org/10.1371/journal.pone.0231626
http://www.ncbi.nlm.nih.gov/pubmed/32324836
http://dx.doi.org/10.3390/jcp2040041
https://github.com/CarlosConpe/Machine-Learning-Malware-Detection/
https://github.com/CarlosConpe/Machine-Learning-Malware-Detection/
http://dx.doi.org/10.1038/323533a0

Computers 2024, 13, 59 18 of 18

37. Kapanova, K.; Dimov, I.; Sellier, J. A genetic approach to automatic neural network architecture optimization. Neural Comput.
Appl. 2018, 29, 1481–1492. [CrossRef]

38. Bukhtoyarov, V.V.; Semenkin, E. A comprehensive evolutionary approach for neural network ensembles automatic design. Sib.
Aerosp. J. 2010, 11, 14–19.

39. Miller, G.F.; Todd, P.M.; Hegde, S.U. Designing Neural Networks Using Genetic Algorithms. In Proceedings of the ICGA, Fairfax,
VA, USA, 4–7 June 1989; pp. 379–384.

40. Schaffer, J.D.; Whitley, D.; Eshelman, L.J. Combinations of genetic algorithms and neural networks: A survey of the state of the
art. In Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, Baltimore, MD,
USA, 6 June 1992; pp. 1–37.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00521-016-2510-6

	Introduction
	State of the Art
	Materials and Methods
	Dataset
	Data Preprocessing
	Statistical Measures of Data
	Value Correlations

	Representation
	Selection of Algorithms
	Neural Network Optimized through Genetic Algorithm
	Gradient Boosting Machines Optimized for Limited Resources
	RBF Support Vector Machine

	Training and Evaluation
	Experimental Setup and Hardware Configuration

	Results
	ANN Results
	SVM Results
	GBM Results

	Discussion
	Limitations
	Conclusions
	References

