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Abstract: Liquidity is the ease of converting an asset (physical/digital) into cash or another asset
without loss and is shown by the relationship between the time scale and the price scale of an
investment. This article examines the illiquidity of Bitcoin (BTC). Bitcoin hash rate information was
collected at three different time intervals; parallel to these data, textual information related to these
intervals was collected from Twitter for each day. Due to the regression nature of illiquidity prediction,
approaches based on recurrent networks were suggested. Seven approaches: ANN, SVM, SANN,
LSTM, Simple RNN, GRU, and IndRNN, were tested on these data. To evaluate these approaches,
three evaluation methods were used: random split (paper), random split (run) and linear split (run).
The research results indicate that the IndRNN approach provided better results.

Keywords: illiquidity prediction; bitcoin hash rate; IndRNN model

1. Introduction

Digital currency is a particular form of digital money created based on cryptography.
Most digital currencies use blockchain to benefit from basic features such as decentral-
ization, transparency, and immutability [1]. The decentralized nature of cryptocurrencies
means that no single entity, group, or organization controls them. Cryptocurrencies can be
sent to another person directly without the intervention of any intermediary on the Internet.
That is, to send digital currencies to each other, there is no need to open a bank account or
use the services of banks or any other intermediary organization [2]. Digital currencies are
money that is created and distributed using different mechanisms. Creating some of these
currencies, such as Bitcoin, is accomplished by mining, and for several others, all the coins
are already mined in the network [3]. Digital currencies are built on distributed ledger
technology, and one of its essential products is blockchain technology. Public blockchains,
which most digital currencies use, provide the ability to view all transactions, both for
people in the network and those outside the network [4]. Digital currencies allow users to
make secure payments and store money without using their names and going to a bank [5].
They are stored in a public ledger called the blockchain, which contains a record of all
transactions since the first day of the network’s inception and is constantly updated. Virtual
currency units are produced through mining, which involves using computer power to
solve complex mathematical problems that lead to the production of coins [6]. Users can
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also buy these currencies from exchanges and then use them through encrypted wallets [7].
Cryptocurrencies and blockchain technology are still in their early stages from a financial
point of view, and it is expected that more applications will be developed for them in the
future [5]. Transactions include bonds, stocks, and other financial items that can be traded
with this technology [8]. The most important difference between cryptocurrencies and
ordinary money is how they are encrypted and stored. Unlike bank currencies, digital
currencies are stored as digital data in computers or electronic wallets [3]. Cryptocurrencies
are untraceable and not controlled by any bank, financial institution, or even government.
Digital currencies are traded in peer-to-peer commercial spaces; a peer-to-peer space is a
situation where two users conduct transactions independently and without dependence
on any central authority. Of course, it is expected that the development and expansion
of virtual currency will proceed, so that these currencies will gradually enter B2B and
cross-border commercial spaces and be used in large-scale transactions [9]. Currently,
digital currency has a limited number of users, and the legal frameworks for its use, such
as how to apply the art tax, are being established in this field [10]. The infrastructure sup-
porting digital currency as a standard payment method is being developed and built [11].
Although many virtual currencies have emerged in recent years, Bitcoin was not the first
attempt at digital money, but it could be the most successful and has been adopted by
many users [12]. Bitcoin is decentralized; it works as a peer-to-peer network and operates
without intermediary institutions and supervisory institutions such as the government,
banks, and financial institutions. Cryptographic algorithms provide security so that the
person dealing with the face remains anonymous [13]. Bitcoin takes its power from users,
and from their point of view, it is internet money [11]. Bitcoin cannot be considered a
type of money but instead, a digital asset [14]. Bitcoin is the largest published computing
project in the world [15]: a digital currency accepted by certain sections of society from the
beginning and is now approved by most countries and currently competing with global
currencies [16]. A fundamental challenge in digital currencies is the lack of illiquidity.

Liquidity needs a reliable and consistent definition from an economic point of view;
several definitions have examined this word from different degrees and concentrations.
A perfectly acceptable definition is the ability to trade a large amount of currency at
a low transaction cost with little impact on the market price [17]. The authors define
liquidity as the ease of converting an asset into cash or another asset without loss, and
show the relationship between an investment’s time and price scale [18]. Since liquidity
is a fundamental factor in the market and can reflect the quality of market performance,
financial investors have always paid attention to liquidity. This research uses a machine
learning approach. ML is recently popular in business and economics research [19–21].

A complete and normative digital currency market will have high liquidity; investors
in the market can trade a specific scale of shares easily and quickly. The market can also
complete the matching of funds and the increase in the value of fixed assets. In addition,
more market liquidity can attract more investors, increase investor confidence, and defend
against external shocks. Consequently, understanding its proper measurement is important
in estimating market risk and keeping the market stable.

In this study, the three main goals are as follows:

1. Providing an approach to calculate the illiquidity label;
2. Examining data split policies in illiquidity;
3. Investigating the impact of deep learning approaches in predicting illiquidity;
4. Presenting a hybrid approach to forecast illiquidity.

For this purpose, different approaches based on the RNNs has been proposed, where
the RNN network is responsible for extracting temporal features. The basic steps of the
proposed model include the following steps:

1. Collection of hash rate and historical Bitcoin data;
2. Data preprocessing (dividing data into different intervals, applying different indica-

tors, imputing missing values, removing outliers and labeling data);
3. Applying the RNN network to predict illiquidity.
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There are various gaps in predicting illiquidity, which are discussed below:

1. The daily price of Bitcoin is in the form of a daily cycle, which means there is no daily
close price.

2. There are no case studies to predict the lack of listening criticism, so in the best case,
comparisons with previous approaches cannot be made.

3. Price features are not capable of predicting the price alone at best, so we will need
rich features to predict illiquidity.

The main research questions are as follows:

1. According to the continuous price of Bitcoin (lack of closes), is there a solution to
calculate its illiquidity?

2. Are deep learning approaches suitable solutions for predicting illiquidity?
3. Do the features of the eight Bitcoin rates provide a good view of predicting illiquidity?

The main hypotheses of the research are that deep learning models perform the
relationships between prediction labels and extraction features in the best way and also,
price prediction and illiquidity prediction are two separate concepts.

2. Related Work

Liquidity does not have a reliable and consistent definition from an economic point
of view. Several definitions have examined this word from different degrees and con-
centrations. A perfectly acceptable definition is the ability to trade a large stock at a low
transaction cost with little impact on the market price. Jia and Li defined liquidity as
the ease of converting an asset into cash or another asset without loss, and showed the
relationship between the time scale and the price scale of an investment [18].

Since liquidity is a fundamental factor in the stock market and can reflect the quality of
stock market performance, financial investors have always paid attention to stock liquidity.
A complete and normative stock market will have high liquidity, investors in the market
can trade a certain scale of stocks easily and quickly, and the stock market can complete
the matching of funds and the increase in the value of fixed assets [18]. In addition, more
stock market liquidity can attract more investors, increase investor confidence and defend
against external shocks. As a result, understanding its proper measurement is an essential
factor for estimating stock market risk and keeping the market stable. In August 2008, the
subprime crisis affected almost the entire world economy; this financial crisis caused by
the lack of liquidity sounded the alarm and revealed the importance of stock liquidity in
financial activities [18].

There are several conventional measures of stock liquidity. Among them, the number
of shares traded Q(∆t), the amount traded S(∆t), the amount traded N(∆t), the turnover
rate T(∆t), and the turnover rate L(∆t) are the most commonly used cases. Zhuang and
Zhao presented the formula for circulation rate and circulation speed [18]:

T(∆t) =
Q(∆t)
M(∆t)

(1)

L(∆t) =
N(∆t)

LM1(∆t)+LM2(∆t)
2

(2)

In the formula, M(∆t) is the number of shares in circulation during the period (∆t),
Q(∆t) is the total turnover during the period (∆t), N(∆t) is the total transaction volume
during the period (∆t), LM1(∆t) is the currency value in the last period, and LM2(∆t) is
the currency value in this period.

These indicators will effectively measure stock liquidity if other factors are similar.
For example, the amount of trading shares Q(∆t) and trading transactions S(∆t) will be
effective if the number of shares in circulation is similar.

In addition, the turnover rate T(∆t) and turnover speed L(∆t) are respectively de-
veloped measurements (based on the amount of trading stock Q(∆t) and the transaction
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amount N(∆t)) [22]. However, these measurements suffer from the same problem; that is,
when the range of volatility is very different, they cannot accurately compare and reflect the
liquidity of stocks even though these indicators are high. A high index does not indicate
high stock liquidity if the volatility range is higher.

The former measures are usually used to calculate the immediate liquidity of a stock,
but the measurement of liquidity over a given period is more valuable in practice. In this
research, an attempt is made to examine the difference in liquidity between bullish and
bearish markets. In order to compare the liquidity in different markets and periods, other
appropriate measurements should be mentioned. Zhuang and Zhao used the volatility
range to measure stock liquidity [23] (Table 1):

LIQ(∆t) =
Q(∆t)
M(∆t)

/VR(∆t) (3)

The swing range is defined as follows:

VR(∆t) =

{ h
P2(∆t)

P(∆t)−P2(∆t)
P2(∆t)

}

Amihud’s illiquidity index is one of the most widely used measures in the stock
market and is defined as the ratio of the absolute value of the rate of return to the total
volume of business:

ILLIQiy =
1

Diy
∑

Diy
i=1

Riyd

VOLDiyd
(4)

Diy is the number of days for which stock information i is available in year y. Riyd is
the return of stock i on day of year y, and VOLDiyd is the corresponding daily volume in
USD. Table 2 shows various liquidity indicators and their variables.

Table 1. Different liquidity indicators.

Variable Indicator Equation

ILLIQti Amihud’s illiquidity index ILLIQiy = 1
Diy

∑
Diy

i=1
Riyd

VOLDiyd

Tit Turnover rate T(∆t) = Q(∆t)
M(∆t)

VRit Fluctuation range VR(∆t) =

{ h
P2(∆t)

P(∆t)−P2(∆t)
P2(∆t)

}
LIQit

LIQ(∆t) = Q(∆t)
M(∆t)/VR(∆T)

Zhuang Zhao’s liquidity index

Table 2. Features selected for each interval.

Price Prediction Features

III II I Intervals

* * MDT fee 30: median transaction fee 30 trx

* * MDT fee 7: median transaction fee 7 trx

* Price 90 ema

* * * Size 90 trx

* * Transactions

* * Price 30 wma

* * Price 3 wma

* * * Price 7 wma
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Table 2. Cont.

Price Prediction Features

III II I Intervals

* * Median transaction fee 7 roc

* * Difficulty 30 rsi

* * * Mining profitability

* *
* Price30smaUSD* *

* * Sentinusd 90 ema

* * * Transaction value

* * * Top 100 cap

* Difficulty 90 mom

* * Hashrate 90 var

* * * Price 90 wma

* * Sentinusd 90 sma

* * * Median transaction fee

Cryptocurrencies are different from most other markets because they are open 24 h a
day, 7 days a week. Unwaveringly high trading volumes guarantee the constant presence
of high-frequency data for major cryptocurrencies at any given time. This extensive data
accessibility opens the door to comprehensive systematic investigations into volatility
and market liquidity metrics, surpassing the analytical scope of other markets. Liquidity
providers have the liberty to introduce or withdraw liquidity without incurring charges,
with the exception of a transaction fee. An exchange fee of 0.3% is applied when swap-
ping one digital currency for another, establishing a strong motivating factor for liquidity
providers. Within the Uniswap V2 ecosystem, the interaction with a smart contract allows
anyone to seamlessly swap one digital currency for another. The net exchange rate is
dictated by the fixed product formula. More precisely, the exchange of a digital currency
Xin for another currency Yout follows a determined formula:

Yout = Y − K
X + (1 − 0.003)xin

=
1

1
0.997 + xin

X
× Y

X
× xin (5)

The result of the average price of this transaction is equal to the following amount:

Xin
Yout

=

(
1

0.997
+

Xin
X

∗ X
Y

)
(6)

This clears up transaction costs because if there were no transaction costs, the price
of one currency to another would be the X

Y ratio. The spot price of X
Y plus the fee remains

“infinite” in Uniswap V2, because each trade involves a continuous reserve movement
along a constant function curve (0 to Xin). Consequently, the greater the volume of the
traded currency, the more pronounced the deviation of the realized price from the initial
spot price prior to the transaction. This deviation, known as slippage, is directly associated
with both the exchanged amount and the overall liquidity available, as expressed by the
ratio Xin

X .
Today, digital currencies are the most popular assets, especially for international

exchanges. Cryptocurrencies have created a new craze in the current economy, considering
that they have registered convincing trends in the past. Thus, individuals and companies
have shown interest in investing in digital currencies. However, the possibility of earning
profit is the best factor people consider before investing. Therefore, investors are very
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interested in following the cryptocurrency market trend. Bitcoin was one of the first
cryptocurrencies that succeeded in being used in financial transactions.

Bitcoin functions on a decentralized peer-to-peer network, utilizing blockchain tech-
nology to record transactions, and its value experiences notable fluctuations. Commencing
at around USD 0.5 in 2010, it has surged to approximately USD 28,000, reaching its pinnacle
at about USD 64,500 on 14 April 2021. Consequently, while Bitcoin serves as an investment
avenue, traders grapple with the task of predicting its price variations and liquidity. Nu-
merous endeavors have been undertaken to predict Bitcoin’s value, particularly employing
machine learning methods like deep learning. It’s noteworthy that there’s a limited body
of research focused on forecasting its liquidity. Accurate prediction plays a pivotal role in
enhancing the security, stability, and efficiency of global technological elements. Despite
extensive research and analysis of dynamic data models over the years, there remains no
definitive solution for fully forecasting future outcomes. This is apparent in the plethora of
studies in the literature aiming to provide pertinent insights into data analysis and forecast-
ing techniques. Time series forecasting emerges as a widely applied field of study, serving
as a crucial method to scrutinize the behavior of historical data and make projections about
future data.

Bitcoin and online finance have gained popularity and continue shaping international
financial markets. Also, digital currency has attracted media attention. So many people
have joined this plan. One frequently searched query on Google in both the UK and U.S. is
“What is Bitcoin?”. As a consequence of the substantial userbase, cryptocurrencies stand
out as one of the most illicit financial entities globally. Yet, it is crucial to grasp effective
methods for anticipating and comprehending the intricate attributes of cryptocurrencies.
Consequently, this study delves into a review of the relevant literature. The exploration of
cryptocurrency market liquidity is a more recent focus compared to volatility, with diverse
research endeavors contributing to this emerging field.

1. Description of the market structure (which can be referred to the research in [24]): In
this article, the authors examine Bitcoin investments by estimating transaction costs
and daily trading patterns of the BTC–USD exchange rate. They found that implicit
transaction costs are low, and the number of investments involved is lower than in
major global markets. Also, the depth is sufficient for midterm trades. Bitcoin shows
a distinct intraday pattern, with significant trading throughout the day. Transaction
volume has a positive correlation with volatility and a negative correlation with
capital expansion. Overall, their results show that Bitcoin is particularly investable
for retail transactions.

2. The relationship between liquidity and volatility [25,26]: In [25], the liquidity of
456 different digital currencies was examined, where it was shown that the predictabil-
ity of returns in digital currencies with high market liquidity decreases. It was also
shown that while Bitcoin returns show signs of efficiency, cryptocurrencies are au-
tocorrelated and non-independent. Their findings also show a solid cross-sectional
relationship between panic strength and liquidity. Therefore, they concluded that
liquidity plays a vital role in market efficiency and the predictability of returns in
new digital currencies. In [26], it was also investigated whether the volatility and
liquidity of digital currencies are related to each other or not. Their data sample
included 12 digital currencies with high trading capital. They considered daily and
weekly liquidity. In order to investigate the dependence between digital currencies,
they used the causality approach. They used the asymmetric causality test to separate
the effect of growth and volatility reduction from changes in liquidity and vice versa.
Overall, the empirical results show that high volatility is a Granger cause of high
liquidity, which means that high volatility attracts investors and induces more interest
in new financial instruments. The Granger causality test, a statistical hypothesis test to
determine whether a one-time series helps predict another, was first proposed in 1969.
Typically, regression reflects “pure” correlations. However, Clive Granger argued
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that causality in economics could be tested by measuring the ability to predict future
values of one-time series using previous values of another time series.

3. Liquidity [27,28]: In Ref. [27], the authors analyzed the liquidity of four digital curren-
cies in four major trading venues over four years. They estimated the Abdi–Ranaldo
spread estimator from the hourly transaction data and compared the liquidity of
cryptocurrencies and exchanges. In order to identify the drivers of digital currency
liquidity, they analyzed a comprehensive set of explanatory variables from general
financial markets and global digital currency markets, as well as specific variables of
each currency–currency pair. They concluded that the volatility of digital currency
returns, the volume of dollar transactions, and the number of transactions are the
most critical determinants of liquidity. Simultaneously, it is noted that conventional
financial market variables exhibit a limited explanatory capability. Within the analysis
of the four cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple), Bitcoin stands
out as the most liquid, while among the four examined exchanges, Coinbase Pro
claims the highest liquidity. Regression analysis findings suggest that cryptocurrency
liquidity is mostly independent of broader financial markets, including stocks and
foreign exchange (FX). Instead, it predominantly relies on variables unique to digital
currencies. In a complementary investigation [28], the authors explore the dynamic
changes in Bitcoin liquidity and the factors influencing it.

Using a new method to identify the most liquid exchange at any point, they have
found the driving factors behind the overall increase in liquidity and trading activity within
the Bitcoin network. While the vitality of Bitcoin liquidity is negatively affected by the state
of the U.S. economy, this article introduces compelling evidence suggesting that Bitcoin and
gold serve as complementary assets. Moreover, it highlights the consistent market-making
and trading patterns indicative of both institutional and retail trader activities.

4. The paper, titled “How to gauge liquidity in the digital currency market” [27], explores
the effectiveness of liquidity measures derived from low-frequency transactions in
capturing real-time (high-frequency) liquidity dynamics. Noteworthy among these
measures are the estimators proposed by Corvin and Schultz [29] and Abdi and
Ranaldo [30], both proving adept at describing time series changes across various
observation frequencies, transaction locations, high-frequency liquidity measures,
and digital currencies. These measures exhibit a robust performance in periods of
both high and low returns, volatility, and trading volume. In contrast, Kyle and
Obizhaeva’s [31] estimator and Amihud’s [32] liquidity ratio excel at estimating
liquidity levels and reliably identifying differences in the liquidity between trading
venues. The findings underscore the absence of a universally superior measure while
confirming the effectiveness of certain low-frequency measures.

In [27], the authors delve into the determinants of Bitcoin to U.S. dollar (BTCUSD)
liquidity using order book data from three major cryptocurrency exchanges. Employing
a comprehensive nine-step process to measure the liquidity label, they offer a nuanced
understanding of the intricate liquidity dynamics within the digital currency market:

(a) (Percentage quoted spread): for interval t, it is defined as: QS =
Pa

t,1−Pt,1
b ;

(b) ES (percentage effective spread): for interval t, it is defined as ESt = 2.Qt,1.
Pt,j′∗mt,1

mt,1
where j′ refers to the first transaction after the order book snapshot was recorded and
Qt,j′ is a trade indicator variable;

(c) PI (percentage price impact): for interval t, defined as PIt =
Qt,j′ .(m1,i+1−mt,i)

mt,i
where

m1,i+1 is the quote midpoint from the next order book snapshot;

(d) AvgD (average BBo depth): depth for interval t equal to avg Dt =
(

Pa
t,1.Vb

t,1 + Pb
t,1.Va

t,1

)
/2;

(e) DV (U.S. dollar volume): for interval t, DVt = ∑j Pt,j.Vt,j where Vt,j is the amount of
bitcoins traded in transaction j;

(f) numTX (number of transactions);
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(g) OI (order imbalance): for interval t, this measure is equal to OIt =
∑j,Qt,j

Qt,j−∑ Qt,j=−1|Qt,j|
∑j|Qt,j| ;

(h) OIV (order imbalance volume): for interval t, this measure is defined as: OIVt =
∑j,Qt,j

Pt,j−∑ Qt,j−1Pt,j .Vt,j

∑j Pt,j .Vt,j
;

(i) CRT (percentage cost of a round trade): this measure is equal to: CRTt =
WAPa

t−WAPb
t

0.5(WAPa
t+WAPb

t)
.

They found that the BTCUSD market is more liquid than U.S. stock markets, with the
bid-ask often spreading less than one basis point. Also, BTCUSD liquidity can be primarily
described by past liquidity on the same exchanges, past liquidity and volatility across the
cryptocurrency market, and fees charged for Bitcoin transfers on the blockchain. Surpris-
ingly, BTCUSD liquidity is not correlated with broader financial markets and financial
market liquidity.

The authors in [33] investigated the dynamics of liquidity connectedness in the cryp-
tocurrency market. They are from the connection models of Diebold and Yilmaz [34] and
Baruník and Křehlík [35] on a sample of six digital currencies. The main ones used are
Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Ripple (XRP), Monero (XMR), and Dash. In
this research, they used the following relationship to measure liquidity:

LIQt =
|Rett|
Volt

(7)

where Rett and Volt are the returns and dollar volumes on day t. Their static analysis shows
a moderate liquidity connection among cryptocurrencies, with BTC and LTC playing a
significant role in the connection rate. A distinct liquidity cluster is observed for BTC, LTC,
and XRP, and ETH, XMR, and Dash form another distinct liquidity cluster. This research
expresses the liquidity suitability of these currencies based on the defined criteria. Some
other research reviews are in the data collection section.

5. Liquidity prediction: None of the above research has attempted to explain or predict
liquidity in the digital currency market. In addition, considering the complexity
of the microstructure of this liquidity, the authors in [36] claim that it is better to
use non-parametric models to predict it. They found that the k-nearest neighbor
(KNN) approach is more suitable for predicting cryptocurrency market liquidity than
a classical linear model such as the autoregressive moving average (ARMA). In this re-
search, they have different units such as the Canadian dollar, British pound, Ethereum,
Australian dollar, Euro, Japanese yen, Danish krone, Mexican peso, South African
rand, Swedish krona, Norwegian krone, Swiss franc, New Zealand dollar, Bitcoin,
Taiwanese dollar, Brazilian real, Ripple, Singaporean dollar, and South Korean won.
They compared short-term market liquidity forecasts of significant cryptocurrencies
and fiat currencies using classical time series models such as ARMA and GARCH and
a non-parametric machine learning algorithm called the KNN approach. They found
that the KNN algorithm outperformed the others due to the nonlinearity of market
liquidity and complexity. Its market microstructure predicts cryptocurrency and fiat
rates better than the ARMA and GARCH models.

Their investigation highlights the superior performance of the KNN algorithm, at-
tributed to its adeptness in handling the nonlinearity and complexity inherent in market
liquidity. Specifically, the KNN algorithm demonstrates enhanced predictive capabilities for
cryptocurrency and fiat rates within the market microstructure, surpassing the traditional
ARMA and GARCH models. Furthermore, noteworthy distinctions emerge in the behavior
of cryptocurrency registration rates compared to fiat currencies within developed markets.
Notably, in the realm of short-term forecasting, particularly in emerging markets featuring
fiat currencies, the KNN approach exhibits a parallel performance to the GARCH model,
especially when considering an extended forecasting time frame. In the domain of classical
time series analysis, ARMA models prove to be more effective in capturing the short-term
liquidity of fiat currencies within developed countries. Conversely, GARCH models prove
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to be more suitable for estimating the behavior of fiat currencies in emerging market coun-
tries, given the dynamic nature of their currencies susceptible to frequent changes and
sudden or unexpected news. Nevertheless, the KNN approach is more suitable than the
ARMA and GARCH models for capturing the short-term liquidity of digital currencies.
The practical implications of this study are twofold. First, as the number of institutions
accepting digital currencies increases, this study shows that using the KNN approach
explains the short-term liquidity of the digital currency market better than traditional time
series models. Second, other machine learning models are worth trying to compare results.

In [37], empirical evidence was presented in the field of digital currency markets,
which showed that the returns from liquidity provision, provided by the returns of a short-
term reversal strategy, are mainly concentrated in trading pairs with lower levels of market
activity. They considered liquidity based on returns, volume, and proxies for adverse
selection as a time series and regression problem, for which they defined the following
regression relationship:

Yi,t+1 = αi + τt + β1yi,t + β2vi,t + β3(yi,t ∗ vi,t) + γ′xi,t + εi, t+1 (8)

where αi and τt are the cryptocurrency pair and time effects, and yi,t and vi,t are the log
returns and volume shock as in Equation (9), calculated for each pair i at time t.

vi,t = log(Volumei,t − log
(

∑m
s=1 Volumei,t−s

m

)
) (9)

They focused on a relatively large portion of cryptocurrency pairs traded against the
U.S. dollar on several centralized exchanges from 1 March 2017 to 1 March 2022. The
results show that the expected returns earned by market makers are higher when the fear
of adverse selection is greater on both sides of the trade.

In Ref. [38], the authors studied daily liquidity patterns in the Warsaw Stock Ex-
change in three periods before, during, and after the panic caused by the first wave of
the COVID-19 pandemic. Also, the effect of different periods was studied using different
correlation approaches. Also, in Ref. [39], the authors examine the determinants of liquidity
synchronization at the level of countries such as Bangladesh, China, India, Indonesia,
Malaysia, Pakistan, and the Philippines, and the degree of liquidity synchronization during
economic growth fluctuations. This study examines the determinants of liquidity concur-
rency at the country level and the effects of economic growth fluctuations on liquidity
concurrency for seven emerging Asian economies. Among the examined economies, China
had the highest and Bangladesh had the lowest level of liquidity synchronization. In
Ref. [40], the authors presented their work with the aim of determining whether stock
market effects interact in an unstable economic environment characterized by volatility,
high inflation rates, and political instability. This research used the time series vector
autoregression (VAR) model for this purpose and used data between 2013 and 2022. This
study showed that there is a positive statistical relationship between the stock market and
economic growth at the 10% level.

3. Research Methodology

The basic idea underlying the proposed approaches for illiquidity prediction is ex-
plained below. In this section, after a brief overview of the notation and conventions we
used for the proposed RNN models, the various components of the networks we tested
will be described in detail.

In this research, uppercase letters like W and U represent the matrices, lowercase
letters like b and x represent biases and vectors, and x =

[
x<1>, x<2>, . . . , x<n>] represent

a vector of the input features. The index i represents the i* feature of this input features
vector. The set of parameters of our model will be indicated with the capital θ.
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Initially, the input features in the form of vectors denoted by x =
[
x<1>, x<2>, . . . , x<n>]

are considered as inputs (where the i-th index of this vector represents the i-th property of
this input component). This vector is already created in the feature selection process. This
single distributed vector should capture the meaning of the input.

Having an input component s containing the attribute h, the output result of the en-
coding phase can be expressed as enc(s) = E, where E ⊆ Rh and the value of h, representing
a hyperparameter, is shown. We used a recurrent network to encode the input layer. In
this layer, the activated value in the hidden layer depends on the current input and output
values of the previous step. In general, we will have the following:

h<k> = g
(

r<k>, h<k−1>; θenc

)
(10)

where g is the recurrent cell, r<k> is the current input feature, h<k> is the output of the
hidden layer at time k, and h<k−1> and θenc are the outputs of the hidden layer at time k
− 1 and θenc is the learnable parameters in the learning phase. Accordingly, the encoding
phase is as follows:

enc(S) = E = h<k> = g
(

r<k>, h<k−1>; θenc

)
(11)

We used RNNs as a recurrent cell. Recurrent neural networks are feed-forward neural
networks that are enhanced by including edges spanning adjacent time steps, adding a
sense of time to the model. Edges connecting adjacent time steps, called recurrent edges,
may form cycles, including cycles of length that are self-connecting (from a node to itself
over time). At time t, nodes with frequent edges receive input from the current data point
x(t) as well as from the hidden node values h(t−1) in the previous state of the network. The
output ŷ(t) at any time t is calculated according to the values of the hidden node h(t) at
time t. An input x(t−1) at time t − 1 can produce an output ŷt at time t and beyond through
repeated connections. The value of h(t) in each step is obtained through the following
equation [41]:

h(t) = σ
(

WhxX(t) + Whhh(t−1) + bh

)
(12)

Also, the value of ŷ(t) is obtained through the following relationship:

ŷ(t) = so f tmax
(

Wyhh(t) + by

)
(13)

Here, Wyh is the matrix of standard weights between the input and hidden layer, and
Whh is the matrix of recurrent weights between the hidden layer and itself in adjacent time
steps. The vectors bh and by are bias parameters that allow each node to learn an offset.
The weighted values are updated by a backpropagation algorithm called backpropagation
through time (BPTT), introduced in [42].

• Simple RNN: A simple recurrent neural network (sRNN) can be viewed as a single-
layer recurrent neural network where activation is delayed and fed back simulta-
neously with the external input (or the previous layer’s output). Mathematically, a
simple recurrent neural network (sRNN) is expressed as [41]:

ht = σt(Uht−1 + Wst + b), t = 0, 3, N (14)

where t represents the discrete time index, N is the end time of the limited horizon, st is
the external input vector, and ht is the output activation through the nonlinear function
σt. Here σt is a general nonlinear and possibly time-varying function. However, it is
usually found that the logistic function or hyperbolic tangent, or even the ReLUunit
can be considered. The nonindexed parameters, which are U ∈ Rn∗n, W ∈ Rn∗m, and
bias vector b ∈ Rn∗1 must be determined by training.
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• Gated recurrent unit (GRU): Gated recurrent neural networks (gated RNNs) have
been successfully exercised in several sequential or temporal data applications. For
example, they have been widely used in speech recognition, music synthesis, natural
language processing, machine translation, medical and biomedical applications, etc.
Short-term memory (LSTM) RNNs and subsequently introduced gated recurrent unit
(GRU) RNNs have performed reasonably well with long sequence programs. GRU
reduces the gate signals from three in LSTM architecture to two. These two gates are
called the update gate zt and reset gate rt. The GRU model was presented for the first
time in its original form in [43], which was expressed as follows:

h′t = g(Uh(rt⊙ht−1) + WhSt + bh) (15)

ht = (1 − zt)⊙ht−1 + zt⊙h′t (16)

with the two gates presented as:

Zt = σ(Urht−1 + Wrst + br) (17)

Basically, GRU has 3 times more parameters compared to a simple RNN. In particular,
the total number of parameters in GRU is 3*(n2 + nm + n) = 3n(n + m + 1). Compared to
LSTM, there is a reduction of n(n + m + 1) parameters.

• Independent recurrent neural network (IndRNN): IndRNN was proposed in [44] as a
main component of RNN, which is as follows:

ht = σ(Wxt + u ⊙ ht−1 + b) (18)

where xt ∈ RM and ht ∈ RN are the input and hidden state in time step t, respectively,
W ∈ RN∗M, u ∈ RN , and b ∈ RN are the weight of the current input, return input,
and bias of neurons. ⊙ represents the Hadamard product (element product). σ is
the essential activation function of neurons, which is expressed as ReLU (revised
linear unit) in this paper, and N is the number of neurons in the IndRNN layer. Each
neuron in a layer is independent of others, and the correlation between neurons is
investigated by stacking two or more IndRNN layers. IndRNN solves the vanishing
and exploding gradient problems and can be used to process long sequences and build
deeper networks. These networks have better results than existing RNN networks in
various tasks. Since the neurons in an IndRNN layer are independent, the gradient
propagation over time can be calculated for each neuron individually.

For the n − h neuron, hn,t = (WnXt + unhn, t−1), where the bias is neglected. Suppose
that the goal in step T is to minimize Jn. For this purpose, the back diffusion gradient in the
time step t is defined as follows:

δJn, T
δhn, T

uT−1
n ΠT−1

k=1 σ′
n, k+1 (19)

where 0 n, k + 1 is the element-wise derivative of the activation function (for more details
on the above derivative, please refer to [44]).

4. Data Collection

This section will discuss the data collection, preprocessing, feature selection, and how
to prepare labels. Therefore, this section includes the subsequent three subsections. An
overview of the data collection and manipulation process is shown in Figure 1.
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4.1. Hash Rate Data Collection (Feature Vector)

At first, the Bitcoin dataset, which includes Bitcoin hash rate information, was collected.
Bitcoin features and price data are available online for free. The data of this study was
collected from https://bitinfocharts.com (accessed on 18 September 2023) using a web
scraper written in Python 3.6. More than 700 features were collected based on technical
indicators. We used the same process as in [45] for the data collection. The feature selection
method selected a smaller subset of features from this large set of features. Technical
indicators including simple moving average (SMA), exponential moving average (EMA),
relative strength index (RSI), weighted moving average (WMA), standard deviation (STD),
variance (VAR), triple exponential moving average (TRIX), and rate of change (ROC) were
used for these data. According to the preprocessing performed in [45], the missing value
cases were quantified using the linear interpolation method as much as possible. For all
regression and classification models, the dataset was shuffled and divided into two sets:
the training set and validation set. A total of 20% of the data were kept for validation, and
80% of the data were used for training. On the other hand, the isolation forest method
algorithm [46] was used to control outliers. This algorithm removed approximately 14% of
the outlier data. Next, the features selected for each interval are listed in Table 2.

4.2. Computational Linguistics Data Collection (Linguistic Vector)

This section extracts some of the most important features to recognize effective tweets.
These features are known as linguistic features:

• Numbers of words and sentences: The number of words in tweets is distributed in a
broad spectrum, which shows that some fake tweets have very few words and some
have many words. Word count is just a simple view for analyzing tweets. In addition,
actual tweets have more sentences on average than fake tweets. These features are
considered under WScount, which is a 2D vector (including the average number of
tweets) per day.

• Question marks, exclamation marks, and capital letters: Considering the text of the
tweets, it can be concluded that spam tweets have more punctuation marks than
actual tweets. Real tweets have fewer question marks than spam tweets. The reason
may be that there are many rhetorical questions in spam tweets. These rhetorical
questions are always used to emphasize ideas and intensify emotions consciously.
This 3-dimensional vector is called the QECcount vector (includes the average number
of tweets per day).

https://bitinfocharts.com
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• Psychological perspective: From a psychological perspective, we also examine using
first person pronouns (e.g., I, we, and me) in real and fake tweets. Deceptive people
often use language that minimizes self-reference. A person who lies tends not to use
“we” and “I” and does not use personal pronouns. On average, fake tweets have fewer
first-person pronouns. We define the vector extracted from this step as P h, which
contains the average number of daily tweets.

• Sentiment analysis: TextBlob (https://textblob.readthedocs.io/en/dev/ (accessed on
18 September 2023)) library was used for sentiment analysis. TextBlob is a Python
(2 and 3) library for processing textual data. It is a simple API used in common
natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase
extraction, sentiment analysis, classification, translation, and more. This library from
NLTK (Natural Language ToolKit) uses the main core, and the input contains a single
sentence, while the outputs of the TextBlob are the polarity and subjectivity. The polar
score ranges from (−1 to 1), where −1 indicates the most negative words, such as
“disgusting”, “awful”, and “pathetic”, and 1 indicates the most positive words such as
“excellent” and “best”. It specifies if the subjectivity score is between (0 to 1), which
shows the number of personal opinions. If a sentence has a high subjectivity, i.e., close
to 1, it seems the text contains more personal opinions than real information. We call
the vector extracted from this step a binary, Se, which contains the average number of
tweets per day.

The combination of different extracted features is shown in Figure 2.
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Figure 2. (a) Chart proposed for the encoding phase. (b) Architecture of the proposed approach for
illiquidity prediction.

The outline of the proposed approach is shown in Figure 3, where the encoding layer
is placed with RNN layers, which are discussed in the following three types of layers that
are placed:

https://textblob.readthedocs.io/en/dev/
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4.3. Illiquidity Label

In [47], they considered a new method for measuring illiquidity, which is the basis
of summarizing the data of this research. Assuming that w, d, h, and m represent the
weekly, daily, hourly, and minute intervals, the interval of each of these values is equal
to w = [1; :::; W], d = [1; 2; :::; 7], h = [00; 01; :::; 23], and m = [00; 01; :::; 59], and W refers
to the weekly interval in data collection. According to the research in [38], to measure
volatility and volume patterns, we introduce the relative measures of volatility and volume
in days, hours, and minutes. For this purpose, we measure volatility using the absolute
return instead of the squared return. The reason is that absolute returns are less sensitive
than flat regions and are sufficient to measure relative volatility. Complete efficiency and
its closely associated amplitude-based measures constitute common metrics for gauging
and modeling volatility. The use of absolute returns holds an advantage, as they, coupled
with volume, contribute to the computation of the illiquidity measures outlined below.
Relative measures exhibit heightened robustness, especially when linked to mean variables
confined within the range of zero to one.

λ
day
σ (d) ≡ 1

Nd
∑
w

7∑h.m|yτ(w, d, h, m)|
∑6

i=0 ∑h,m|yτ(w, d − i, h, m)|
(20)

and

λ
day
v (d) ≡ 1

Nd
∑
w

7∑h.m|Vτ(w, d, h, m)|
∑6

i=0 ∑h,m|Vτ(w, d − i, h, m)|
(21)

Here, Nd ≃ W is the number of observations on day d in the measurement sample
(N d = W or Nd = W − 1). If we consider the example with d = 1 (Mondays), λ

day
σ (d) and

λ
day
V (d) measure the volatility and volume that occurs on Mondays relative to other days

of the week, respectively.
Also, λ = 1 corresponds to the average level of volatility and volume, respectively.

Similarly, the relative measures of volatility and volume for the hour of the day are given
by the following equations:

λhour
σ (h) ≡ 1

Nh
∑
w,d

24∑m|yτ(w, d, h, m)|
∑23

i=0 ∑m|yτ(w, d − i, h, m)|
(22)

and

λhour
V (h) ≡ 1

Nh
∑
w,d

24∑m|Vτ(w, d, h, m)|
∑23

i=0 ∑m|Vτ(w, d − i, h, m)|
(23)

For h = 0, . . ., 23 and the number of observations h indicated by Nh, we will have the
value of Nh ≃ 7 ∗ W. The authors in [47] combined their volatility and volume measures
into a relative liquidity measure based on Amihud’s method [32]. First, they calculated the
liquidity measure for each hour and compared the hourly measure with the average of the
previous 24 h. The measurement of their relative illiquidity was defined as follows:

This illiquidity calculation method was used for the target dataset.
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The data at three main intervals are given in Table 3 as it was gathered. In this table,
the amount of training and test data are given.

λhour
illiquid(h) ≡

1
Nd

Illiq(w, d, h)
∑ j=023I I Iiq(w, d, h − i)

(24)

where

Illiq(w, d, h) ≡ ∑m|yτ(w, d, h, m)|
vτ(w, d, h)

(25)

Table 3. Intervals of data and training and test size.

Dataset Interval 1 Interval 2 Interval 3

Range April 2013–July 2016 April 2013–April 2017 April 2013–April 2022
# Records 1206 1462 3285

# Train (80%) 964 1169 2628
# Test (20%) 242 293 657

5. Results

In this section, the impact of each of the feature sets that was introduced in the data
collection section is explained to show the impact of these features on Bitcoin illiquidity
prediction and to determine issues that can be improved. A description of each of the
models and their inputs is given below, and a summary of the symbols used in the models
is provided in Table 4.

Table 4. Parameter spaces for each parameter name.

Parameter Name Dimension Features

Feature vector R20

Median_transaction_fee30 trx USD

Median transaction fee 7 trx USD

Price 90 emaUSD

Size 90 trx

Transactions

Price 30 wma USD

Price 3 wma USD

Price 7 wma USD

Median transaction fee 7 roc USD

Difficulty 30 rsi

Mining profitability

Price 30 sma USD

Sentinusd 90 ema USD

Transaction value USD

Top 100 cap

Difficulty 90 mom

Hashrate 90 var

Price 90 wma USD

Sent in usd 90 sma USD

Median transaction tee USD

Wscount R2 Word count and sentence count

QECcount R3 Question mark, exclamation mark and capital letters count

Ph R1 Physiology

SE R2 Polarity and subjectivity
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Several different models were proposed to examine this analysis, which we will discuss
in the following section:

• RNN (feature vector and Wscount): The input of this model is all the extracted indicator
features and the features related to the number of words and sentences of tweets on
that day. In fact, the feature space of this model is equal to R20 + R2.

• RNN (feature vector and QECcount): The input of this model is all the extracted indi-
cator features and the features related to the number of question marks, exclamation
marks, and capital letter counts of tweets on that day. In fact, the feature space of this
model is equal to R20 + R3.

• RNN (feature vector and Ph): In this model, the features of the feature vector and Ph
are used as input features. The feature space of this model is equal to R20 + R1.

• RNN (feature vector and SE): In this model, the features of the feature vector and Ph
are used as input features. The feature space of this model is equal to R20 + R2.

• RNN (all features): This model incorporates all features as inputs, encompassing the
entire feature space of previously considered cases and combinations, denoted as R20

+ R2 + R3 + R1 + R2.

Various evaluation methods were employed to assess the models, as outlined below,
with both split validation and cross-validation applied to address the predictive problem:

1. Split validation: This method involves dividing the dataset into training and test
groups, with the training set typically larger than the test set. The training dataset
is utilized for training a machine learning model, while the test dataset evaluates
the trained model. Both datasets feature a label attribute containing the prediction
column indicating the degree of illiquidity.

2. Cross-validation: In this method, the dataset is partitioned into N groups, with
each group serving as the test set in the turn, while the remaining groups are used
for training. The ultimate outcome is the average of the results obtained from each
group. Although cross-validation is recognized as more demanding, it typically
produces more dependable results. However, caution is advised in this study when
predicting the early illiquidity of Bitcoin based on its prior price, as this is the focus of
cross-validation. Examining Figure 4, the Bitcoin price chart illustrates a significant
historical price surge, accompanied by increased volatility in recent years. Forecasting
the price in the initial years incurs less error due to this substantial rise. Given that
these early years outnumber the preceding years with the highest prices, the average
forecast error for this period is considerably lower. Averaging the errors across all
cross-validation groups mitigates the impact of inaccurate forecasting in later years,
resulting in the lowest error occurring in the initial years and a substantial reduction
in the final mean error. This phenomenon gives the illusion of effective prediction
for the machine learning algorithm. Consequently, split validation is considered
more reliable for predicting Bitcoin’s illiquidity, prioritizing the anticipation of the
cryptocurrency’s future trajectory over its initial prices.

Both methods use a sampling method to divide the initial dataset. There are also two
well-known sampling methods as follows:

1. Linear: This approach preserves the order of the records based on the original dataset.
For example, suppose the split ratio is 80% and 20% for the training and testing
datasets. In that case, the training dataset will be the first 80% of the initial dataset,
and the test dataset will be the last 20%.

2. Random: This strategy involves the random selection of unique records from the
original dataset, while ensuring the distribution ratio of label features is maintained
in both the training and testing datasets.
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However, the drawback of the random approach becomes apparent when selecting
records from Bitcoin data from the last year and earlier, which may introduce bias when
predicting the future of the digital currency. Anticipating the illiquidity of Bitcoin becomes
more manageable when armed with knowledge about its illiquidity on specific days of the
last month. Hence, a preference is given to employing a linear approach for cryptocurrency
forecasting.

Unfortunately, the plain paper did not consider these facts and used cross-validation in
some experiments and split validation in others. Because of their differences, as discussed,
their results are different. Additionally, it uses a random approach to sampling, which, as
discussed, is again unfair. However, the article fortunately publishes its code base with its
dataset.

Therefore, we modify and implement its code for the linear partitioning validation
approach. Also, the article considered the basis of its proposed approaches for price
prediction, which we considered for illiquidity, which is comparative primarily.

First, in Table 5, the results of the proposed RNN approaches and the approaches used
in [36] are shown to predict the price of Bitcoin. These approaches are as follows:

• Artificial neural network (ANN): The neural network considered in the study is
characterized by specific hyperparameters: optimizer (Adam), hidden layers with
neurons (2 layers with 128 neurons each), learning rate (0.08), epoch (5000), batch
size (64), activation function (ReLU), and loss function (logcosh). The original article
discusses the application of this network in both regression and classification modes.
However, for our purposes, we specifically employed the regression mode to predict
illiquidity.

• Stacked artificial neural network (SANN): In this approach, five ANN networks were
considered with the settings mentioned in the ANN approach. A SANN consists of
five individual ANNs that are used to train a larger ANN model. Individual models
are trained using training data with a fivefold cross-validation; each model is trained
with the same configuration in a separate layer. Since ANNs have random initial
weights, each trained ANN gets different weights, and this advantage enables them
to learn their differences well. This network is used in two modes of regression and
classification in the basic article, and we used the regression mode to predict illiquidity.

• Support vector machines (SVM): This algorithm is a supervised ML model that
operates based on the idea of separating points using a hyperplane, and in fact, its
primary goal is to maximize the margin. In SVM, kernels can be linear or nonlinear
depending on the data and include the radial basis function (RBF), hyperbolic tangent,
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and polynomial kernels. This algorithm can provide predictions with a low error rate
for small datasets without much training. In the introductory article, this approach is
considered with the Gaussian RBF kernel, which was considered only in its regression
mode to predict the illiquidity of this approach.

• Long short-term memory: This approach is an RNN network that uses four gates to
learn long sequences. In the previous section, RNN approaches were discussed. This
approach is used in both regression and classification modes, and in this research, its
regression mode was used depending on the types of labels.

Table 5. Baseline paper results for different validation methods for (all features).

Validation Method ↓
Metrics → MAE ($) MAPE (%)

Intervals → Model ↓ I II III I II III

Random
split

(paper)

ANN 0.45 2.61 9.50 1.08 1.28 2.78

SVM 0.72 3.23 7.04 0.74 1.28 1.44

SANN 0.24 2.13 4.58 0.55 0.93 2.73

LSTM 0.20 4.55 6.90 0.95 1.95 3.61

Simple RNN 0.67 3.2 3.67 0.72 1.21 1.42

GRU 0.22 2.12 3.23 0.56 1.19 1.51

IndRNN 0.21 1.99 3.89 0.45 0.93 1.04

Random
split
(run)

ANN 1.05 8.12 6.37 3.00 8.22 1.32

SVM 1.23 5.37 9.47 0.96 2.09 2.21

SANN 1.06 5.77 7.45 2.96 6.13 1.22

LSTM 0.55 4.47 5.54 0.68 1.70 1.11

Simple RNN 1.22 2.41 9.40 0.98 2.53 2.01

GRU 1.45 3.65 6.66 0.69 1.91 1.12

IndRNN 0.52 1.21 5.01 0.65 1.83 1.19

Linear
split
(run)

ANN 8.21 9.4 8.50 5.70 22.2 3.21

SVM 2.04 6.19 9.87 0.87 14.49 7.51

SANN 2.75 12.7 12.13 3.89 9.58 2.10

LSTM 2.83 5.02 14.77 3.75 1.18 2.51

Simple RNN 2.05 6.12 6.10 0.90 1.51 7.92

GRU 2.40 5.67 4.87 3.80 1.90 3.01

IndRNN 2.01 4.80 3.89 3.70 1.15 2.42

To gauge the effectiveness of the regression models, their performance is evaluated
using key metrics: the mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE). A favorable model is characterized by minimizing
the MAE, MAPE, and RMSE values.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (26)

RMSE =

√
1
n

n

∑
i=1

|yi − ŷi|2 (27)

MAPE =
100
n

n

∑
i=1

|yi − ŷi|
yi

(28)
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Keras stands out as a Python-based high-level library that seamlessly adapts to both
GPU and CPU settings. Offering a diverse set of modules encompassing neural layers, cost
functions, optimizers, initialization schemes, activation functions, and regularization, this
API played a pivotal role in realizing artificial neural networks (ANN), sparse artificial
neural networks (SANN), long short-term memory networks (LSTM), and recurrent neural
networks (RNNs). In the case of support vector machines (SVM), the implementation drew
upon the capabilities of the SKlearn library.

The results of the regression models for three intervals in the mode of using all the
features are given in Table 5. In the first period, from April 2013 to July 2016, BTC prices
did not experience much volatility, and hence, the illiquidity level was also low. In this
interval, all the models have performed the predictions well. In random split (paper) mode,
the proposed IndRNN approach obtained an MAE = 0.21, the most favorable MAE value.
On the other hand, this approach reached a MAPE = 0.45, the lowest value in the reported
results. In the random split (run) evaluation model, the IndRNN approach again obtained
the most favorable results in terms of the MAE and MAPE. This approach achieved an MAE
= 0.52 and a MAPE = 0.65 in the interval I. The linear split (run) gave poorer results than
the random split (paper) and random split (run). In this evaluation method, the IndRNN
could reach an MAE = 2.01 and a MAPE = 3.70, which are the most favorable results.

In interval II, from April 2013 to April 2017, BTC prices are significantly higher than
at the end. However, it is relatively more stable compared to interval I. This interval
has a significant amount of illiquidity due to price fluctuations. In the random split
(paper) evaluation method, the IndRNN approach recorded an MAE = 1.99, which is the
lowest MAE among other approaches. However, the IndRNN and SANN approaches
performed equally in the MAPE criterion and achieved a MAPE = 0.93. In random split
(run), the IndRNN approach reached an MAE = 1.21, and the LSTM approach reached
a MAPE = 1.7, the most favorable results in the reported results. The linear split (run)
still recorded weaker results in this interval and reached an MAE = 4.80 for IndRNN and
a MAPE = 1.18 for LSTM in the most favorable mode. The LSTM approach recorded
acceptable results in terms of the MAPE in this interval.

The Bitcoin price experienced the highest volatility since April 2017, which was
covered in interval III (April 2013 to December 2019). In parallel, the lack of liquidity in
this interval is more than in the other intervals. In the random split (paper) evaluation
method, the GRU approach achieved an MAE = 3.23, and the IndRNN approach reached a
MAPE = 1.04 in this interval, which are the best results among the tested approaches. In
random split (run), the IndRNN approach reached an MAE = 5.01, and the GRU approach
reached a MAPE = 1.12, which were the most favorable results. In this performance
evaluation method, the two GRU and IndRNN approaches were the opposite of the random
split (paper) method regarding the MAE and MAPE. Also, in linear split (run), the IndRNN
approach achieved the best result, reaching an MAE = 3.98 and a MAPE = 2.42.

Next, Table 6 shows the results of the proposed approaches and other approaches on
the feature vector and QECcount. In comparing the different approaches on interval I, the
GRU approach obtained the best result and achieved an MAE = 1.22.

This result was obtained using the random split (paper) policy (Table 7). The indRNN
approach was the second, and the LSTM approach was the third-best approach in this
interval. In examining the approaches on interval II, the IndRNN approach can obtain
a better MAE. This approach obtained an MAE = 2.08 in interval 2, which was obtained
using the random split (run) evaluation method. Also, in this interval, the second-best
model is GRU. In examining interval III, the IndRNN approach again obtained the lowest
MAE. This approach has performed worse in the MAPE comparison than the LSTM-based
approach. In the validation method, according to the obtained results, the random split
(paper) approach obtained the best result on average, and the linear split (run) approach
obtained the worst result.
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Table 6. p-values of difference approaches.

Model ANN SVM SANN LSTM Simple RNN GRU IndRNN

ANN
Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = −0.0622,
p-value = 0.9507,
df = 34.0

Statistic = −0.17560,
p-value = 0.8616,
df = 34.0

Statistic = −0.0071,
p-value = 0.9943,
df = 34.0

Statistic = −0.3070,
p-value = 0.76069,
df = 34.0

Statistic = −0.1642,
p-value = 0.8704,
df = 34.0

Statistic = −0.2393,
p-value = 0.8122,
df = 34.0

SVM
Statistic = 0.0622,
p-value = 0.9507,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = −0.1134,
p-value = 0.9103,
df = 34.0

Statistic = 0.0551,
p-value = 0.9563,
df = 34.0

Statistic = −0.2453,
p-value = 0.8076,
df = 34.0

Statistic = −0.1020,
p-value = 0.9192,
df = 34.0

Statistic = −0.1773,
p-value = 0.8602,
df = 34.0

SANN
Statistic = 0.1756,
p-value = 0.8616,
df = 34.0

Statistic = 0.1134,
p-value = 0.9103,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = 0.168,
p-value = 0.8671,
df = 34.0

Statistic = −0.1323,
p-value = 0.8954,
df = 34.0

Statistic = 0.0115,
p-value = 0.9908,
df = 34.0

Statistic = −0.0640,
p-value = 0.9493,
df = 34.0

LSTM
Statistic = 0.0071,
p-value = 0.9943,
df = 34.0

Statistic = −0.0551,
p-value = 0.9563,
df = 34.0

Statistic = −0.1685,
p-value = 0.8671,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = −0.2999,
p-value = 0.7660,
df = 34.0

Statistic = −0.1571,
p-value = 0.8760,
df = 34.0

Statistic = −0.2322,
p-value = 0.8177,
df = 34.0

Simple RNN
Statistic = 0.3070,
p-value = 0.7606,
df = 34.0

Statistic = 0.2453,
p-value = 0.8076,
df = 34.0

Statistic = 0.1323,
p-value = 0.8954,
df = 34.0

Statistic = 0.2999,
p-value = 0.76606,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = 0.1439,
p-value = 0.8863,
df = 34.0

Statistic = 0.06848,
p-value = 0.9457,
df = 34.0

GRU
Statistic = 0.1642,
p-value = 0.8704,
df = 34.0

Statistic = 0.1020,
p-value = 0.9192,
df = 34.0

Statistic = −0.01152,
p-value = 0.9908,
df = 34.0

Statistic = 0.1571,
p-value = 0.8760,
df = 34.0

Statistic = −0.14391,
p-value = 0.8863,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0

Statistic = −0.0755,
p-value = 0.9401,
df = 34.0

IndRNN
Statistic = 0.2393,
p-value = 0.8122,
df = 34.0

Statistic = 0.1773,
p-value = 0.8602,
df = 34.0

Statistic = 0.0640,
p-value = 0.9493,
df = 34.0

Statistic = 0.2322,
p-value = 0.8177,
df = 34.0

Statistic = −0.0684,
p-value = 0.9457,
df = 34.0

Statistic = 0.0755,
p-value = 0.9401,
df = 34.0

Statistic = 0.0,
p-value = 1.0,
df = 34.0
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Table 7. Baseline paper results for different validation methods for (feature vector and QECcounter).

Validation Method ↓
Metrics → MAE ($) MAPE(%)

Intervals → Model ↓ I II III I II III

Random
split

(paper)

ANN 1.53 3.62 10.3 2.98 2.38 4.35

SVM 1.75 3.22 9.76 1.70 2.77 2.43

SANN 1.25 3.14 6.54 1.56 1.89 5.55

LSTM 1.24 4.53 8.92 1.94 2.09 2.13

Simple RNN 1.63 5.24 4.66 1.76 1.64 2.42

GRU 1.22 2.42 4.22 1.54 1.16 2.78

IndRNN 1.23 2.93 4.85 1.08 1.95 2.15

Random
split
(run)

ANN 2.53 4.63 8.39 4.31 9.24 3.64

SVM 2.33 9.63 11.5 1.89 4.13 3.15

SANN 2.83 6.75 8.49 3.94 7.89 2.54

LSTM 1.75 5.91 6.57 1.38 2.13 2.25

Simple RNN 2.23 2.98 10.42 1.31 2.19 3.19

GRU 2.44 6.63 8.64 1.13 2.12 2.08

IndRNN 1.47 2.08 7.91 0.98 2.85 2.42

Linear
split
(run)

ANN 9.46 10.24 9.93 4.78 25.3 4.42

SVM 3.34 8.08 10.83 1.47 16.41 9.04

SANN 3.73 13.91 13.10 4.22 11.12 3.24

LSTM 3.33 6.93 15.74 4.34 3.17 3.54

Simple RNN 3.35 7.13 7.12 1.43 3.13 7.90

GRU 3.65 7.09 5.24 5.52 3.92 4.24

IndRNN 2.23 5.78 4.06 5.72 3.88 2.98

Table 8 shows the results of different approaches for the feature vector and Ph. In
interval I, the SANN approach with a validation method based on random split (paper)
could reach an MAE = 1.23. The second-best approach in this interval was the IndRNN
approach, which achieved an MAE = 1.26. In interval II, RNN-based approaches performed
better; the IndRNN approach reached an MAE = 2.76 and the GRU approach reached an
MAE = 3.42, which were the first- and second-best models in this interval, respectively.
These results were obtained using the validation method based on random split (paper). In
interval III, the GRU approach performed better than other approaches and achieved an
MAE = 4.22 with the validation method based on random split (paper).

Combining extracted features and SE features in the feature vector and SE also obtained
comparable results. Table 9 shows the results of these features and proposed approaches.
In interval I, the GRU approach obtained the best result. This approach with the validation
method based on random split (paper) reached an MAE = 0.53. In this routine, the second-
best approaches were the simple RNN and LSTM, which achieved an MAE = 1.23. In
interval II, the IndRNN approach with a validation method based on random split (paper)
could reach an MAE = 1.55 and the GRU approach reached an MAE = 5.22 in interval III,
which are, respectively, the best approaches in intervals II and III.

The analysis of features based on the statistics of sentences and words is also given in
Table 10. In interval I, the GRU approach obtained the lowest MAE = 1.14. Meanwhile, the
ANN approach was able to get the second-best result. Both approaches in random split
(paper) obtained these results. In interval II, the ANN approach in random split (paper)
achieved an MAE = 1.56, the best performance. In interval III, the IndRNN approach in
random split (run) achieved an MAE = 6.91, which had better results than other approaches.
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Table 8. Baseline paper results for different validation methods for (feature vector and Ph).

Validation Method ↓
Metrics → MAE ($) MAPE (%)

Intervals → Model ↓ I II III I II III

Random
split

(paper)

ANN 1.50 3.54 11.3 3.98 3.14 3.67

SVM 1.72 4.26 10.76 2.70 2.42 4.46

SANN 1.23 4.87 7.54 1.56 3.40 6.57

LSTM 1.27 3.59 9.92 2.94 4.63 3.14

Simple RNN 1.67 4.95 5.66 1.76 2.24 3.47

GRU 1.98 3.42 4.22 2.54 1.15 2.79

IndRNN 1.26 2.76 4.85 1.08 2.83 2.53

Random
split
(run)

ANN 1.57 5.94 9.39 5.31 5.13 5.67

SVM 2.38 8.36 12.5 2.89 6.38 2.24

SANN 1.85 7.97 9.49 4.94 4.14 4.75

LSTM 1.78 6.92 7.57 1.38 4.13 4.23

Simple RNN 1.29 3.92 9.42 3.31 2.30 2.65

GRU 3.49 7.75 9.64 2.13 2.17 3.61

IndRNN 2.58 3.80 6.91 1.98 2.43 3.42

Linear
split
(run)

ANN 10.98 9.22 8.93 3.78 22.5 5.46

SVM 6.65 9.96 11.83 2.47 17.93 10.6

SANN 4.81 12.04 13.10 5.22 14.14 4.29

LSTM 3.82 7.47 19.74 4.34 2.14 4.34

Simple RNN 2.86 8.64 8.12 2.43 5.98 8.85

GRU 2.78 6.92 6.24 5.52 5.13 5.53

IndRNN 3.99 4.65 5.06 6.72 5.97 3.75

Table 9. Baseline paper results for different validation methods for the feature vector and SE.

Validation Method ↓
Metrics → MAE ($) MAPE (%)

Intervals → Model ↓ I II III I II III

Random
split

(paper)

ANN 2.51 2.56 10.3 4.98 3.14 3.67

SVM 2.31 5.56 11.7 3.70 2.42 4.46

SANN 1.25 5.25 6.54 2.56 3.40 6.57

LSTM 1.23 5.54 10.92 1.94 4.63 3.14

Simple RNN 1.23 3.42 6.66 2.72 1.24 4.47

GRU 0.53 2.23 5.22 1.12 2.15 4.79

IndRNN 1.55 1.55 5.85 4.81 3.83 5.53

Random
split
(run)

ANN 2.23 5.42 10.39 4.32 6.13 2.67

SVM 2.3 8.14 11.5 1.29 5.38 3.24

SANN 1.89 7.91 10.49 5.93 3.14 3.75

LSTM 2.24 6.24 7.57 2.12 5.13 3.23

Simple RNN 1.23 3.54 9.42 3.32 2.30 2.65

GRU 2.43 8.23 9.64 2.31 4.17 4.61

IndRNN 1.12 4.82 5.91 1.32 7.43 5.42
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Table 9. Cont.

Validation Method ↓
Metrics → MAE ($) MAPE (%)

Intervals → Model ↓ I II III I II III

Linear
split
(run)

ANN 13.40 8.25 8.93 5.13 23.5 6.46

SVM 7.24 8.23 10.83 2.43 13.93 9.6

SANN 5.24 10.3 13.10 5.23 15.14 5.29

LSTM 4.98 8.23 14.74 4.54 4.14 5.34

Simple RNN 1.68 8.52 5.12 2.09 3.98 7.85

GRU 4.42 6.23 7.24 5.89 4.13 3.53

IndRNN 3.24 5.42 6.06 4.33 6.97 4.75

Table 10. Baseline paper results for different validation methods for (feature vector and Wscount).

Validation Method ↓
Metrics → MAE ($) MAPE (%)

Intervals → Model ↓ I II III I II III

Random
split

(paper)

ANN 1.53 1.56 12.3 3.08 2.14 3.67

SVM 2.34 6.56 13.7 2.24 3.42 4.46

SANN 2.22 6.25 6.54 1.34 4.40 6.57

LSTM 2.25 3.54 11.92 2.93 5.63 3.14

Simple RNN 2.15 5.42 7.66 2.43 3.66 3.40

GRU 1.14 2.23 6.22 3.76 2.35 2.73

IndRNN 2.13 2.55 7.85 2.04 2.64 2.24

Random
split
(run)

ANN 3.21 4.42 11.39 4.34 5.42 6.43

SVM 3.32 2.14 16.5 1.43 6.42 2.65

SANN 3.81 4.91 11.49 5.93 4.10 4.35

LSTM 2.21 2.24 8.57 2.36 4.15 4.09

Simple RNN 2.22 5.54 10.42 1.35 2.34 2.24

GRU 2.43 9.23 10.64 1.13 2.90 3.66

IndRNN 2.11 3.82 6.91 2.94 2.65 3.46

Linear
split
(run)

ANN 11.2 10.9 9.93 2.73 22.6 5.35

SVM 8.23 10.3 11.83 3.48 17.2 10.8

SANN 6.22 11.3 11.10 4.25 14.9 4.34

LSTM 5.94 13.0 16.74 5.36 2.90 4.30

Simple RNN 3.61 12.5 6.12 3.44 5.23 8.42

GRU 2.42 11.0 8.24 5.53 5.42 5.65

IndRNN 3.23 11.0 7.06 6.71 5.23 3.74

In order to better display the proposed approaches, bar plot charts of different criteria
are shown in Figures 5–14.
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Figure 5. Bar plot of MAEs for different approaches where all features are considered input to the models. Figure 5. Bar plot of MAEs for different approaches where all features are considered input to the models.
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Figure 6. Bar plot of MAPEs for different approaches where all features are considered input to the models.
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Figure 7. Bar plot of MAEs for different approaches where the feature vector and QECcount are
considered input to the models.
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Figure 8. Bar plot of MAPEs for different approaches where the feature vector and 𝑄𝐸𝐶௖௢௨௡௧  are 

considered input to the models. 
Figure 8. Bar plot of MAPEs for different approaches where the feature vector and QECcount are
considered input to the models.
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Figure 9. Bar plot of MAEs for different approaches where the feature vector and Ph are considered
input to the models.
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Figure 11. Bar plot of MAEs for different approaches where the feature vector and SE are considered
input to the models.
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Figure 12. Bar plot of MAPEs for different approaches where the feature vector and SE are considered
input to the models.
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Figure 13. Bar plot of MAEs for different approaches where the feature vector and Wscount are
considered input to the models.
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In order to check the research hypotheses, the p-values of different approaches are
given in Table 6.
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6. Conclusions and Gap Analysis

This research aimed to predict short-term and medium-term Bitcoin market illiquidity
using time series models and machine learning algorithms. We found that the IndRNN
algorithm is a better predictor than other approaches due to the nonlinearity of market
liquidity and the complexity of its market microstructure. Considering a time series analysis,
the IndRNN model performs better for capturing short-term liquidity, while the LSTM and
GRU models also provide acceptable results. Despite the above results, limitations in this
study can be seen. First, the sample used in this study is small; the data history used in this
research is considered in the daily interval, which reduces the number of training samples.
Secondly, base cryptocurrencies and altcoins have much less history than Bitcoin, which
makes it challenging to present a model for them.

The research on digital currency liquidity and its prediction through machine learning
approaches holds several potential implications for management. These implications en-
compass risk management, portfolio optimization, data splitting policies, market stability,
investor confidence, strategic decision making, adoption of hybrid forecasting approaches,
regulatory compliance, and the incorporation of advanced technologies. Decision makers
can leverage the findings to proactively manage the risks associated with digital currency
investments, enhance portfolio efficiency, adopt effective data splitting strategies, attract
investors through improved market liquidity, inform strategic decisions using predictive
models, comply with evolving regulatory frameworks, and explore the adoption of ad-
vanced technologies for enhanced financial analysis. In essence, the research offers valuable
insights that can guide managerial actions and strategies in navigating the complexities of
digital currency markets.

In the realm of future research, there lies an opportunity to delve into alternative
GARCH-type models, paving the way for a comprehensive comparative analysis. A model
of interest in this exploration is the VAR-BEKK-GARCH model, as put forth by Loverta and
López [33], specifically tailored for the analysis of time series data concerning log spreads.
Nevertheless, a significant hurdle to overcome in this endeavor is the infrequent occurrence
of certain intervals. A potential solution to this challenge involves the categorization of
these intervals into distinct classes. Depending on the representation of minority classes,
strategies for controlling minority class influence can be applied, presenting an avenue to
fortify the robustness of the analytical approach. This problem is an unbalanced sampling
problem for which the following approaches can be used:

• Resampling: Time series forecasting is a challenging task where the nonstationary
characteristics of the data require strict settings for forecasting tasks.

A common problem is the skewed distribution of the target variable, where some
intervals are highly significant but severely underrepresented. Standard regression tools
focus on the average behavior of the data. However, the goal in many time series forecasting
tasks is the opposite.

For example, predicting rare values is one of these challenges. A standard solution for
time series forecasting with unbalanced data is to use resampling strategies that operate
on the learning data by changing their distribution in favor of a particular bias. Various
algorithms have been proposed for this purpose. For example, algorithms in Ref. [41] can
be used.

• High-dimensional imbalanced time-series classification (OHIT) [42]: OHIT first uses
a density ratio-based joint nearest-neighbor clustering algorithm to capture minority
class states in a high-dimensional space.

Depending on different clustering algorithms, this clustering can get different results.
It then for each mode applies the shrinkage technique of a large-dimensional covariance
matrix to obtain an accurate and reliable covariance structure. Finally, OHIT generates
structure-preserving synthetic samples based on a multivariate Gaussian distribution using
the estimated covariance matrices.
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• IB-GAN [48]: The standard methods of class weight, oversampling, or data augmen-
tation are the approaches studied in “An empirical survey of data augmentation for
time series classification with neural networks”.

These approaches are parametric. Parametric approaches do not always yield signif-
icant improvements for predicting the minority classes of interest. Nonparametric data
augmentation with generative adversarial networks (GANs) is a promising solution.

For this purpose, the authors have proposed the imputation balanced GAN (IBGAN),
which combines a new method of augmentation and data classification in a one-step process
through an imputation balance approach. An IB-GAN uses imputation and resampling
techniques to generate higher-quality samples from randomly masked vectors than white
noise, and balances the classifier through a pool of real and synthetic samples. Hyperpa-
rameter imputation pmiss allows us to regularize the classifier variation by adjusting the
innovations introduced through generator imputation. The IB-GAN is simple to train and
model, pairing each deep learning classifier with a generator discriminator pair, resulting
in higher accuracy for less observed classes. The basis of this approach is a GAN that tries
to generate cases similar to the minority class.

The authors in [49] showed the effect of different features for stock forecasting, and in
other future works, these ideas can be used for illiquidity prediction.
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